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Abstract

We present an approach for detecting human-object interac-
tions (HOIs) in images, based on the idea that humans interact
with functionally similar objects in a similar manner. The pro-
posed model is simple and efficiently uses the data, visual fea-
tures of the human, relative spatial orientation of the human
and the object, and the knowledge that functionally similar
objects take part in similar interactions with humans. We pro-
vide extensive experimental validation for our approach and
demonstrate state-of-the-art results for HOI detection. On the
HICO-Det dataset our method achieves a gain of over 2.5%
absolute points in mean average precision (mAP) over state-
of-the-art. We also show that our approach leads to significant
performance gains for zero-shot HOI detection in the seen
object setting. We further demonstrate that using a generic
object detector, our model can generalize to interactions in-
volving previously unseen objects.

Introduction

Human-object interaction (HOI) detection is the task of
localizing and inferring relationships between a human
and an object, e.g., “eating an apple” or “riding a bike.”
Given an input image, the standard representation for HOIs
(Sadeghi and Farhadi 2011; Gupta and Malik 2015) is a
triplet 〈human, predicate, object〉, where human
and object are represented by bounding boxes, and
predicate is the interaction between this (human,
object) pair. At first glance, it seems that this problem
is a composition of the atomic problems of human and
object detection and HOI classification (Shen et al. 2018;
Gkioxari et al. 2017). These atomic recognition tasks are
certainly the building blocks of a variety of approaches for
HOI understanding (Shen et al. 2018; Delaitre, Sivic, and
Laptev 2011); and the progress in these atomic tasks directly
translates to improvements in HOI understanding. However,
the task of HOI understanding comes with its own unique
set of challenges (Lu et al. 2016; Chao et al. 2017).

These challenges are due to the combinatorial explosion
of the possible interactions with increasing number of ob-
jects and predicates. For example, in the commonly used
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Figure 1: Common properties of HOI Detection. Top -
Datasets are not exhaustively labeled. Bottom - Humans in-
teract similarly with functionally similar objects - both per-
sons could be eating either a burger, a hot dog, or a pizza.

HICO-Det dataset (Chao et al. 2017) with 80 unique ob-
ject classes and 117 predicates, there are 9,360 possible
relationships. This number increases to more than 106 for
larger datasets like Visual Genome (Krishna et al. 2017) and
HCVRD (Zhuang et al. 2017b), which have hundreds of ob-
ject categories and thousands of predicates. This, combined
with the long-tail distribution of HOI categories, makes it
difficult to collect labeled training data for all HOI triplets.
A common solution to this problem is to arbitrarily limit the
set of HOI relationships and only collect labeled images for
this limited subset. For example, the HICO-Det benchmark
has only 600 unique relationships.

Though these datasets can be used for training models for
recognizing a limited set of HOI triplets, they do not ad-
dress the problem completely. For example, consider the
images shown in Figure 1 (top row) from the challeng-
ing HICO-Det dataset. The three pseudo-synonymous rela-
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tionships: 〈human, hold, bicycle〉, 〈human, sit on,
bicycle〉, and 〈human, straddle, bicycle〉 are all
possible for both these images; but only a subset is labeled
for each. We argue that this is not a quality control issue
while collecting a dataset, but a problem associated with the
huge space of possible HOI relationships. It is enormously
challenging to exhaustively label even the 600 unique HOIs,
let alone all possible interactions between humans and ob-
jects. An HOI detection model that relies entirely on labeled
data will be unable to recognize the relationship triplets that
are not present in the dataset, but are common in the real-
world. For example, a naı̈ve model trained on HICO-Det
cannot recognize the 〈human, push, car〉 triplet because
this triplet does not exist in the training set. The ability to
recognize previously unseen relationships (zero-shot recog-
nition) is a highly desirable capability for HOI detection.

In this work, we address the challenges discussed above
using a model that leverages the common-sense knowledge
that humans have similar interactions with objects that are
functionally similar. The proposed model can inherently do
zero-shot detection. Consider the images in Figure 1 (sec-
ond row) with 〈human, eat, ?〉 triplet. The person in either
image could be eating a burger, a sandwich, a hot dog, or a
pizza. Inspired by this, our key contribution is incorporating
this common-sense knowledge in a model for generalizing
HOI detection to functionally similar objects. This model
utilizes visual appearance of a human, their relative geome-
try with the object, and language priors (Mikolov et al. 2013)
to capture which objects afford similar predicates (Gibson
1979). Such a model is able to exploit the large amount of
contextual information present in the language priors to gen-
eralize HOIs across functionally similar objects.

In order to train this module, we need a list of function-
ally similar objects and labeled examples for the relevant
HOI triplets, neither of which are readily available. To over-
come this, we propose a way to train this model by: 1) us-
ing a large vocabulary of objects, 2) discovering function-
ally similar objects automatically, and 3) proposing data-
augmentation, emulating the examples shown in Figure 1
(second row). To discover functionally similar objects in an
unsupervised way, we use a combination of visual appear-
ance features and semantic word embeddings (Mikolov et al.
2013) to represent the objects in a “world set” (Open Images
Dataset (OID) (Kuznetsova et al. 2018)). Note that the pro-
posed method is not contingent on the world set. Any large
dataset, like ImageNet, could replace OID. Finally, to emu-
late the examples shown in Figure 1 (second row), we use the
human and object bounding boxes from a labeled interac-
tion, the visual features from the human bounding box, and
semantic word embeddings of all functionally similar ob-
jects. Notice that this step does not utilize the visual features
for objects, just their relative locations with respect to a hu-
man, enabling us to perform this data-augmentation. Further,
to efficiently use the training data, we fine-tune the object
detector on the HICO-Det dataset unlike prior approaches.

The proposed approach achieves over 2.5% absolute im-
provement in mAP over the best published method for
HICO-Det. Further, using a generic object detector, and the
proposed functional generalization model lends itself di-

rectly to the zero-shot HOI triplet detection problem. We
clarify that zero-shot detection is the problem of detecting
HOI triplets for which the model has never seen any im-
ages. Knowledge about functionally similar objects enables
our system to detect interactions involving objects not con-
tained in the original training set. Using just this generic
object detector, our model achieves state-of-the-art perfor-
mance for HOI detection on the popular HICO-Det dataset
in the zero-shot setting, improving over existing methods by
several percentage points. Additionally, we show that the
proposed approach can be used as a way to deal with so-
cial/systematic biases present in vision+language datasets
(Zhao et al. 2017; Anne Hendricks et al. 2018).

In summary, the contributions of this paper are: (1) a func-
tional generalization model for capturing functional similar-
ities between objects; (2) a method for training the proposed
model; and (3) state-of-the-art results on HICO-Det in both
fully-supervised and zero-shot settings.

Related Work

Human-Object Interaction. Early methods (Yao and Fei-
Fei 2010; Yao et al. 2011) relied on structured visual features
which capture contextual relationships between humans
and objects. Similarly, (Delaitre, Sivic, and Laptev 2011)
used structured representations and spatial co-occurrences
of body parts and objects to train models for HOI recog-
nition. Gupta et al. (Gupta and Davis 2007; Gupta, Kem-
bhavi, and Davis 2009) adopted a Bayesian approach that
integrated object classification and localization, action un-
derstanding, and perception of object reaction. (Desai and
Ramanan 2012) constructed a compositional model which
combined skeleton models, poselets, and visual phrases.

More recently, with the release of large datasets like
HICO (Chao et al. 2015), Visual Genome (Krishna et al.
2017), HCVRD (Zhuang et al. 2017b), V-COCO (Gupta and
Malik 2015), and HICO-Det (Chao et al. 2017), the problem
of detecting and recognizing HOIs has attracted significant
attention. This has been driven by HICO which is a bench-
mark dataset for recognizing human-object interactions. The
HICO-Det dataset extended HICO by adding bounding box
annotations. V-COCO is a much smaller dataset contain-
ing 26 classes and about 10,000 images. On the other hand,
HCVRD and Visual Genome provide annotations for thou-
sands of relationship categories and hundreds of objects.
However, they suffer from noisy labels. We primarily use
the HICO-Det dataset to evaluate our approach in this paper.

(Gkioxari et al. 2017) designed a system which trains ob-
ject and relationship detectors simultaneously on the same
dataset and classifies a human-object pair into a fixed set of
pre-defined relationship classes. This precludes the method
from being useful for detecting novel relationships. (Xu et
al. 2018) used pose and gaze information for HOI detection.
(Kolesnikov, Lampert, and Ferrari 2018) introduced the Box
Attention module to a standard R-CNN and trained simul-
taneously for object detection and relationship triplet pre-
diction. Graph Parsing Neural Networks (Qi et al. 2018) in-
corporated structural knowledge and inferred a parse graph
in a message passing inference framework. In contrast, our
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method does not need iterative processing and requires only
a single pass through a neural network.

Unlike most prior work, we do not directly classify into
a fixed set of relationship triplets but into predicates. This
helps us detect previously unseen interactions. The method
closest in spirit to our approach is (Shen et al. 2018) which
uses a two branch structure with the first branch responsible
for detecting humans and predicates, and the second for de-
tecting objects. Unlike our proposed approach, their method
solely depends on the appearance of the human. Also, they
do not use any prior information from language. Our model
utilizes implicit human appearance, the object label, human-
object geometric relationship, and knowledge about similar-
ities between objects. Hence, our model achieves much bet-
ter performance than (Shen et al. 2018).

We also distinguish our work from prior work (Kato, Li,
and Gupta 2018; Fang et al. 2018) on HOI recognition. We
tackle the more difficult problem of detecting HOIs here.

Zero-shot Learning. Our work also ties well with zero-
shot classification (Xian, Schiele, and Akata 2017; Kodirov,
Xiang, and Gong 2017) and zero-shot object detection
(ZSD) (Bansal et al. 2018). (Bansal et al. 2018) proposed
projecting images into the word-vector space to exploit the
semantic properties of such spaces. They also discussed
challenges associated with training and evaluating ZSD. A
similar idea was used in (Kodirov, Xiang, and Gong 2017)
for zero-shot classification. (Rahman, Khan, and Porikli
2018), on the other hand, used meta-classes to cluster se-
mantically similar classes. In this work, we also use word-
vectors as semantic information for our generalization mod-
ule. This, along with our approach for generalization during
training, helps zero-shot HOI detection.

Approach

Figure 2 represents our approach. The main novelty of
our proposed approach lies in incorporating generaliza-
tion through a language component. This is done by using
functional similarities of objects during training. For infer-
ence, we first detect humans and objects in the image us-
ing our object detectors, which also give the corresponding
(RoI-pooled (Ren et al. 2015)) feature representations. Each
human-object pair is used to extract visual and language fea-
tures which are used to predict the predicate associated with
the interaction. We describe each component of the model
and the training procedure in the following sections.

Object Detection

In the fully-supervised setting, we use an object detector
fine-tuned on the HICO-Det dataset. For zero-shot detection
and further experiments, we use a Faster-RCNN (Huang et
al. 2017) based detector trained on the Open Images dataset
(OID) (Kuznetsova et al. 2018). This network can detect
545 object categories and we use it to obtain proposals for
humans and objects in an image. The object detectors also
output the ROI-pooled features corresponding to these de-
tections. All human-object pairs thus obtained are passed to
our model which outputs probabilities for each predicate.

Functional Generalization Module

Humans look similar when they interact with functionally
similar objects. Leveraging this fact, the functional general-
ization module exploits object similarities, the relative spa-
tial location of human and object boxes, and the implicit hu-
man appearance to estimate the predicate. At its core, it com-
prises a Multi Layer Perceptron (MLP), which takes as input
the human and object word embeddings, wh and wo, the ge-
ometric relationship between the human and object boxes
fg , and the human visual feature fh. The geometric feature
is useful as the relative positions of a human and an object
can help eliminate certain predicates. The human feature fh
is used as a representation for the appearance of the human.
This appearance representation is added because the aim is
to incorporate the idea that humans look similar while inter-
acting with similar objects. For example, a person drinking
from a cup looks similar while drinking from a glass or a
bottle. The four features wh, wo, fg , and fh are concatenated
and passed through a 2-layer MLP which predicts the proba-
bilities for each predicate. All the predicates are considered
independent. We now give details of different components
in this model.

Word embeddings. We use 300-D vectors from word2vec
(Mikolov et al. 2013) to get the human and object em-
beddings wh and wo. Object embeddings allow discovery
of previously unseen interactions by exploiting semantic
similarities between objects. The human embedding, wh,
helps in distinguishing between different words for humans
(man/woman/boy/girl/person), if required.

Geometric features. Following prior work on visual rela-
tionship detection (Zhuang et al. 2017a), we define the geo-
metric relationship feature as:
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where, W,H are the image width and height, (xh
i , y

h
i ), and

(xo
i , y

o
i ) are the human and object bounding box coordinates

respectively, Ah is the area of the human box, Ao is the area
of the object box, and AI is the area of the image. The geo-
metric feature fg uses spatial features for both entities (hu-
man and object) and also spatial features from their relation-
ship. It encodes the relative positions of the two entities.

Generalizing to new HOIs. We incorporate the idea that
humans interacting with similar objects look similar via the
functional generalization module. As shown in figure 3, this
idea can be added by changing the object name while keep-
ing the human word vector wh, the human visual feature fh,
and the geometric feature fg fixed. Each object has a differ-
ent word-vector and the model learns to recognize the same
predicate for different human-object pairs. Note that this
does not need visual examples for all human-object pairs.
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Figure 2: We detect all objects and humans in an image. This detector gives human features fh, and the corresponding labels.
We consider all pairs of human-object and create union boxes. Our functional generalization module uses the word vectors for
the human wh, the object class wo, geometric features fg , and fh to produce the probability estimate over the predicates.
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Figure 3: Generalization module. During training, we can
replace “glass” by “bottle”, “mug”, “cup”, or “can”.

Finding similar objects. A naı̈ve choice for defining sim-
ilarity between objects would be through the WordNet hi-
erarchy (Miller 1995). However, several issues make using
WordNet impractical. The first is defining distance between
the nodes in the tree. The height of a node cannot be used as
a metric because different things have different levels of cat-
egorization in the tree. Similarly, defining sibling relation-
ships which adhere to functional intuitions is challenging.
Another issue is the lack of correspondence between close-
ness in the tree and semantic similarities between objects.

To overcome these problems, we consider similarity in
both the visual and semantic representations of objects. We
start by defining a vocabulary of objects V = {o1, . . . , on}
which includes all the objects that can be detected by our
object detector. For each object oi ∈ V , we obtain a visual
feature foi ∈ R

p from images in OID, and a word vector
woi ∈ R

q . We concatenate these two to obtain the mixed
representation uoi for object oi. We then cluster ui’s into K
clusters using Euclidean distance. Objects in the same clus-
ter are considered functionally similar. This clustering has
to be done only once. We use these clusters to find all ob-
jects similar to an object in the target dataset. Note that there
might not be any visual examples for many of the objects
obtained using this method. This is why we do not use the
RoI-pooled visual features from the object.

Using either just the word2vec representations or just the
visual representations for clustering gave several inconsis-
tent clusters. Therefore, we use the concatenated features
uoi . We observed that clusters created using these features
better correspond to functional similarities between objects.
Generating training data. For each relationship triplet

<h,p,o> in the original dataset, we add r triplets <h,p,o1>,
<h,p,o2>, ..., <h,p,or> to the dataset keeping the human,
and object boxes fixed, and only changing the object name.
This means that, for all these fg and fh are the same as for
the original sample. The r different objects, o1,..., or belong
to the same cluster as object o. For example, in figure 3, the
ground truth category “glass” can be replaced by “bottle”,
“mug”, “cup”, or “can” while keeping wh, fh, and fg fixed.

Training

A training batch consists of T interaction triplets. The model
produces probabilities for each predicate independently. We
use a weighted class-wise BCE loss for training the model.
Noisy labeling. Missing and incorrect labels are a com-
mon issue in HOI datasets. Also, a human-object pair
can have different types of interactions at the same time.
For example, a person can be sitting on a bicycle, rid-
ing a bicycle, and straddling a bicycle. These interac-
tions are usually labeled with slightly different bound-
ing boxes. To overcome these issues, we use a per-triplet
loss weighing strategy. A training triplet in our dataset
has a single label, e.g. <human-ride-bicycle>. A
triplet with slightly shifted bounding boxes might have an-
other label, like <human-sit on-bicycle>. The idea
is that the models should be penalized more if they fail
to predict the correct class for a triplet. Given the train-
ing sample <human-ride-bicycle>, we want the
model to definitely predict “ride”, but we should not
penalize it for predicting “sit on” as well. Therefore,
while training the model, we use the following weigh-
ing scheme for classes. Suppose that a training triplet is
labeled <human-ride-bicycle> and there are some
other triplets in the image. For this training triplet, we as-
sign a high weight (10.0 here) to the loss for the correct class
(ride), and a zero weight to all other predicates in the im-
age. We also scale down the weight (1.0 here) to the loss for
all other classes to ensure that the model is not penalized too
much for predicting a missing but correct label.

Inference

The inference step is simply a forward pass through the net-
work (figure 2). The final step of inference is class-wise non-
maximal suppression (NMS) over the union of human and
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object boxes. This helps in removing multiple detections for
the same interaction and leads to higher precisions.

Experiments

We evaluate our approach on the HICO-Det dataset (Chao et
al. 2015). As mentioned before, V-COCO (Gupta and Malik
2015) is a small dataset and does not provide any insights
into the proposed method. In line with recent work (Gupta,
Schwing, and Hoiem 2019), we avoid using it.

Dataset and Evaluation Metrics

HICO-Det extends the HICO dataset (Chao et al. 2015)
which contains 600 HOI categories for 80 objects. HICO-
Det adds bounding box annotations for humans, and objects
for each HOI category. The training set contains over 38,000
images and about 120,000 HOI annotations for the 600 HOI
classes. The test set has 33,400 HOI instances.

We use mean average precision (mAP) commonly used
in object detection. An HOI detection is considered a true
positive if the minimum of human overlap IOUh and ob-
ject overlap IOUo with the ground truths is greater than 0.5.
Performance is usually reported for three different HOI cat-
egory sets: (a) all 600 classes (Full), (b) 138 classes with less
than 10 training samples (Rare), and (c) the remaining 462
classes with more than 10 training samples (Non-Rare).

Implementation Details

We start with a ResNet-101 backbone Faster-RCNN which
is fine-tuned for the HICO-Det dataset. This detector was
originally trained on COCO (Lin et al. 2014) which has the
same 80 object categories as HICO-Det. We consider all de-
tections for which the detection confidence is greater than
0.9 and create human-object pairs for each image. Each de-
tection has an associated feature vector. These pairs are then
passed through our model. The human feature fh is 2048
dimensional. The two hidden layers in the model are of di-
mensions 1024 and 512. The model outputs probability esti-
mates for each predicate independently and the final output
prediction is all predicates with probability ≥ 0.5. We report
performance with the COCO detector in supplementary.

For all the experiments, we train the model for 25 epochs
with 0.1 initial learning rate which is dropped by a tenth ev-
ery 10 epochs. We re-iterate that the object detector and the
word2vec vectors are frozen while training this model. For
all experiments we use up to five (r) additional objects for
augmentation, i.e., for each human-object pair in the train-
ing set, we add up to five objects from the same cluster while
leaving the bounding boxes and human features unchanged.

Results

With no functional generalization, our baseline model
achieves an mAP of 12.17% for Rare classes which is al-
ready higher than all but the most recent methods. This is
because of a more efficient use of the training data by using
a fine-tuned object detector. The last row in table 1 shows
the results attained by our complete model (with functional
generalization). For the Full set, it achieves over 2.5% abso-
lute improvement over the best published work (Peyre et al.

Table 1: mAPs (%) in the default setting for the HICO-Det
dataset. Our model was trained with up to five neighbors.
The last column is the total number of parameters in the pro-
posed classification models.

Full Rare Non-Rare Params.
Method (600) (138) (462) (millions)

(Shen et al. 2018) 6.46 4.24 7.12 -
(Chao et al. 2017) 7.81 5.37 8.54 -
(Gkioxari et al. 2017) 9.94 7.16 10.77 -
(Xu et al. 2018) 9.97 7.11 10.83 -
(Qi et al. 2018) 13.11 9.34 14.23 -
(Xu et al. 2019) 14.70 13.26 15.13 -
(Gao, Zou, and Huang 2018) 14.84 10.45 16.15 48.1
(Wang et al. 2019) 16.24 11.16 17.75 -
(Gupta, Schwing, and Hoiem 2019) 17.18 12.17 18.68 9.2
(Li et al. 2019) 17.22 13.51 18.32 35.0
(Zhou and Chi 2019) 17.35 12.78 18.71 -
(Wan et al. 2019) 17.46 15.65 18.00 -
(Peyre et al. 2019) 19.40 15.40 20.75 21.8

Ours 21.96 16.43 23.62 3.1

2019). Our model also gives an mAP of 16.43% for Rare
classes compared to the existing best of 15.65% (Wan et
al. 2019). The performance, along with the simplicity, of
our model is a remarkable strength and reveals that existing
methods may be over-engineered.

Comparison of number of parameters. In table 1, we
also compare the number of parameters in four recent mod-
els against our model. With far fewer parameters, our model
achieves better performance. For example, compared to the
current state-of-the-art model which contains 62.7 million
parameters and achieves only 19.40% mAP, our model con-
tains just 51.1 million parameters and reaches an mAP of
21.96%. Ignoring the object detectors, our model introduces
just 3.1 million new parameters. (Due to lack of specific de-
tails in previous papers, we have made some conservative
assumptions which we list in the supplementary material.)
In addition, the approaches in (Gupta, Schwing, and Hoiem
2019) and (Li et al. 2019) require pose estimation models
too. The numbers listed in table 1 do not count these param-
eters. The strength of our method is the simple and intuitive
way of thinking about the problem.

Next, we show how a generic object detector can be used
to detect novel interactions, even those involving objects not
present in the training set. We will use an off-the-shelf Faster
RCNN which is trained on OpenImages and is capable of de-
tecting 545 object categories. This detector uses an Inception
ResNet-v2 with atrous convolutions as its base network.

Zero-shot HOI Detection

(Shen et al. 2018) take the idea of zero-shot object detection
further and try to detect previously unseen human-object re-
lationships in images. The aim is to detect interactions for
which no images are available during training. In this sec-
tion, we show that our method offers significant improve-
ments over (Shen et al. 2018) for zero-shot HOI detection.

Seen object scenario. We first consider the same setting
as (Shen et al. 2018). We select 120 relationship triplets en-
suring that every object involved in these 120 relationships
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Table 2: mAPs (%) in the default setting for ZSD. This is the
seen object setting, i.e., all the objects have been seen.

Unseen Seen All
Method (120 classes) (480) (600)

(Shen et al. 2018) 5.62 - 6.26

Ours 11.31±1.03 12.74±0.34 12.45±0.16

Table 3: mAPs (%) in the unseen object setting for ZSD.
This is the unseen object setting where the trained model for
interaction recognition has not seen any examples of some
object classes.

Unseen Seen All
Method (100 classes) (500) (600)

Ours 11.22 14.36 13.84

occurs in at least one of the remaining 480 triplets. We call
this the “seen object” setting, i.e., the model sees all the ob-
jects involved but not all relationships. Later, we will intro-
duce the “unseen object” where no relationships involving a
set of objects will be observed during training.

Table 2 shows the performance of our approach in the
“seen object” setting for 120 unseen triplets during train-
ing. Note that, since (Shen et al. 2018) have not release the
list of classes publicly, we report the mean over 5 random
sets of 120 unseen classes in table 2. We achieve significant
improvement over the prior method.

Unseen object scenario. We start by randomly selecting
12 objects from the 80 objects in HICO. We pick all rela-
tionships containing these objects. This gives us 100 rela-
tionship triplets which constitute the test (unseen) set. We
train models using visual examples from only the remaining
500 categories. Table 3 gives results for our methods in this
setting. We cannot compare with existing methods because
none of them have the ability to detect HOIs in the unseen
object scenario. We hope that our method will serve as a
baseline for future research on this important problem.

In figure 4, we show that our model can detect interaction
triplets with unseen objects. This is because we use a generic
detector which can detect many more objects. We note, here,
that there are some classes among the 80 COCO classes
which do not occur in OI. We willingly take the penalty for
missing interactions with these objects in order to present a
more robust system which not only works for the dataset of
interest but is able to generalize to completely unseen inter-
action classes. We reiterate that none of the previous meth-
ods has the ability to detect HOIs in this scenario.

Ablation Analysis

The generic object detector used for zero-shot HOI detec-
tion can also be used in the supervised setting. For example,
using this detector, we obtain an mAP of 14.35% on the Full
set of HICO-Det. This is a competitive performance and is
worse (table 1) than only the most recent works. This shows
the strength of generalization. In this section, we provide

Table 4: HICO-Det performance (mAP %) of the model with
different number of neighbors considered for generalization.

r Full Rare Non-Rare
(Number of objects) (600 classes) (138) (462)

0 12.72 7.57 14.26
3 13.70 7.98 15.41
5 14.35 9.84 15.69
7 13.51 7.07 15.44

Table 5: mAPs (%) for different clustering methods.
Clustering Full Rare Non-Rare
Algorithm (600 classes) (138) (462)

K means 14.35 9.84 15.69
Agglomerative 14.05 7.59 15.98
Affinity Propagation 13.49 7.53 15.28

further analysis of our model with the generic detector.

Number of neighbors. Table 4 shows the effect of varying
the number of neighboring objects which are added to the
dataset for each training instance. The baseline (first row) is
when no additional objects are added. This is when we rely
only on the interactions present in the original dataset. We
successively add interactions with neighboring objects to the
training data and observe that the performance improves sig-
nificantly. However, since the clusters are not perfect, adding
more neighbors can start becoming harmful. Also, the train-
ing times increase rapidly. Therefore, we add five neighbors
for each HOI instance in all our experiments.

Clustering method. To check if another clustering algo-
rithm might be better, we create clusters using different al-
gorithms. From table 5 we observe that K-means clustering
leads to the best performance. Hierarchical agglomerative
clustering also gives close albeit lower performance.

Importance of features. Further ablation studies (table 6)
show that removing fg , fh, or semantic word-vectors wh, wo

from the functional generalization module leads to a reduc-
tion in performance. For example, training the model with-
out the geometric feature fg gives an mAP of 12.43% and
training the model without fh in the generalization module
gives an mAP of just 12.15%. In particular, the performance
for Rare classes is quite low. This shows that these features
are important for detecting Rare HOIs. Note that, removing
wo means that there is no functional generalization.

Dealing with Dataset Bias

Dataset bias leads to models being biased towards particular
classes (Torralba, Efros, and others 2011). In fact, bias in the
training dataset is usually amplified by the models (Zhao et
al. 2017; Anne Hendricks et al. 2018). Our proposed method
can be used as a way to overcome the dataset bias problem.
To illustrate this, we use metrics proposed in (Zhao et al.
2017) to quantitatively study model bias.

We consider a set of (object,predicate) pairs
Q = {(o1, p1), . . . , (o2, p2)}. For each pair in Q, we con-
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Figure 4: Some HOI detections in the unseen object ZSD setting. Our model has not seen any image with the objects shown
above during training. (We show some mistakes made by the model in the supplementary material.)

Table 6: Ablation studies (mAP %).
Setting Full Rare Non-Rare

(600 classes) (138) (462)

Base 14.35 9.84 15.69
Base −fh 12.15 4.87 14.33
Base −fg 12.43 8.02 13.75
Base −wh − wo 12.23 5.23 14.32

sider two scenarios: (1) the training set is heavily biased
against the pair; (2) the training set is heavily biased to-
wards the pair. For generating the training sets for a pair
qi = {oi, pi} ∈ Q, for the first scenario, we remove all train-
ing samples containing the pair qi and keep all other samples
for the object. Similarly, for the second scenario, we remove
all training samples containing oi except those containing
the pair qi. For the pair, qi the test set bias is bi (We adopt
the definition of bias from (Zhao et al. 2017). See supple-
mentary material for more details.). Given two models, the
one with bias closer to test set bias is considered better. We
show that our approach of augmenting the dataset brings the
model bias closer to the test set bias. In particular, we con-
sider Q = {(horse,ride), (cup,hold)}, such that
b1 = 0.275 and b2 = 0.305.

In the first scenario, baseline models trained on biased
datasets have biases 0.124 and 0.184 for (horse,ride)
and (cup,hold) respectively. Note that these are less than
the test set biases because of the heavy bias against these
pairs in their respective training sets. Next, we train models
by augmenting the training sets using our methodology for
only one neighbor of each object. Models trained on these
new sets have biases 0.130 and 0.195. That is, our approach
leads to a reduction in the bias against these pairs.

Similarly, for the second scenario, baseline models trained
on the biased datasets have biases 0.498 and 0.513 for
(horse,ride) and (cup,hold) respectively. Training
models on datasets de-biased by our approach give biases
0.474 and 0.50. In this case, our approach leads to a reduc-
tion in the bias towards these pairs.

Discussion and Conclusion

We discuss some limitations of the proposed approach. First,
we assume that all predicates follow functional similarities.
However, some predicates might only apply to particular ob-
jects. For example, you can blow a cake, but not a donut
which is functionally similar to cake. Our current model
does not capture such constraints. Further work can focus on
trying to explicitly incorporate such priors into the model. A
related limitation is the independence assumption on pred-
icates. In fact, some predicates are completely dependent.
For example, straddle usually implies sit on for bicy-
cles or horses. However, due to the in-exhaustive labeling of
the datasets, we (and most previous work) ignore this depen-
dence. Approaches exploiting co-occurrences of predicates
can help overcome this problem.

Conclusion. We have presented a way to enhance HOI
detection by incorporating the common-sense idea that
human-object interactions look similar for functionally sim-
ilar objects. Our method is able to detect previously unseen
(zero-shot) human-object relationships. We have provided
experimental validation for our claims and have reported
state-of-the-art results for the problem. However, there are
still several issues that need to be solved to advance the
understanding of the problem and improve performance of
models.
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Supplementary Material

Representative clusters

We claim that the objects in the same cluster can be con-
sidered functionally similar. Representative clusters are:
[‘Mug’, ‘Pitcher’, ‘Teapot’, ‘Kettle’, ‘Jug’], and [‘Ele-
phant’, ‘Dinosaur’, ‘Cattle’, ‘Horse’, ‘Giraffe’, ‘Zebra’,
‘Rhinoceros’, ‘Mule’, ‘Camel’, ‘Bull’]. Clearly, our clus-
ters contain functionally similar objects. During training, for
augmentation we replace the object in a training sample by
other objects from the same cluster. For example, given a
training sample for ride-elephant, we generate new
samples by replacing elephant by horse or camel.

Performance with COCO Detector

With the original COCO-trained detector, our method gives
an mAP of 16.96, 11.73, and 18.52% respectively for Full,
Rare and Non-Rare sets (up from 14.37, 7.83, 16.33% with-
out functional generalization). This performance improve-
ment in even more significant due to the use of an order
of magnitude fewer parameters than existing approaches. In
addition, the proposed approach could be incorporated with
any existing method as shown in the next section.

Bonus Experiment: Visual Model

Our generalization module can be complementary to exist-
ing approaches. To illustrate this, we consider a simple vi-
sual module shown in figure S1. It takes the union of bh
and bo and crops the union box from the image. It passes
the cropped union box through a CNN (ResNet-50). The
feature obtained, fu is concatenated with fh and fo and
passed through two FC layers. This module and the gener-
alization module independently predict the probabilities for
predicates and the final prediction is the average of the two.
Using the generic object detector, the combined model gives
an mAP of 15.82% on the Full HICO-Det dataset (the visual
model separately gives 14.11%). This experiment shows that
functional generalization proposed in this paper is comple-
mentary to existing works which rely on purely visual data.
Using our generalization module in conjugation with other
existing methods can lead to performance improvements.

CNN

Visual Module
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Figure S1: Simple visual module.

Assumptions about number of parameters

Some works (Gupta, Schwing, and Hoiem 2019) have all the
details necessary for the computation in their manuscript,
while some (Gao, Zou, and Huang 2018; Li et al. 2019;
Peyre et al. 2019) fail to mention the specifics. Hence, we

made the following assumptions while estimating the num-
ber of parameters. Note that only those methods, where suf-
ficient details weren’t mentioned in the paper, are discussed.
Since all of the methods use an object detector in the first
step, we compute the number of parameters introduced by
the detector. Table S1 shows the number of parameters esti-
mated for each method.

Table S1: Estimated parameters (in millions) for the detec-
tors used in a few of the state-of-the-art methods. (“R-”
stands for “ResNet”)

Method Detector Params

(Gao, Zou, and Huang 2018) FPN R-50 40.9
(Gupta, Schwing, and Hoiem 2019) Faster-RCNN R-152 63.7

(Li et al. 2019) Faster-RCNN R-50 29
(Peyre et al. 2019) FPN R-50 40.9

Ours Faster-RCNN R-101 48

ICAN. Authors in (Gao, Zou, and Huang 2018) use two
fully connected layers in each of the human, object, and
pairwise streams, but the details of the hidden layers were
not mentioned in their work. The feature dimensions of the
human and object stream are 3072, while for the pairwise
stream it is 5408. To make a conservative estimate, we as-
sume the dimensions of the hidden layers to be 1024 and 512
for the human and object stream. For the pairwise stream we
assume dimensions of 2048 and 512 for the hidden layers.
We end up with an estimated total of 48.1M parameters for
their architecture. This gives the total parameters for their
method to be 89M (48.1+ 40.9 (Detector; see table S1)).

Interactiveness Prior. Li et al. (Li et al. 2019) used a
FasterRCNN (Ren et al. 2015) based detector with a ResNet-
50 backbone architecture. In their proposed approach, they
have 10 MLPs (multi-layer perceptrons) with two layers
each and 3 fully connected (FC) layers. Out of the 10 MLPs,
we estimated 6 of them to have an input dimension of 2048,
3 of them to have 1024 and one of them 3072. The dimen-
sion of hidden layers was given to be 1024 for all the 10
MLPs. The 3 FC layers have input dimensions of 1024 and
an output dimension 117. This gives the number of param-
eters utilized as 35M. Their total number of parameters =
64M (35 + 29 (detector)).

Peyre et al. Peyre et al. used a FPN (Lin et al. 2017) detec-
tor with a ResNet-50 backbone. They have a total of 9 MLPs
with two hidden layers each, and 3 FC layers. The input di-
mension of the FC layers is 2048 and the output dimension
is 300. 6 of the 9 MLPs have an input dimension of 300 and
an output dimension of 1024. Another 2 of the 9 MLPs have
input dimension of 1000 and 900 respectively. Their output
dimension is 1024. We assume the dimensions of the hid-
den layers in all these MLPs to be 1024 and 1024. The last
of the 9 MLPs has an input dimension of 8 and an output
dimension of 400. We assume a hidden layer of dimension
256 for this MLP. This brings the estimated parameter used
to 21.8M and their total parameter count = 62.7M (21.8 +
40.9 (detector)).
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Figure S2: Some incorrect HOI detections in the unseen object ZSD setting. Our model has not seen any image with the objects
shown above during training.

Failure cases

Figure S2 shows some incorrect detections made by our
model in the unseen object zero-shot scenario. Most of these
incorrect detections are very close to being correct. For ex-
ample, in the first image, it’s very difficult, even for humans
to figure out that the person is not eating the pizza on the
plate. In the third and last images, the persons are holding
something, just not the object under consideration. Our cur-
rent model, cannot ignore other objects present in the scene
which lie very close to the person or the object of interest.
This is an area for further research.

Bias details

Adopting the bias metric from (Zhao et al. 2017), we define
the bias for a verb-object pair, (v∗, o) in a set as:

bs(v∗, o) =
cs(v∗, o)∑
v cs(v, o)

(2)

where, cs(v, o) is the number of instances of the pair (v, o)
in the set, s. This measure can be used to quantify the bias
for a verb-object pair in a dataset or for a model’s prediction.
For a dataset, D, cD(v, o) gives the number of instances of
(v, o) pairs in it. Therefore, bD represents the bias for the
pair (v∗, o) in the dataset. A low value (≈ 0) of bD means
that the set is heavily biased against the pair while a high
value (≈ 1) means that it is heavily biased towards the pair.

Similarly, we can define the bias of a model by consider-
ing the model’s predictions as the dataset under considera-
tion. For example, suppose that the model under considera-
tion gives the predictions P for the dataset D. We can define
the model’s bias as:

bP(v∗, o) =
cP(v∗, o)∑
v cP(v, o)

(3)

where, cP(v, o) gives the number of instances of the pair
(v, o) in the set of the model’s predictions P .

A perfect model is one whose bias, bP(v∗, o) is equal to
the dataset bias bD(v∗, o). However, due to bias amplifica-
tion (Zhao et al. 2017; Anne Hendricks et al. 2018), most
models will have a higher/lower bias than the test dataset
depending on the training set bias. That is, if the training
set is heavily biased towards (resp. against) a pair, then the
model’s predictions will be more heavily biased towards
(resp. against) that pair for the test set. The aim of a bias
reduction method should be to bring the model’s bias closer
to the test set bias. Our experiments in the paper showed that
our proposed algorithm is able to reduce the gap between the
test set bias and the model prediction bias.
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