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Abstract

We propose a novel method for automatic reasoning on knowl-
edge graphs based on debate dynamics. The main idea is to
frame the task of triple classification as a debate game between
two reinforcement learning agents which extract arguments
— paths in the knowledge graph — with the goal to promote
the fact being true (thesis) or the fact being false (antithesis),
respectively. Based on these arguments, a binary classifier,
called the judge, decides whether the fact is true or false. The
two agents can be considered as sparse, adversarial feature
generators that present interpretable evidence for either the
thesis or the antithesis. In contrast to other black-box meth-
ods, the arguments allow users to get an understanding of
the decision of the judge. Since the focus of this work is to
create an explainable method that maintains a competitive
predictive accuracy, we benchmark our method on the triple
classification and link prediction task. Thereby, we find that
our method outperforms several baselines on the benchmark
datasets FB15k-237, WN18RR, and Hetionet. We also conduct
a survey and find that the extracted arguments are informative
for users.

1 Introduction

A large variety of information about the real world can be
expressed in terms of entities and their relations. Knowledge
graphs (KGs) store facts about the world in terms of triples
(s,p,0), where s (subject) and o (object) correspond to nodes
in the graph and p (predicate) denotes the edge type con-
necting both. The nodes in the KG represent entities of the
real world and predicates describe relations between pairs of
entities.

KGs are useful for various artificial intelligence (AI) tasks
in different fields such as named entity disambiguation in
natural language processing (Han and Zhao 2010), visual re-
lation detection (Baier, Ma, and Tresp 2017), or collaborative
filtering (Hildebrandt et al. 2019). Examples of large-size
KGs include Freebase (Bollacker et al. 2008) and YAGO
(Suchanek, Kasneci, and Weikum 2007). In particular, the
Google Knowledge Graph (Singhal 2012) is a well-known
example of a comprehensive KG with more than 18 billion
facts, used in search, question answering, and various NLP
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tasks. One major issue, however, is that most real-world
KGs are incomplete (i.e., true facts are missing) or contain
false facts. Machine learning algorithms designed to address
this problem try to infer missing triples or detect false facts
based on observed connectivity patterns. Moreover, many
tasks such as question answering or collaborative filtering
can be formulated in terms of predicting new links in a KG
(e.g., (Lukovnikov et al. 2017), (Hildebrandt et al. 2018)).
Most machine learning approaches for reasoning on KGs
embed both entities and predicates into low dimensional vec-
tor spaces. A score for the plausibility of a triple can then
be computed based on these embeddings. Common to most
embedding-based methods is their black-box nature. This
lack of transparency constitutes a potential limitation when it
comes to deploying KGs in real world settings. Explainabil-
ity in the machine learning community has recently gained
attention; in many countries laws that require explainable
algorithms have been put in place (Goodman and Flaxman
2017). Additionally, in contrast to one-way black-box config-
urations, comprehensible machine learning methods enable
the construction of systems where both machines and users
interact and influence each other.

Most explainable Al approaches can be roughly catego-
rized into two groups: Post-hoc interpretability and integrated
transparency (Dosilovié, Brci¢, and Hlupi¢ 2018). While post-
hoc interpretability aims to explain the outcome of an already
trained black-box model (e.g., via layer-wise relevance propa-
gation (Montavon et al. 2017)), integrated transparency-based
methods either employ internal explanation mechanisms or
are naturally explainable due to low model complexity (e.g.,
linear models). Since low complexity and prediction accu-
racy are often conflicting objectives, there is typically a trade
off between performance and explainability. The goal of this
work is to design a KG reasoning method with integrated
transparency that does not sacrifice performance while also
allowing a human-in-the-loop.

In this paper we introduce R2D2 (Reveal Relations using
Debate Dynamics), a novel method for triple classification
based on reinforcement learning. Inspired by the concept out-
lined in (Irving, Christiano, and Amodei 2018) to increase Al
safety via debates, we model the task of triple classification
as a debate between two agents, each presenting arguments
either in favor of the thesis (the triple is true) or the antithe-
sis (the triple is false). Based on these arguments, a binary



classifier, called the judge, decides whether the fact is true or
false. As opposed to most methods based on representation
learning, the arguments can be displayed to users such that
they can trace back the classification of the judge and poten-
tially overrule the decision or request additional arguments.
Hence, the integrated transparency mechanism of R2D2 is
not based on low complexity components, but rather on the
automatic extraction of interpretable features. While deep
learning made manual feature engineering to great extends
redundant, this advantage came at the cost of producing re-
sults that are difficult to interpret. Our work is an attempt to
close the circle by employing deep learning techniques to
automatically select sparse, interpretable features. The major
contributions of this work are as follows.

e To the best of our knowledge, R2D2 constitutes the first
model based on debate dynamics for reasoning on KGs.

e We benchmark R2D2 with respect to triple classification
on the datasets FB15k-237 and WN18RR. Our findings
show that R2D2 outperforms all baseline methods with
respect to the accuracy, the PR AUC, and the ROC AUC,
while being more interpretable.

e To demonstrate that R2D2 can in principle be employed
for KG completion, we also evaluate its link prediction
performance on a subset of FB15k-237. To include a real
world task, we employ R2D2 on Hetionet for finding gene-
disease associations and new target diseases for drugs.
R2D2 either outperforms or keeps up with the performance
of all baseline methods on both datasets with respect to
standard measures such as the MRR, the mean rank, and
hits @k, for k = 3, 10.

e We conduct a survey where respondents take the role of
the judge classifying the truthfulness of statements solely
based on the extracted arguments. Based on a majority
vote, we find that nine out of ten statements are classified
correctly and that for each statement the classification of
the respondents agrees with the decision of R2D2’s judge.
These findings indicate that the arguments of R2D2 are
informative and the judge is aligned with human intuition.

This paper is organized as follows. We briefly review KGs and
the related literature in the next section. Section 3 describes
the methodology of R2D2. Section 4 details an experimen-
tal study on the benchmark datasets FB15k-237, WN18RR,
and Hetionet. In particular, we compare R2D2 with various
methods from the literature and describes the findings of our
survey. In Section 5 the quality of the arguments and future
works are discussed. We conclude in Section 6.

2 Background and Related Work

In this section we provide a brief introduction to KGs in
a formal setting and review the most relevant related work.
Let £ denote the set of entities and consider the set of bi-
nary relations R. A knowledge graph G C € x R x £ is
a collection of facts stored as triples of the form (s, p,0) —
subject, predicate, and object. To indicate whether a triple is
true or false, we consider the binary characteristic function
¢:EXRxE—{0,1}. Forall (s,p,0) € KG we assume
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Figure 1: The agents debate whether Michael Jordan is a
professional basketball player. While agent 1 extracts argu-
ments from the KG supporting the thesis that the fact is true
(green), agent 2 argues that it is false (red). Based on the argu-
ments the judge decides that Michael Jordan is a professional
basketball player.

o(s,p,0) =1 (i.e.,, a KG is a collection of true facts). How-
ever, in case a triple is not contained in G, it does not imply
that the corresponding fact is false but rather unknown (open
world assumption). Since most KGs that are currently in use
are incomplete in the sense that they do not contain all true
triples or they actually contain false facts, many canonical
machine learning tasks are related to KG reasoning. KG rea-
soning can be roughly categorized according to the following
two tasks: first, inference of missing triples (KG completion
or link prediction), and second, predicting the truth value of
triples (triple classification). While different formulations of
these tasks are typically found in the literature (e.g., the com-
pletion task may involve predicting either subject or object
entities as well as relations between a pair of entities), we
employ the following definitions throughout this work.

Definition 1 (Triple Classification and KG completion).
Given a triple (s,p,0) € £ X R x &, triple classification
is concerned with predicting the truth value ¢(s, p,0). KG
completion is the task to rank object entities o € £ by their
likelihood to form a true triple together with a given subject-
predicate-pair (s,p) € € x R.!

Many machine learning methods for KGs can be trained
to operate in both settings. For example, a triple classifier of
the form f : € x R x € — [0, 1] with f(s,p, 0) = ¢(s,p,0),

"Throughout this work, we assume the existence of inverse re-
lations. That means for any relation p € R there exists a relation
p~ ' € R such that (s, p,0) € KG if and only if (0,p™*, s) € KG.
Hence, the restriction to rank object entities does not lead to a loss
of generality.



induces a completion method given by f(s,p,-) : &€ — [0, 1],
where function values for different object entities can be
used to produce a ranking. While the architecture of R2D2
is designed for triple classification, we demonstrate that it
can in principle also work in the KG completion setting. The
performance on both tasks is reported in Section 4.

Representation learning is an effective and popular tech-
nique underlying many KG refinement methods. The basic
idea is to project both entities and relations into a low di-
mensional vector space. Then the likelihood of triples is
modelled as a functional on the embedding spaces. Popular
completion methods based on representation learning include
the translational embedding methods TransE (Bordes et al.
2013) and TransR (Lin et al. 2015) as well as the factoriza-
tion approaches RESCAL (Nickel, Tresp, and Kriegel 2011),
DistMult (Yang et al. 2015), ComplEx (Trouillon et al. 2016),
and SimplE (Kazemi and Poole 2018). Path-based reasoning
methods follow a different philosophy. For instance, the Path-
Ranking Algorithm (PRA) proposed in (Lao, Mitchell, and
Cohen 2011) uses for inference a combination of weighted
random walks through the graph. In (Xiong, Hoang, and
Wang 2017) the reinforcement learning based path search-
ing approach called DeepPath was proposed, where an agent
picks relational paths between entity pairs. Recently, and
more related to our work, the multi-hop reasoning method
MINERVA was proposed in (Das et al. 2018). The basic idea
in that paper is to display the query subject and predicate
to the agents and let them perform a policy guided walk
to the correct object entity. The paths that MINERVA pro-
duces also lead to some degree of explainability. However,
we find that only actively mining arguments for the thesis and
the antithesis, thus exposing both sides of a debate, allows
users to make a well-informed decision. Mining evidence
for both positions can also be considered as adversarial fea-
ture generation, making the classifier (judge) robust towards
contradictory evidence or corrupted data.

3 Our Method

We formulate the task of triple classification in terms of a
debate between two opposing agents. Thereby, a query triple
corresponds to the statement around which the debate is cen-
tered. The agents proceed by mining paths on the KG that
serve as evidence for the thesis or the antithesis. More pre-
cisely, they traverse the graph sequentially and select the next
hop based on a policy that takes past transitions and the query
triple into account. The transitions are added to the current
path, extending the argument. All paths are processed by a
binary classifier called the judge that attempts to distinguish
between true and false triples based on the arguments pro-
vided by the agents. Figure 1 shows an exemplary debate.
The main steps of a debate can be summarized as follows:

1. A query triple around which the debate is centered is
presented to both agents.

2. The two agents take turns extracting paths from the KG
that serve as arguments for the thesis and the antithesis.

3. The judge processes the arguments along with the query
triple and estimates the truth value of the query triple.
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While the parameters of the judge are fitted in a supervised
fashion, both agents are trained to navigate through the graph
using reinforcement learning. Based on the formal framework
presented in (Das et al. 2018), the agents’ learning tasks are
modelled via the fixed horizon decision processes outlined
below.

States The fully observable state space S for each agent is
givenby £2 x R x &. Intuitively, we want the state to encode

the location of exploration et (1 e., the current location) of
agents € {1,2} attime ¢ and the query triple ¢ = (s4, Py, 0q)-

Thus, a state St(i)
87 = (et”.q).

Actions The set of possible actions for agent ¢ from
a state St(l) = (eg ),q) is denoted by A

€ S for time t € N is represented by

500 It con-

sists of all outgoing edges from the node eti) and the
corresponding target nodes. More formally, AS(“

{(r,e) ERXE: St(i) = (e(i),q) (eg )77“ e) € ICQ} .

Moreover, we denote with A(

cA 50 the action that agent

1 performed at time ¢. We include self- loops for each node
such that the agent can stay at the current node.

Environments The environments evolve deterministically
by updating the state according to the agents’ actions (i.e.,
by changing the agents’ locations), whereby the query fact
remains the same. Formally, the transition function of agent

¢ at time ¢ is given by 6t(i)(5t(i),A(i)) = (eﬁzl,q> with

St(i) = (ei”,q) and Agi) = (r egl)

Policies We denote the history of agent ¢ up to time ¢

with the wple H{ = (H{, A{",) for t > 1 and

H(gi) = (8¢,Pq,04) along with Aéi) = () for t = 0. The
agents encode their histories via LSTMs (Hochreiter and
Schmidhuber 1997)

h§i>:LSTM<i>([ () g >D (1)

(4) (@)

— (4)
where a;”; = {rt 1€

€ R?? corresponds to the vector

space embedding of the previous actlon (or the zero vector

for at time ¢t = 0) with rg )1 and e; @ denoting the embed-

dings of the relation and the target entity into R¢, respectively.

Moreover, q(¥) = [egi), rz(,i), e((f)} € R3? encodes the query

triple for agent <. Both entity and relation embeddings are
specific for each agent and learned in the debate process dur-
ing training. Note that expanding the state space definitions
with the histories leads to a Markov decision processes.

The history-dependent action distribution of each agent is
given by

d(z) softmax (Agi) (Wéi)ReLU (Wg”hg”))) . (2
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Figure 2: The overall architecture of R2D2; the two agents extract arguments from the KG. Along with the query relation and the
query object, these arguments are processed by the judge who classifies whether the query is true or false.

W er
sentations of all admissible actions from St(z). The action

Agi) =(re)e A

|Ast(i)|><d

where the rows of A contain latent repre-

S is drawn according to
t

Agi) ~ Categorical (dgi)) . 3)
Equations (1) and (2) define a mapping from the space of his-
tories to the space of distribution over all admissible actions,
thus inducing a policy 7y (), where #() denotes the set of all
trainable parameters in Equations (1) and (2).

Debate Dynamics In a first step, the query triple ¢
(8¢, g, 0q) With truth value ¢(¢q) € {0,1} is presented to
both agents. Agent 1 argues that the fact is true, while agent
2 argues that it is false. Similar to most formal debates, we
consider a fixed number of rounds N € N. In every round
n=1,2,..., N, the agents start graph traversals with fixed
length T' € N from the subject node of the query s,. The
judge observes the paths of the agents and predicts the truth
value of the triple. Agent 1 starts the game generating a se-
quence of length T" consisting of states and actions according
to Equations (1 - 3). Then agent 2 proceeds by producing a
similar sequence starting from s,. Algorithm 1 contains a
pseudocode of R2D2 at inference time.

To ease the notation we have enumerated all actions con-
secutively and dropped the superscripts that indicate which
agent performs the action. Then the sequence corresponding
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to the n-th argument of agent ¢ is given by
4)

where we used the reindexing 11(¢, T') := (2(n—1)+i—1)T.
The sequence of all arguments is denoted by

T = (7'1(1),7'1(2),7'2(1),7'2(2), e ,T](Vl)
The Judge The role of the judge in R2D2 is twofold: First,
the judge is a binary classifier that tries to distinguish between
true and false facts. Second, the judge also evaluates the qual-
ity of the arguments extracted by the agents and assigns re-
wards to them. Thus, the judge also acts as a critic, teaching
the agents to produce meaningful arguments. The judge pro-
cesses each argument together with the query individually by
a feed forward neural network f : R2T+1Dd 5 Re sums the
output for each argument up and processes the resulting sum
by a binary classifier. More concretely, after processing each
argument individually, the judge produces a representation

according to
/(o)

i J
T = [aﬁ(i,T)+17aé(i,T)+27"'7ag(i,T)+T:| )
J = [r/,e]] € R* denotes the judge’s embedding
for the action A; and q7 = [r/ e]] € R?? encodes the
query predicate and the query object. Note that the query

Tr(f) = (Aﬁ(i,T)+17Aﬁ(i,T)+2a .- -7Aﬁ(¢,T)+T> )

e

®)

() —

n

(6)
with

where a



Algorithm 1: R2D2 Inference
input :Triple query ¢ = (sq,Dq, 0g)
output : Classification score ¢, € [0, 1] of the judge
along with the list of arguments 7
1 74 []// Initialize the list of
arguments with an empty list
// Loop over the debate rounds
2 forn =11t N do

// Loop over the two agents
3 fori =11 2do
4 ()6—sq// Initialize the
position of the agent
5 ﬂy)«—[]// Initialize the
argument with an empty list
// Loop over the path
6 fort =1t T do
7 Sample a transition (r, e) from eﬁ”
according to myi) // See
Equations (1-3)
8 75" append(r,e) // Extend the
argument
9 éiléfe // Update the position
of the agent
10 end
11 TapmeKﬂl) // Extend the list of
all argument
12 end
13 end

—

4 Process 7 via the judge and retrieve the classification
scoret, // See Equation (6-8)
s returnt, and T

-

subject is not revealed to the judge because we want the
judge to base its decisions solely on the agents’ actions rather
than on the embedding of the query subject. After processing
all arguments in 7, the debate is terminated and the judge
scores the query triple ¢ with ¢, € (0, 1) according to

2 N
tr=o0 (wTReLU (WZ Zyﬁ,“)) ,

i=1 n=1

where W € R%*? and w € R? denote the trainable parame-
ters of the classifier and o(+) denotes the sigmoid activation
function. We also experimented with more complex archi-
tectures where the judge processes each argument in 7 via a
recurrent neural network. However, we found that both the
classification performance and the quality of the arguments
suffered.

The objective function of the judge for a single query ¢ is
given by the cross-entropy loss

L, = ¢(q)logt, + (1 —¢(q)) (1 —logt;).  (9)

Hence, during training, we aim to minimize the overall loss

®)
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given by

> La

q€T

where T denotes the set of training triples. To prevent over-
fitting, an additional Lo-penalization term with strength
A € R>( on the parameters of the judge is added to Equation
(10).

An overview of the overall architecture of R2D2 is de-
picted in Figure 2.

10
-7 o

Rewards In order to generate feedback for the agents, the

judge also processes each argument 7'
produces a score according to

1 = wiReLU (W ([r0.a7])) ,

where both the neural network f as well as the linear weights
vector w correspond to the definitions given in the previous
paragraph. Thus, tgf ) corresponds to the classification logits
of ¢ solely based on the n-th argument of agent ¢. Since
agent 1 argues for the thesis and agent 2 for the antithesis,

the rewards are given by

1nd1V1dually and

(11)

(4)

n

Rﬁ?{lq

ifi=1

12
otherwise. (12)

(1)
Intuitively speaking, this means that the agents receive high

rewards whenever they extract an argument that is considered
by judge as strong evidence for their position

Reward Maximization and Training Scheme We em-
ploy REINFORCE (Williams 1992) to maximize the ex-
pected cumulative reward of the agents given by

N
GO =Y "R, (13)
n=1
Thus, the agents’ maximization problems are given by
argmaxEq g, E o o o [G(i) q} ;14
FI0) 1 T2 TN g(1)

where KCG is the set of training triples that contain in ad-
dition to observed triples in G also unobserved triples.
The rationale is as follows: As KGs only contain true facts,
sampling queries from G would create a dataset without
negative labels. Therefore it is common to create corrupted
triples that are constructed from correct triples (s, p, 0) by
replacing the object with an entity o0 to create a false triple
(s,p,0) ¢ KG (see (Bordes et al. 2013)). Rather than creating
any kind of corrupt triples, we generate a set of plausible but
false triples. More concretely, for each (s, p, 0) € KG we gen-
erate one triple (s, p, 0) ¢ KG with the constraint that 6 ap-
pears in the database as the object with respect to the relation
p. More formally, we denote the set of corrupted triples with
KGc {(s7pa 6)' $Pp,0 ) ¢ Kg,3s: (§’p> 6) € ’Cg} :
Then the set of training triples 7 is contained in KG, =



Dataset Entities Relations  Triples
FB15k-237 14,541 237 310,116
WNI8RR 40,943 11 93,003

Hetionet 47,031 24 2,250,197

Table 1: Statistics of the datasets used in the experiments.

KG U KG¢. The underlying rationale for working with plau-
sible but false facts is that we do not waste resources on
triples that break implicit type-constrains. Since this heuristic
only needs to be computed once and filters out triples that
could easily be discarded by a type-checker, we can focus on
the prediction of facts that present more of a challenge.

During training the first expectation in Equation (14) is
substituted with the empirical average over the training set.
The second expectation is approximated by the empirical
average over multiple rollouts. We also employ a moving
average baseline to reduce the variance. Further, we use en-
tropy regularization with parameter 5 € R>( to enforce
exploration.

In order to address the problem that the agents require a
trained judge to obtain meaningful reward signals, we freeze
the weights of the agents for the first episodes of the training.
The rationale is that training the judge does not necessarily
rely on the agents being perfectly aligned with their actual
goals. For example, even if the agents do not extract argu-
ments that correspond to their position, they can still provide
useful features that the judge learns to exploit. After the ini-
tial training phase, where we only fit the parameters of the
judge, we employ an alternating training scheme where we
either train the judge or the agents.

4 Experiments

Datasets We measure the performance of R2D2 with re-
spect to the triple classification and the KG completion task
on the benchmark datasets FB15k-237 (Toutanova et al. 2015)
and WNI18RR (Dettmers et al. 2018). To test R2D2 on a
real world task we also consider Hetionet (Himmelstein and
Baranzini 2015), a large scale, heterogeneous graph encoding
information about chemical compounds, diseases, genes, and
molecular functions. We employ R2D2 for detecting gene-
disease associations and finding new target diseases for drugs,
two tasks of high practical relevance in the biomedical do-
main (see (Himmelstein and Baranzini 2015)). The statistics
of all datasets are given in Table 1.

Metrics and Evaluation Scheme As outlined in Section
2, triple classification aims to decide whether a query triple
(sq,Pq,04) is true or false. Hence, it is a binary classifica-
tion task. For each method we set a threshold § obtained by
maximizing the accuracies on the validation set. That means,
for a given query triple (s4,pq, 04), if its score (e.g., given
by Equation (8) for R2D2) is larger than J, the triple will be
classified as true, otherwise as false. Since most KGs do not
contain facts that are labeled as false, we have generated a set
of negative triples: For each observed triple in the validation
and test set we create a false but plausible fact (see Section
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3).2 We report the accuracy, the PR AUC, and ROC AUC
for all methods. Since R2D2 is a stochastic classifier, we can
produce multiple rollouts of the same query at inference time
and average the resulting classification scores to lower the
variance.

Even though the purpose of R2D?2 is triple classification,
one can turn it into a KG completion method as follows:
We consider a range of object entities each producing a dif-
ferent classification score ¢, given by Equation (8). Since
t, can be interpreted as a measure for the plausibility of a
triple, we use the classification scores to produce a rank-
ing. More concretely, we rank each correct triple in the
test set against all plausible but false triples (see Section
3). Since this procedure is computational expensive dur-
ing training (one needs to run multiple debates per training
triple to produce a ranking), we select the following rela-
tions for training and testing purposes: For FB15k-237 we
follow (Socher et al. 2013) and consider the relations ‘pro-
fession’, ‘nationality’, ‘ethnicity’, and ‘religion’. Following
(Himmelstein and Baranzini 2015) and (Himmelstein et al.
2017), the relations ‘gene_associated_with_disease’ and ‘com-
pound_treats_disease’ are considered for Hetionet. We report
the mean rank of the correct entity, the mean reciprocal rank
(MRR), as well as Hits@k for k = 1, 3, 10 - the percentage
of test triples where the correct entity is ranked in the top k.

In order to find the most suitable set of hyperparameters
for all considered methods, we perform cross-validations.
Thereby the canonical splits of the datasets into a training,
validation, and test set are used. In particular, we ensured
that triples that are assigned to the validation or test set (and
their respective inverse relations) are not included in the
KG during training. The results on the test set of all meth-
ods are reported based on the hyperparameters that showed
the best performance (based on the highest accuracy for
triple classification and the the highest MRR for link pre-
diction) on the validation set. We considered the following
hyperparameter ranges for R2D2: The number of latent di-
mensions d for the embeddings is chosen from the range
{32,64, 128}. The number of LSTM layers for the agents
is chosen from {1,2,3}. The the number of layers in the
MLP for the judge is tuned in the range {1,2,3,4,5}. 5 was
chosen from {0.02,0.05, 0.1}. The length of each argument
T was tuned in the range {1,2,3} and the number of de-
bate rounds /N was set to 3. Moreover, the Ly-regularization
strength A is set to 0.02. Furthermore, the number of rollouts
during training is given by 20 and 50 (triple classification)
or 100 (KG completion) at test time. The loss of the judge
and the rewards of the agents were optimized using Adam
with learning rate given 10~%. The best hyperparameter are
reported in Table 3.

All experiments were conducted on a machine with 48
CPU cores and 96 GB RAM. Training R2D2 on either dataset
takes at most 4 hour. Testing takes about 1-2 hours depending
on the dataset.

>The datasets along with the code of R2D2 are available at
https://github.com/m-hildebrandt/R2D2.



Dataset FB15k-237 WNI18RR
Method Acc  PRAUC ROCAUC | Acc PRAUC ROCAUC
DistMult  0.739 0.78 0.803 0.804 0.901 0.872
ComplEx 0.738 0.789 0.796 0.802 0.887 0.860
TransE 0.673 0.727 0.736 0.69 0.794 0.732
TransR  0.612 0.655 0.651 0.721 0.724 0.792
SimplE  0.703 0.733 0.756 0.722 0.812 0.742
R2D2 0.751 0.86 0.848 0.726 0.821 0.808
R2D2, 0.764 0.865 0.857 0.804 0.909 0.893

Table 2: The performance on the triple classification task.

Parameter FB15k-237 WNI18RR FB15k-237 (subset) Hetionet
Embedding size (d) 64 64 64 32
# stacked LSTM cells (agents) 2 1 2 2
# layers MLP (judge) 1 1 3 2
# rounds in a debate (V) 3 3 3 3
Argument/path length (T) 2 2 2 2
Entropy regularization (3) 0.02 0.02 0.1 0.1

Table 3: The best hyperparameters for R2D2 found via cross-validation.

Results

Triple Classification We compare the performance of
R2D?2 on the triple classifications task against DistMult, Com-
plEx, TransE, TransR, and SimplE. The results are displayed
in Table 2. On FB15k-237, R2D2 outperforms all baselines
with respect to the accuracy, the PR AUC, and the ROC AUC.
However, on WN18RR the performance of R2D2 is domi-
nated by the factorization methods ComplEx and DistMult
by a significant margin. We conjecture that this is due to the
sparsity in the dataset. As a remedy we employ pretrained
embeddings from TransE that are fixed during training.> We
denote the resulting method with R2D2 and find that it out-
performs all other methods with respect to the PR AUC and
ROC AUC on WN18RR. We also test R2D2_ on FB15k-237
and find that it improves the results of R2D2 by only a small
margin. This is expected since FB15k-237 is not as sparse as
WN18RR.

KG completion Next to the baselines used for triple classi-
fication we also employ the path based link prediction method
MINERVA. Note that it is not possible to compute a fair mean
rank for MINERVA, since it does not produce a complete
ranking of all candidate objects. Table 4 displays the results
on the completion task for all methods under consideration
on FB15k-237 and Hetionet (subsets; see above). R2D2 out-
performs all other methods on FB15k-237 with respect to
all metrics but Hits@ 10. However, the performance of MIN-
ERVA is almost on par. Moreover, R2D2 outperforms all
baselines on Hetionet with respect to the MRR, the mean
rank, Hits@3, and Hits@ 10. While MINERVA exhibits the
best performance with respect to Hits@ 1, R2D2 yields sig-
nificantly better results with respect to all other metrics.

3We choose TransE embeddings due to the simple functional
relations between entities. These can be easily exploited by R2D2.
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Survey To asses whether the arguments are informative for
users in an objective setting, we conducted a survey where
respondents take the role of the judge making a classification
decision based on the agents’ arguments. More concretely, we
set up an online quiz consisting of ten rounds. Each round is
centered around a query (with masked subject) sampled from
the test set of FB15k-237 (KG completion). Along with the
query statement we present the users six arguments extracted
by the agents in randomized order. Based on these arguments
the respondents are supposed to judge whether the statement
is true or false. In addition, we asked the respondents to rate
their confidence in each round.

Based on 44 participants (109 invitations were sent) we
find that the overall accuracy of the respondents’ classifica-
tions was 81.8%. Moreover, based on a majority vote (i.e.,
classification based on the majority of respondents) nine out
of ten questions were classified correctly indicating that hu-
mans are approximately on par with the performance of the
automated judge. Further, the statement where the majority
of respondents was wrong corresponds to the only query
that was also misclassified by the judge. In this round the
participants were supposed to decide whether a person has
the religion Methodism. It is hard to answer this question
correctly because the person at hand is Margaret Thatcher
who had two different religions over her lifetime: Methodism
and the Church of England. The fact that the majority of
respondents and the judge agree in all rounds indicates that
the judge is aligned with human intuition and that the argu-
ments are informative. Moreover, we found that when users
assigned a high confidence score to their decision (‘rather
certain’ or ’absolutely certain’) the overall accuracy of their
classification was 89%. The accuracy dropped to 68.4% when
users assigned a low confidence score (‘rather uncertain’ or
*absolutely uncertain’).



Dataset FB15k-237 (subset) Hetionet (subset)

Metrics MRR  Mean Rank Hits@1 Hits@3 Hits@10 | MRR Mean Rank Hits@1 Hits@3 Hits@10
DistMult ~ 0.502 8.607 0.363 0.572 0.779 0.134 31.190 0.054 0.121 0.291
ComplEx  0.521 7477 0.383 0.587 0.806 0.148 31.439 0.061 0.141 0.325

TransE 0.473 10.2112 0.345 0.522 0.745 0.110 35.559 0.033 0.097 0.267

TransR 0.543 8.737 0.391 0.635 0.816 0.144 27.841 0.049 0.136 0.340

SimplE 0.429 11.760 0.275 0.506 0.736 0.177 31.965 0.091 0.174 0.354

MINERVA  0.580 - 0.448 0.657 0.857 0.174 - 0.097 0.18 0.364
R2D2 0.589 6.332 0.459 0.665 0.853 0.206 23.486 0.090 0.219 0.455
Table 4: The performance on the KG completion task.
. nationality hasProfession
Query: Richard Feynman USA? Nelson Mandela Actor?
Agent 1: Richard Feynman fivedInLocation, Queens Nelson Mandela 22227 Naomi Campbell
A Queens Locatedln, 175 A Naomi Campbell hasDated, 1 eonardo DiCaprio
Agent 2: Richard Feynman JasBthnicity, pussian people Nelson Mandela hasProfession, Lawyer
A Russian people geographicDistribution Republic of Tajikistan A Lawyer specializationOf ., g rrister

Table 5: Two example debates generated by R2D2: While agent 1 argues that the query is true and agent 2 argues that it is false.

5 Discussion and Future Works

We examined the quality of the extracted paths manually and
typically found reasonable arguments, but quite often also
arguments that do not make intuitive sense. We conjecture
that one reason for that is that agents often have difficul-
ties finding meaningful evidence if they are arguing for the
false position. Moreover, for many arguments, most of the
relevant information is already contained in the first step of
the agents and later transitions often contain seemingly ir-
relevant information. This phenomenon might be due to the
fact that the judge ignores later transitions and agents do not
receive meaningful rewards. Further, relevant information
about the neighborhood of entities can be encoded in the
embeddings of entities. While the judge has access to this
information through the training process, it remains hidden
to users. For example, when arguing that Nelson Mandela
was an actor (see Table 5), the argument of agent 1 requires
the user to know that Naomi Campbell and Leonardo Di-
Caprio are actors (which is encoded in FB15k-237). Then
this argument serves as evidence that Nelson Mandela was
also an actor since people tend to have friends that share their
profession (social homophily). However, without this context
information it is not intuitively clear why this is a reasonable
argument.

To examine the interplay between the agents and the judge,
we consider a setting where we train R2D2 with two agents,
but neglect the arguments of one agent during testing. This
should lead to a biased outcome in favor of the agent whose
arguments are considered by the judge. We test this setting
on FB15k-237 and find that when we consider only the ar-
guments of agent 1, the number of positive predictions in-
creases by 18.8%. In contrast, when we only consider agent 2,
the number positive predictions drops by 70.2%. This result
shows that the debate dynamics are functioning as intended
and that the agents learn to extract arguments that the judge
considers as evidence for their respective position.

While the results of the survey are encouraging, we plan to
develop variants of R2D2 that improve the quality of the argu-
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ments and conduct a large scale experimental study that also
includes other baselines in a controlled setting. Moreover,
we plan to discuss fairness and responsibility considerations.
In that regard, (Nickel et al. 2015) stress that when apply-
ing statistical methods to incomplete KGs the results are
likely to be affected by biases in the data generating process
and should be interpreted accordingly. Otherwise, blindly
following these predictions can strengthen the bias. While
the judge in our method also exploits skews in the data, the
arguments can help to identify these biases and potentially
exclude problematic arguments from the decision.

6 Conclusion

We proposed R2D2, a new approach for KG reasoning based
on a debate game between two opposing reinforcement learn-
ing agents. The agents search the KG for arguments that
convince a binary classifier (judge) of their position. Thereby,
they act as sparse, adversarial feature generators. Since the
judge bases its decision solely on mined arguments, R2D2 is
more interpretable than other baseline methods. Our exper-
iments showed that R2D2 outperforms all baselines in the
triple classification setting with respect to all metrics on the
benchmark datasets WN18RR and FB15k-237. Moreover,
we demonstrated that R2D2 can in principle operate in the
KG completion setting. We found that R2D2 has competi-
tive performance compared to all baselines on a subset of
FB15k-237 and Hetionet. Furthermore, the results of our sur-
vey indicate that the arguments are informative and that the
judge is aligned with human intuition.
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