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Abstract

Learning to synthesize non-existing frames from the origi-
nal consecutive video frames is a challenging task. Recent
kernel-based interpolation methods predict pixels with a sin-
gle convolution process to replace the dependency of opti-
cal flow. However, when scene motion is larger than the pre-
defined kernel size, these methods yield poor results even
though they take thousands of neighboring pixels into ac-
count. To solve this problem in this paper, we propose to use
deformable separable convolution (DSepConv) to adaptively
estimate kernels, offsets and masks to allow the network to
obtain information with much fewer but more relevant pix-
els. In addition, we show that the kernel-based methods and
conventional flow-based methods are specific instances of the
proposed DSepConv. Experimental results demonstrate that
our method significantly outperforms the other kernel-based
interpolation methods and shows strong performance on par
or even better than the state-of-the-art algorithms both quali-
tatively and quantitatively.

Introduction

Video frame interpolation is the task of synthesizing middle
non-existent frames from two consecutive frames, which is
considered as one of the important problems in the field of
video processing. The ability to generate in-between frames
could find applications in various domains, ranging from
novel view interpolation (Flynn et al. 2016), slow motion
generation (Jiang et al. 2018; Bao et al. 2019) to frame rate
conversion (Bao et al. 2018b).

Traditional methods interpolate one frame with a two-
step method which first estimate motion information, typi-
cally optical flow, and then perform the pixel synthesis op-
eration guided by motion (Baker et al. 2011). However, a
well-known problem behind this method is that visual arti-
facts can be introduced in challenging conditions (e.g. oc-
clusion, illumination or nonlinear structural changes), sug-
gesting that the two-step interpolation process struggles to
reconstruct plausible results.

To better handle occlusion, recent approaches address the
problem aforementioned with more elaborated pipelines by
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(a) SepConv-L+

(b) Ours

Figure 1: An interpolated example. The third row provides
magnified views of the effective sampling locations centered
at the pink point in the first row. Greener color represents
higher weights. The second row shows corresponding con-
volution patches. Compared with Sepconv (Niklaus, Mai,
and Liu 2017b), our method considers more relevant pix-
els far away from local grid (black rectangle) with a much
smaller kernel size and performs better.

estimating flow information together with occlusion masks
or visibility maps with deep convolutional neural networks
(CNNs) (Jiang et al. 2018; Bao et al. 2019; 2018a; Liu et al.
2017; van Amersfoort et al. 2017; Liu et al. 2019; Xue et al.
2019; Peleg et al. 2019; Yuan et al. 2019; Hannemose et al.
2019).

Instead of using optical flow, another major trend in this
research is to replace the two-step interpolation operation
as a convolution process (Niklaus, Mai, and Liu 2017a;
2017b). For each output pixel, a pair of 2D kernels or four
1D kernels (two for horizontal and another two for vertical
direction) are learned with a neural network. Notably, large



kernel size is required for these kernel-based interpolation
methods to handle large motion. Though these methods are
able to generate reasonable results, there are two main draw-
backs: 1) These methods are limited to handle motion larger
than kernel size. 2) It is expensive to consider thousands of
pixels to synthesize only one output pixel.

In this paper, we address these drawbacks by present-
ing a more powerful and effective approach, known as De-
formable Separable Convolution (DSepConv). We argue
that the limitation of the previous kernel-based interpolation
methods is because they process the pixels only in the lo-
cal neighborhood, which takes no effect on pixels outside
the regular grid. As shown in Figure 1, with large motion,
the estimated kernels are incorrect despite they have con-
sidered 51 x 51 pixels in the local neighborhood. Drawing
inspiration from the success of deformable convolution net-
works (Dai et al. 2017; Zhu et al. 2019), we propose to learn
adaptive kernels, offsets and masks for interpolation, allow-
ing us to use far fewer but more effective pixels to deal
with large motion. Moreover, we show that conventional
flow-based interpolation methods with CNNs are specific in-
stances of our method. Our experiments show that the pro-
posed method can greatly increase the performance of ex-
isting kernel-based methods and perform favorably against
representative state-of-the-art interpolation methods.

The contributions of this paper are summarized as fol-
lows:

e A novel solution for frame interpolation DSepConv is
proposed which learns not only spatially-adaptive separable
convolution kernels, but also deformable offsets and masks.
This approach is able to use small kernel size to handle
strong motion.

e Both recent kernel-based and flow-based interpolation
methods are demonstrated as special cases of our proposed
DSepConv.

e Despite any complex information (like context, depth,
flow and edge information) or post-processing process are
not involved in our network, the design of jointly estimating
kernels, offsets and masks makes our performance on par or
even better than the state-of-the-art methods.

Related Work

Various methods to synthesize intermediate video frames
have been introduced. In this section, we provide an
overview of recent interpolation methods in the following
three parts.

Flow Based Methods

Using optical flow is one of the most conventional strate-
gies for video frame interpolation. Considering the refer-
ence frames are not equally informative due to occlusion,
mask maps are often estimated together with optical flow for
adaptively blending the warped frames. Specifically, Liu et
al. (Liu et al. 2017) proposed a fully-convolutional encoder-
decoder architecture named Deep Voxel Flow (DVF) to esti-
mate 3D flow across space and time. The in-between frame
was then warped by trilinear sampling. Similar method has
been introduced by Jiang et al. (Jiang et al. 2018), who used
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two U-Net architectures to compute bi-directional optical
flow and visibility maps. Moreover, CyclicGen (Liu et al.
2019) additionally used edge information (Xie and Tu 2015)
and cycle consistency loss, which greatly improved the per-
formance of DVF. In order to get more accurate optical flow,
some methods leveraged advanced flow or depth estimation
architectures as sub-modules in their networks. For instance,
ToFlow (Xue et al. 2019) utilized SPyNet (Ranjan and Black
2017) to get flow information for interpolation. MEMC-
Net* (Bao et al. 2018a) chose FlowNetS (Dosovitskiy et al.
2015) for motion estimation. DAIN (Bao et al. 2019) used
PWC-Net (Sun et al. 2018) and a depth network (Chen et
al. 2016) to explicitly detect the occlusion. Other interpola-
tion methods such as CtxSyn (Niklaus and Liu 2018) and
Zoom-In-to-Check (Yuan et al. 2019) warped not only input
frames, but also their deep corresponding features. Despite
the so far mentioned approaches have been shown effective,
the performance can be limited provided that the optical flow
or occlusion masks were less accurate.

Phase Based Methods

Several methods utilize phase information to learn the mo-
tion relationship for video frame interpolation. Meyer et al.
(Meyer et al. 2015) proposed the phase-based method which
utilized phase information across the levels of a multi-scale
pyramid. Such an approach performs well when the mo-
tion is small while fails in difficult interpolation settings.
To further increase the performance, combined with CNNss,
PhaseNet (Meyer et al. 2018) was proposed to better han-
dle challenging scenarios like brightness changes and mo-
tion blur. However, their performance can be less effective
in coping with the level of detail.

Kernel Based Methods

Kernel based methods regard flow estimation as an interme-
diate step, which can be circumvented with a single convo-
lution process. These methods have also been exploited in
some other tasks like frame prediction (Reda et al. 2018)
and motion blur synthesis (Brooks and Barron 2019). As a
pioneer of kernel based methods, AdaConv (Niklaus, Mai,
and Liu 2017a) was proposed to estimate a pair of spatially-
adaptive convolutional kernels for each output pixel with
a neural network. To reduce the large memory demand,
Niklaus et al. (Niklaus, Mai, and Liu 2017b) proposed Sep-
Conv that separated each 2D convolution kernel into a verti-
cal and a horizontal kernels. SepConv increased the perfor-
mance to some extent, but it failed to handle motion larger
than 51 (pixels) and yielded poor results.

Some recent efforts (Choi and Bajic 2019; Deng et al.
2019; Ahn, Jeong, and Kim 2019; Peleg et al. 2019) have
been made to mitigate the limitations of SepConv (Niklaus,
Mai, and Liu 2017b). However, they all process the infor-
mation in a local neighborhood, making them have to use
large kernels (51 x 51) or operate on down-sampled frames
(half, one quarter or one eighth of the original frame size)
to handle potential large motion. On the contrary, we pro-
pose to use far smaller separable kernels (5 x 1) with off-
sets and masks to adaptively convolve with input images in
a non-local neighborhood. Concurrently, similar work like
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(a) Baseline kernel-based methods.

(b) Our proposed.

Figure 2: Comparisons of the sampling locations in 3 X 3 convolutions between the baseline methods (Niklaus, Mai, and Liu
2017a; 2017b) and our method. Our method can obtain pixels (pink points) outside the local neighborhood with additional
learnable offsets (purple arrows), allowing us to better handle large motion. Modulation scalars are omitted for clarity.

ADC (Lee et al. 2019), has been propose to find the spa-
tial transform between the frames. However, different from
their method, our proposed DSepConv estimates separable
1D kernels rather than learning 2D kernels. In addition, we
learn scalar masks as a modulation mechanism for each shift
pixel of the two frames, which guarantees the diversity of the
synthesized pixels and leads to a better performance. More-
over, we prove that when the kernel size is set to be 1, our
method can be seen as a flow based method.

The Proposed Approach

In this section, we introduce our proposed deformable sepa-
rable convolution method for video frame interpolation, in-
cluding the details of our network architecture and our train-
ing details.

Adaptive Deformable Separable Convolution

Let us assume I; and I to represent the two input frames, i
denotes the frame to be interpolated temporally in the mid-
point of the two frames. For each pixel i(az, y) to be synthe-
sized, a pair of convolution kernels are estimated to adap-
tively convolve the local patches Py (x, y) and P (2, y) cen-
tered at (z,y) from I; and I, respectively. This process can
be formulated as

I(z,y) = Ki(2,y) * P1(z,y) + Ka(z,y) * Pa(z,9), (1)

where K; and Ky € R™*" represent n x n 2D convolution
kernels. Figure 2(a) illustrates the approach. For standard lo-
cal convolution, the kernel size has to be large enough to
capture large motion. In AdaConv (Niklaus, Mai, and Liu
2017a), the kernel size n is set to be 41. However, estimat-
ing such an amazing number of kernels (41 x 41) simultane-
ously entails heavy computational load. Instead of estimat-
ing the entire 2D kernels, SepConv (Niklaus, Mai, and Liu
2017b) approximates each 2D kernel with two 1D kernels
(ki v, k1 1) or (ko 4, ko 5,) with formulation:

{K1($7y) = kl,v(‘rvy) : kIh(xvy)a

2
K2(‘T7y) = kav(IL’,y) : k;—,h(ﬂf,y),
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reducing the number of kernel parameters from n? to 2n for
each kernel. The modification enables the kernel size to be
larger (51 x 51) than AdaConv as a result of the reduction
of computational burden. Nonetheless, despite thousands of
pixels have been considered, these methods are limited to
motions up to n pixels between two input frames.

Inspired from recent deformable convolution networks
(Dai et al. 2017; Zhu et al. 2019), we propose to use
much smaller convolution kernels with additional offsets
and masks, which allow us to focus on fewer but more rele-
vant pixels rather than all the pixels in a large neighborhood
(shown in Figure 2(b)). Given a convolution kernel and its
corresponding local patch with specific kernel size n (n = 5
in our method), let p, ; denote the pre-specified offset for
the j-th (j € [0,n?)) location in a specific patch and i rep-
resents either of the two input frames. Thus each pixel in
patch P;(x,y) centered at (x,y) in frame I; can be repre-
sented as P;(z, y; p;). In our method, learnable offset Ap, ;
and modulation scalar Am,; ; are estimated for each pixel
located at p, ; in each patch. As a result, the pixels in the
modulated patches can be expressed as

{

As the offsets are typically fractional, pixels located at non-
integral coordinates are bilinearly sampled. In addition to
the modulated patches, we estimate 1D separable kernels to
approximate 2D kernels in Eq. (2). Therefore, our final in-
terpolation process is expressed as

Lz, y) = ki (2, y) - ki ,(2,) * Py (2,y)
koo (2,9) - kg (2, y) % Po(z,y).

Py (z,y; P1,j) = Pi(z,y; Py + APLJ‘) -Amy

, (3)
Py(z,y; Pg,j) = Pa(z,y; P2 ; + Ap2,j) -Amg ;.

4)

In our method, both previous kernel-based methods
(Niklaus, Mai, and Liu 2017b) and conventional flow-based
methods are specific instances. In Eq. (3), it is easy to make
out that when Ap = 0 and Am = 1, the interpolation pro-
cess is the same as the one in SepConv (Niklaus, Mai, and



e _____i i
: I kernel |, - . =
. | estimator | ] | ! |
|1 v | — | deformable | |
T S R Y Sy g K; K, : |
D e 2 FEEEES | convolution : ;|
RN I [x[7 AN L |§|
Ert+ - - - - - - - - - offset | T =D | £
Ol estimator: FEOE NED ;__—__'i |§
| __———a | AP || 4Pz | | deformable| !
: | | | convolution |
1l encoder-decoder mask | —_— J -
1 | estimator | 1
e o Amy Am,
-/
(Conv+ReLU) X3 (Conv+ReLU) X 3+AvePool (Conv+ReLU) X 3+Upsampling+ Conv+ReLU e + Skip Connection

Figure 3: [llustration of the architecture of our proposed DSepConv network. The encoder-decoder architecture extracts features,
which are given to three sub-modules to estimate separable kernels, offsets and masks for each output pixel. The input frames
are then convolved adaptively with deformable convolution described in Eq. (3) and (4).

Liu 2017b). On the other hand, specifically, when n = 1,
the patches become single pixels via bilinear interpolation.
Therefore, the vectors in Eq. (4) become scalars. In this case,
the interpolation process can be reformulated as

I(z,y) =

kl,?)(xv y) : kl,h(x7 y) : 11(17 + Axla ) + Ayl) : Am1+

kow(@,y) - k2n(z,y) - Lo(z + Aza,y + Aya) - Ama,

(©)

where Axq, Ayi, Axy, Ays represent learnable offsets and
Amyq, Ams denote masks. Notably, Eq. (5) can be seen as
a bi-directional warping function, where each offset can be
regarded as a component of optical flow and &y ,(z,y) -
kv p(z,y) - Amy as well as ko, (z,y) - ko p(2,y) - Amg
can be considered as occlusion masks.

Network Architecture

We use a fully convolutional neural network which is sim-
ilar to SepConv (Niklaus, Mai, and Liu 2017b). The whole
network can be divided into the following submodules: the
encoder-decoder architecture, kernel estimator, offset esti-
mator and mask estimator as illustrated in Figure 3. The de-
tailed configurations are provided in Section 2 of the Sup-
plementary Material.

Encoder-decoder Architecture Given two input frames,
the encoder-decoder architecture aims to extract deep fea-
tures for estimating kernels, masks and offsets for each out-
put pixel. We use a U-Net architecture which is the same
as the one in (Niklaus, Mai, and Liu 2017b), where skip-
connections are employed to facilitate the feature mixture
across encoder and decoder.

Kernel Estimator The kernel estimator consists of four
parallel sub-networks with analogous structure to estimate
vertical and horizontal 1D kernels for each pixel of the two
frames. For each sub-network, three 3 x 3 convolution lay-
ers with Rectified Linear Units (ReLU) (Nair and Hinton
2010), a bilinear upsampling layer and another 3 x 3 convo-
lution layer are stacked, yielding a tensor with n channels.
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Subsequently, the estimated four 1D kernels are used to ap-
proximate two 2D kernels described in Eq. (2).

Offset Estimator The offset estimator, sharing the same
structure as the kernel one described above, contains four
parallel sub-networks to learn two directional (vertical and
horizontal) offsets for each location of the two frame
patches. With a specific kernel size n, there are n? pixels in
each regular grid patch. Therefore, the number of the output
channel in each sub-network is set to be n2.

Mask Estimator Inspired by (Zhu et al. 2019), learnable
masks Am are introduced as a modulation mechanism that
expands the scope of modeling and gives a significant im-
provement in performance. The design of mask estimator is
similar, whose only difference is that the output channels are
fed to a sigmoid layer. There are two parallel sub-networks,
each of which produces tensors with n? channels.

Deformable Convolution The deformable convolution
utilizes the estimated kernels, offsets and mask to adaptively
convolve one input frame, yielding an intermediate interpo-
lation result. Note that this operation is adaptive and repre-
sents Eq. (3) and (4) in this paper, which does not totally
resemble the process described in (Zhu et al. 2019). Finally,
the target frame is generated by adding the two intermediate
results. In the right part of Figure 3, the intermediate results
generated from deformable convolution look dimmer than
the final result in brightness except area with occlusion (e.g.
area around the red ball), suggesting the effectiveness of de-
formable convolution to handle motion and occlusion.

Training

Loss Functions We combine two kinds of loss functions
to penalize the interpolated frame I that is not similar to the
ground truth 167 In addition, to encourage the network to
be invariant to the temporal order of the input frames, a tem-
poral symmetry term is added in each loss function (Peleg et
al. 2019). Here we assume I’ to represent the result gener-
ated by the temporal flipping of the input frames.



The first loss measures the difference between the inter-
polated pixel color and the ground-truth color with the func-

tion:
Lo=p(f—197)+ p(T' —1°7), 6)
pz) = Va2 + &, @)

where p(-) represents the Charbonnier penalty function
(Charbonnier et al. 1994) and the constant € is set to be 1e-6.

The second loss function aims to sharpen the generated
frame by penalizing the differences of frame gradient pre-
dictions (Mathieu, Couprie, and LeCun 2015), which is de-

fined as:
gdl Z |||I 1,5 l 17‘ |IGT ’L 1,j|||1
+|||Iu Ll -1 -0, s
+H|11'j*11'1j\ 5 -1
+|||IZJ ZJ 1‘ |IGT_IGT1|||1'
Finally, the total loss function is given as:
L=Lc~+ Lya. )]

Training Strategy Our training dataset is Vimeo90K
(Xue et al. 2019). The triplets in this dataset were randomly
flipped horizontally or vertically for data augmentation.

The network was trained using Adam optimizer (Kingma
and Ba 2014). We first trained our network for 120 epochs
using a learning rate schedule of le-4, dropping by half
every 40 epochs. The training patch size was randomly
cropped into 128 x 128 pixels and the batch size was 16. In-
spired by some previous work training their networks with
larger patches (Niklaus and Liu 2018; Bao et al. 2018a;
2019), we fine-tuned our network using patches of size
256 x 256 and the entire frames with learning rates of 6.25¢-
6 and 3.125e-6, respectively.

Experiments
Evaluation Datasets and Metrics

We test our network on several datasets with different resolu-
tions, including UCF101 (Soomro, Zamir, and Shah 2012),
Vimeo90K (Xue et al. 2019) and Middleburry dataset (Baker
et al. 2011). For UCF101 dataset, we use 379 triplets cho-
sen by Liu et al. (Liu et al. 2017) with a resolution of
256 x 256 pixels. The Vimeo90K dataset contains 3,782
triplets in the test set with a resolution of 256 x 448 pix-
els. The Middleburry benchmark has been widely used for
assessing frame interpolation methods, which consists an
Evaluation set (hidden ground truth) and an Other set (with
ground truth).

For quantitative evaluation, we use Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) on
UCF101 and Vimeo90K datasets. In addition, we report the
average Inerpolation Error (IE) on the Middleburry dataset.

Ablation Study

In this section, we perform comprehensive ablations to anal-
ysis our network structure, including different size of the es-
timated kernels and the usage of the mask estimator.
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UCF101 Vimeo90K M.B.
Methods
SSIM PSNR SSIM PSNR IE
I1x1+M 09666 3445 09659 33.63 2.57
3x3+M 09680 3479 0.9731 3452 221
5x5 09680 3498 09728 34.55 2.11
5x5+M 09686 35.08 09738 34.73 2.06

Table 1: Quantitative evaluation on different network archi-
tecture: kernel size of NV x N with (N x N + M) or without
masks (N x N). M.B. is short for the Other set of Mid-
dleburry dataset. The bold numbers and underlined numbers
depict the best and the second best performances.

el I%m

Inputs Ix1+M 3x3+M Spse] 5x5+M

Figure 4: The effect of different network architectures.

Kernel Size For each pixel to be synthesized, the kernel
size n indicates how many pixels in the non-regular grid
augmented with offsets could be referenced. Larger kernel
size enables the network take more pixels into consideration.
However, it inevitably introduces an increase computation.

To understand the effect of different numbers of reference
pixels in each pixel synthesis, we trained several models that
generate kernels with different size (n = 1, 3,5, respec-
tively) and show the quantitative results in Table 1. Larger
kernel sizes like n = 7,9, 11 are not considered as they in-
crease the FLOPs of the network when n = 5 by 12.8%),
69.0% and 173.8%, respectively. We can observe that refer-
encing more pixels can lead to a better performance. When
increasing the kernel size from 1 x 1 to 5 x 5, the network
has a PSNR gain of 0.65 dB and 1.04 dB on UCF101 and
Vimeo90K, respectively. A visualization of the referenced
pixels with different kernel size is shown in the first row of
Figure 4. And we show their representative kernels in the
second row. By referencing more relevant pixels in color,
the model that uses larger kernel size can generate shaper
and clearer interpolation result.

Mask Estimator To examine the effectiveness of the
mask estimator in our network, we trained a network with-
out estimating masks. As shown in Table 1 and Figure 4,
network with mask estimator gives a significant improve-
ment in performance. This can be attributed to the capability
of the modulation mechanism which adjusts offsets in per-
ceiving input patches (Zhu et al. 2019).



Sub-networks UCF101 Vimeo90K M.B. Parameters
Methods (million)
flow kernel mask  context other post-proc. SSIM  PSNR SSIM PSNR IE

DVF Enc-Dec  bilinear(2) Vv X X X 0.9631 34.12 09462 31.54 — 1.60
ToFlow SPyNet bilinear(2) V4 X X Vv 0.9667 3458 0.9682 3373 251 1.07
AdaConv X learned(41) X X X X — — 0.9568 32.33 — —
SepConv-L; X learned(51) X X X X 0.9655 34.69 0.9674 3345 244 21.6
SepConv-L; X learned(51) X X X X 0.9669 3478 09702 3379 227 21.6
CtxSyn PWC-Net  bilinear(2) X ResNet X X — 34.62 — — — —
CyclicGen Enc-Dec  bilinear(2) 4 X HED X 0.9684 3511 0.9490 32.09 2.86 3.04
CyclicGen_large  Enc-Dec  bilinear(2) V4 X HED X 0.9658 34.69 0.9395 3146 3.04 19.8
MEMC-Net* FlowNetS  learned(4) 4 ResNet X Vv 0.9683 35.01 0.9742 3440 2.10 70.3
IM-Net X learned(25)  /  Enc-Dec X v — — — 3350  — —
DAIN PWC-Net  learned(4) X Enc-Dec  Megadepth Vv 0.9683 3499 09756 34.71 2.04 24.0
DSepConv X learned(5) V4 X X X 0.9686 35.08 0.9738 3473 2.06 21.8

Table 2: Quantitative comparisons and analysis on different frame interpolation algorithms using CNNs. The bold numbers
and underlined numbers depict the best and the second best performances. Our method is comparable even without using any
complex information.

oo

Overlayed SepConv-L;  SepConv-Ly ToFlow

Smowy | Snowy

MEMC-Net* CyclicGen DAIN DSepConv

Figure 5: Visual comparisons on the Vimeo90K dataset. Our method reconstructs the legs (top) and the letter (bottom) well.

Overlayed SepConv-L;  SepConv-L ToFlow

MEMC-Net* CyclicGen DAIN DSepConv

Figure 6: Visual comparisons on the UCF101 dataset. Our method reconstructs the football with a clearer shape.

Comparisons with State-of-the-arts

We compare our method with state-of-the-art interpolation
methods, including DVF (Liu et al. 2017), ToFlow (Xue et
al. 2019), AdaConv (Niklaus, Mai, and Liu 2017a), SepConv
(Niklaus, Mai, and Liu 2017b), CtxSyn (Niklaus and Liu
2018), CyclicGen (Liu et al. 2019), MEMC-Net* (Bao et al.
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2018a), IM-Net (Peleg et al. 2019), DAIN (Bao et al. 2019)
and ADC (Lee et al. 2019). Notably, considering that some
methods provide more than one version of the same model,
we evaluate all their performances and treat them differently
(e.g. SepConv-L; and SepConv-L are trained with differ-
ent loss functions, CyclicGen and CyclicGen_large are de-



Mequon Schefflera Urban Teddy

Methods

Backyard

Basketball Dumptruck Evergreen AVERAGE

all disc. unt. all disc. unt. all disc. unt. all disc. unt.

all

disc. unt. all disc. unt. all disc. unt. all disc. unt. | all disc. unt.

AdaConv
SepConv-L;
ToFlow
CtxSyn
MEMC-Net*
DAIN

ADC

357 688
252 483
254 435
224 372
239 3.92
238 405
254 431

141 434
LIl 356
116 370
104 296
128 336
126 328
129 327

5.67
5.04
5.19
4.16
452
4.53
4.46

252 5.00
190 4.17
1.88 343
135 432
207 337
179 332
162 376

5.86
4.15
3.89
342
3.86
3.77
3.76

691
5.41
5.05
421
484
4.65
170 527

8.89
6.81
6.43
5.46
5.93
5.88
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10.6
9.74
10.8
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3.37
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3.46
3.14
3.04
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10.1
10.4
10.0
9.76
8.81
8.90
9.04

227 730
221 688
228 688
222 7.02
203 640
204 636
201 572

16.6
15.6
15.2
154
14.2
143
12.8

192 694
172 6.63
161 7.14
158 6.66
158 637
151 6.25
141 656

10.8
10.3
11.0
10.2
9.87
9.68
10.2

1.67 | 620
1.62 | 5.61
1.69 | 5.49
1.69 | 5.28
1.57 | 5.00
1.54 | 4.86
151 | 5.07

9.70
8.74
8.55
8.00
7.71
7.61
7.72

2.61
2.33
2.17
2.19
220
2.08
1.98

DSepConv 247 439 121 332 460 172 328 3.66 511 636 323

7.85

9.69 3.11 878 204 565 125 144 654 102 158 | 486 7.52 1.98

Table 3: Quantitative comparisons (interpolation error) on the Middlebury Evaluation dataset. disc.: regions with discontinuous
motion. unt.: textureless regions. The bold numbers and underlined numbers depict the best and the second best performances.

Overlayed AdaConv SepConv-L1

i |

Toflow

DAIN

CtxSyn MEMC-Net*

Figure 7: Visual comparisons on the Middleburry dataset. Our method maintains the structures of both the ball and feet well.

signed with different receptive fields.).

Sub-network Comparisons We analyse different sub-
networks contributed to the final interpolation results with
following components: flow, kernel, mask, context estima-
tion networks as well as post-processing networks (abbrevi-
ated by post-proc.). Specially, networks for learning infor-
mation that falls outside the mentioned five modules will be
categorized as “other” class shown in the left of Table 2.
A self-defined encoder-decoder structure is abbreviated by
Enc-Dec. Sub-networks with pre-trained models are filled
with their names. In addition, the bilinear interpolation pro-
cess can be seen as using bilinear kernels with size of 2 x 2,
while spatially-adaptive kernels learning from CNNs have
their own specific kernel size.

Quantitative and Visual Comparisons We perform
quantitative comparisons on UCF101, Vimeo90K and the
Middlebury Other set (abbreviated by M.B.) in the right of
Table 2. Sharing similar network structure and parameters,
our method outperforms our baseline SepConv-L; by more
than 0.3dB and 0.9dB (PSNR) on UCF101 and Vimeo90K
datasets, respectively. Moreover, without relying on any ex-
tra complex information such as flow, context, edge or depth
information, our method shows strong performance on par
or even better than the other state-of-the-art methods.

We further show some visual comparisons with state-of-
the-art methods that are publicly available. The top row in
Figure 5 is an example where there are strong motions be-
tween the input frames.The SepConv-L; and SepConv-L
can not well reconstruct the legs of the man due to a wrong
estimation of local convolution kernels. The MEMC-Net*
and DAIN methods generate obvious artifacts despite they
use a couple of sub-modules in their networks. Toflow can
produce clear result in the man’s leg but some information is
lost in the skateboard. In contrast, our method reconstructs
them well. The bottom row of Figure 5 shows an example of
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regions under discontinuous motion. The motion is contin-
uous between the frames except the subtitle “Snowy”. Both
CyclicGen and our method can generate clear results while
the other methods can not handle the discontinuity well.

In Figure 6, we show an example from UCF101 dataset.
Our method can restore clear details of the football while the
results generated by the other interpolation methods suffer
from either artifacts or blur. More comparisons are available
in Section 3 of the Supplementary Material.

Online Server In Table 3, we show some comparisons on
the Evaluation set of the Middleburry benchmark. The pro-
posed method performs favorably on most sequences and
achieves the best average performance against the compared
approaches. Furthermore, at the time of our submission, our
method ranks the 3rd best performance among over 160 al-
gorithms listed on the benchmark website.

Figure 7 shows a visual comparison downloaded from the
online server. Our method reconstructs the ball and the feet
of the boy with a clear boundary while AdaConv, SepConv,
ToFlow, MEMC-Net* and ADC suffer from some blur.

Discussions and Limitations

Compared with previous methods, the proposed DSepConv
is not constrained by neither the kernel size nor the accuracy
of optical flow. However, like other kernel-based methods,
our approach can only generate a single in-between frame.

Conclusion

In this paper we propose deformable separable convolution
for video frame interpolation. The key to make the method
practical is that our method can adaptively process the in-
formation in a non-local neighborhood by learning offsets
and masks besides separable kernels. Effectively this allows
us to handle large motion even with a small size of con-
volution kernel. And as demonstrated, both baseline kernel-
based methods and flow-based methods are special cases of



our method and we perform favorably against the state-of-
the-arts on diverse datasets qualitatively and quantitatively.
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