The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

An Efficient Algorithm for Counting Markov Equivalent DAGs

Robert Ganian,' Thekla Hamm,' Topi Talvitie’
'Vienna University of Technology, Austria, Email: rganian@gmail.com, thamm @ac.tuwien.ac.at
2University of Helsinki, Finland, Email: topi.talvitie @helsinki.fi

Abstract

We consider the problem of counting the number of DAGs
which are Markov-equivalent, i.e., which encode the same
conditional independencies between random variables. The
problem has been studied, among others, in the context of
causal discovery, and it is known that it reduces to counting
the number of so-called moral acyclic orientations of certain
undirected graphs, notably chordal graphs.

Our main empirical contribution is a new algorithm which
outperforms previously known exact algorithms for the con-
sidered problem by a significant margin. On the theoretical
side, we show that our algorithm is guaranteed to run in poly-
nomial time on a broad class of chordal graphs, including in-
terval graphs.

1 Introduction

A key task in causal discovery concerns the learning of di-
rected acyclic graphs (DAGs) that encode the direct causal
relationships within a set of random variables of interest.
This task is complicated by the fact that different DAGs may
be Markov equivalent, which means that they can represent
exactly the same set of conditional independencies between
the random variables. Every Markov equivalence class of
DAGs can be uniquely represented by an essential graph,
which is a partially directed graph in which edges whose
directions are not fixed by the class are represented as undi-
rected edges (Andersson, Madigan, and Perlman 1997). If
we have only observational data from the joint distribution
of the random variables of interest, we can identify the es-
sential graph, but not necessarily the correct DAG within the
equivalence class represented by the essential graph.

There has been extensive research devoted to exploring
the DAGs within a given equivalence class: for instance,
Maathuis, Kalisch and Biihlmann (2009) estimated causal
effects between pairs of variables when only the essential
graph is known, while Ghassami, Salehkaleybar, Kiyavash
and Bareinboim (2018) considered the problem of discover-
ing the directions of as many undirected edges in the essen-
tial graph as possible using given number of interventional
experiments. The problems of counting and sampling DAGs
in a Markov equivalence class are particularly central in the

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10136

area of these exploration problems, because approaches to
the other problems typically reduce to them (Radhakrishnan,
Solus, and Uhler 2017; 2018). For this reason, various algo-
rithms for sampling and counting DAGs in a Markov equiva-
lence class have been proposed (Talvitie and Koivisto 2019;
He, Jia, and Yu 2015; Ghassami et al. 2019; He and Yu 2016;
Bernstein and Tetali 2017).

The problem of counting and sampling DAGs in an equiv-
alence class efficiently and directly reduces to the restricted
case where the essential graph is an undirected chordal
graph! (Gillispie and Perlman 2002). In this case, the DAGs
in the Markov equivalence class are exactly the acyclic ori-
entations of the edges of the chordal graph which do not
contain an immorality, that is, a situation in which a vertex
has two parents that are not connected by an edge. For this
reason, the DAGs are known as moral acyclic orientations
(MAOs). We denote the problem of computing the number
of MAOs in chordal graphs as “#MAO”.

Related Work. In their previous work, He, Jia and
Yu (2015) formulated the so-called RootPicking algorithm
for #MAO: a recurrent procedure which branches over all
choices of the unique source vertex of a MAO, fixes the
orientations of edges which are forced by the given choice
of the source, and proceeds on each connected compo-
nent. RootPicking lies at the heart of the following al-
gorithmic approaches for #MAO: He and Yu (2016) en-
hanced RootPicking algorithm by identifying and extracting
so-called core graphs to handle dense subinstances better.
Ghassami et al. (2019) showed that the root-picking algo-
rithm admits a runtime upper bound of n2 () on n-vertex
graphs of maximum degree A. Using dynamic program-
ming on a structural decomposition of the graph, namely
its clique-tree, rather than building on RootPicking, Talvi-
tie and Koivisto (2019) showed that if the size of the largest
clique in a chordal graph is k, one can count its MAOs in
O(2FK'k2n) time.

These counting methods can also be adapted to solve the
sampling problem such that after running the counting algo-
rithm, we can obtain uniform samples from the set of MAOs
in polynomial time per sample by retracing the computation
that gave the number of MAOs. In particular, we can sam-

'A graph is chordal if it admits a special tree-like representation
called a clique-tree.

ple a MAO of H by first sampling its root with probability
proportional to the number of MAOs of H with that root,
then inferring the orientations arising from this, and finally
recursively sampling a MAO for each of the remaining undi-
rected components. To determine the appropriate probabili-
ties, we can invoke GetPartSol, in an analogous manner as
in previous related works (see, e.g., the work of Ghassami et
al. (2019)).

Contribution. Our main contribution is a new algorithm,
AnonMAO, which solves #MAO. AnonMAO enhances
RootPicking with a vertex anonymisation technique that re-
duces the number of generated subinstances which need to
be solved throughout the recursion. We remark that, like the
algorithms mentioned as Related Work, AnonMAO can be
adapted to solve the sampling problem. Specifically, if we
use the alias method (Vose 1991; Walker 1977) we can uni-
formly sample MAOs in linear time; see also the work of
Ghassami et al. (2019).

On the empirical side, we show that AnonMAO vastly out-
performs previously known exact algorithms for #MAO.

As our main theoretical contribution, we show that Anon-
MAQO can solve all instances of #MAO where the clique-
tree of the instance has a polynomially bounded number of
subtrees in polynomial time. The techniques used here are
based on an in-depth and non-trivial analysis of the struc-
ture of subinstances generated by RootPicking, notably with
respect to a fixed clique-tree. In particular, for the most part
this analysis is not specific to the formulation of AnonMAO
but may also prove useful when considering the complexity
of future algorithms for #MAO based on RootPicking.

The property of having a clique-tree with polynomially
many subtrees is satisfied by a wide range of chordal graphs.
We also show that the polynomial bound on the number of
subtrees can be equivalently expressed as a more simple con-
dition on the degree of the nodes in the clique-tree. One
special and very well-studied subclass of chordal graphs
that admit clique-trees with polynomially many subtrees is
the class of interval graphs (Brandstidt, Le, and Spinrad
1999); consequently, as a corollary we obtain that #MAO
is polynomial-time solvable on interval graphs.

2 Preliminaries

Graphs and Orientations. A graph G is defined by a fi-
nite set of vertices V(G) and a binary relation on it, i.e., a
subset of V(G) x V(G), describing a set of edges E(G).
We distinguish between undirected edges (v,w) € E(G),
for which also (w,v) € E(G); and directed edges (v, w) €
E(Q), for which (w,v) ¢ E(G). Graphs all of whose edges
are undirected are called undirected themselves. Similarly
graphs all of whose edges are directed are called directed.
For ease of presentation we denote an edge in an undirected
graph containing two vertices u and v by © — v and an edge
in a directed graph containing two vertices u and v in that
order by u — v or v < wu. (Note that with this notation
u—v=uv-—u,butu — v #uv— u.) A directed graph G’
is an orientation of a graph G if for every edge u — v of G,
G’ contains either edge u — v or u < v (but not both), and
for every edge u — v of G, G contains the edge u — v or

10137

the edge u — v.

A (graph) isomorphism is a bijection between the vertex
sets of two graphs under which the edge relation is invariant.
Graphs between which an isomorphism exists are isomor-
phic. An induced subgraph G[X] of a graph G is a graph
defined by a subset X C V(@) and the edge relation E(G)
restricted to X. A subgraph of GG is a graph that is given by
asubset X C V(@) and a subset F C E(G[X]). If H is
isomorphic to a subgraph of G, we say G contains H.

An (undirected) path is a graph v; — vo — ... — Uy
where the v; are pairwise different. More specifically the
given path is also called v;-vg-path or path from vy to v,
or path between v and v,. We extend this notion to paths
between a vertex and a vertex subset and paths between
two vertex subsets: For X,Y a v-X-path is a v-z-path
with z € X; an X-Y-path is a z-Y-path with x € X.
A subgraph of a path that is itself a path is called sub-
path. Given a graph G and vertices v, w € V(G), the dis-
tance distg (v, w) between v and w in G is defined as
min{¢ — 1 | G contains a v-w-path with ¢ vertices}. For
X, Y C V(G), distg(v, X) and distg(X,Y") are defined
analogously. We define the set of neighbours of a vertex (set)
in G as Ng(v) = {w € V(G) | distg(v,w) = 1} (and
Ng(X) = {w € V(G) | distg(w, X) = 1}). A vertex is
dominating if it is adjacent to all other vertices in the graph.

A graph G is connected if for all v, w € V(G), G contains
a v-w-path. A maximal (in terms of inclusion of the vertex
sets) connected induced subgraph of a graph is also called a
connected component of it.

An (undirected) cycle is a graph v; — vo — ... vy — V3
where the v; are pairwise different. An undirected graph is
a tree if it is connected and contains no cycle. An (induced)
subgraph of a tree that is itself a tree is called (induced) sub-
tree. An undirected graph is chordal if, for any cycle with
more than three vertices it contains, the subgraph induced
by the vertices of this cycle contains a cycle with at most
three vertices.

A directed cycle is a graph v1i — v9 — ...V — U1
where the v; are pairwise different. An orientation is acyclic
if it contains no directed cycle.

Problem Statement. An immorality is a graph that is iso-
morphic to a — v <— b. An orientation is moral if it contains
no immorality as an induced subgraph.

A Markov equivalence class can be set into one-to-one
correspondence with a partially directed graph (its so-called
essential graph (Verma and Pearl 1990)) in such a way
that the DAGs in the Markov equivalence class are exactly
the acyclic orientations of this graph which do not cre-
ate new immoralities. What is more, such a graph is effi-
ciently computable from any DAG in the Markov equiv-
alence class (Meek 1995). It is known that removing all
the directed edges of the graph results in an undirected
chordal graph (Andersson, Madigan, and Perlman 1997),
and each component of this graph may be oriented indepen-
dently (Gillispie and Perlman 2002). Thus the problem of
determining the size of a Markov equivalence class reduces
to the following problem (see also the recent work of Talvi-
tie and Koivisto (2019)):

#MAO: Given an undirected connected chordal graph
(UCCG) G, count the number of MAOs of G.
Note that #MAO is invariant under graph isomorphism.

The RootPicking Algorithm. He, Jia and Yu (2015) pro-
posed a recursive algorithm for #MAO which has been used
as a foundation in almost all approaches in the literature
thus far. It uses the fact that any MAO of a UCCG con-
tains a unique vertex v (called roof) such that there is no
edge u — v in the MAO. By this observation the number of
MAGO:s is equal to the sum, over all vertices v of the UCCG,
of the number of MAOs that have v as root. Now the key is
that the number of MAOs of the UCCG with v as root can be
computed from the number of MAOs of certain UCCGs that
are subgraphs of the original UCCG. An exact description
of the procedure (without additional optimisation) which we
refer to simply as RootPicking is given in Algorithm 1.

Algorithm 1: RootPicking

Input: An UCCG G
Output: The number of MAOs of G
1 if |[V(G)| = 1 then
2 | return 1
Sol =0
forr € V(G) do
Let G’ be a copy of G
for a — b an edge in G with
distg(r, a) < distg(r, b) do
| Replace a —bbya — bin G’

while G’ contains an induced subgraph a — b — ¢
do
| Replace b —cby b — cin G’

Remove all directed edges of G’
L Sol += HC connected component of G’ ROOtPleng(C)
return Sol

3
4
5
6

10
11

—

2

It is easy to see and has already been remarked by He, Jia
and Yu (2015) that, except for the edges incident to the root
r, all edges replaced in Line 7 of RootPicking, would also
be replaced in Line 9 of RootPicking. Moreover, edges that
contain the root would not be replaced in Line 9. This means
it is equivalent to replace all edges containing the root » — x
by r — x and then successively replace b—c by b — cfor all
induced a — b — c. In this vein we will distinguish root ori-
entations, meaning orientations of edges containing the root,
and morally propagating orientations, meaning orientations
arising from Lines 8 and 9 of the algorithm.

We will refer to the subgraphs C of G that are recursed
on in Line 11 together with the full history which led to this
recursive call. Each subinstance C is recursed on after a spe-
cific sequence of choices of roots in the nested executions
of Line 4 leading to the recursive call on C in Line 11. We
denote the set of these chosen roots by R¢.

Optimisations and Extensions of RootPicking. Talvitie
and Koivisto (2019) observed that each UCCG considered
in the RootPicking algorithm is an induced subgraph of the

10138

original UCCG. By memoizing the results, they reduced the
time complexity to O(2") and also achieved speedups in
practice (Talvitie and Koivisto 2019).

He and Yu (2016) extended the RootPicking algorithm to
better handle dense graphs. They gave a recursive algorithm
that, given a core graph (an UCCG without dominating ver-
tices), computes a polynomial P(m) such that by adding m
dominating vertices, the number of MAOs is P(m)m!.

Clique-Trees. We will use the clique-tree characterisation

of UCCGs to argue about the performance of our new algo-

rithm. A cligue is a graph C' in which for any two vertices

v#w e V(C), u—wvisanedge in C. A cligue-tree of a

graph G is a pair (7,) of a tree T (whose vertices we call

nodes) and amap x from V' (T) to subsets of V' (G) such that

e for each node t € V(T), G[x(t)] is a clique;

e for each vertex v € V(G), T[{t € V(T) | v € x(t)}] is
a connected subgraph of 7~ with at least one vertex; and

e for every maximal X C V(G) such that G[X] is a clique,
there is exactly one ¢ € V/(7) such that x(¢) = X.

A clique-tree of a chordal graph can be constructed in linear

time (Blair and Peyton 1993).

3 The Algorithm: AnonMAQO

Algorithm 2: AnonMAO
Input: A UCCG G
Output: The number of MAOs of G
1 Let Sol[-,] be a storage indexed by
2V % {0,...,|V(G)[}
2 Initialise all Sol[-,] = NULL
3 return GetPartSol(G)

Subroutine: GetPartSol
Input: A connected induced subgraph H of G
Output: The number of MAOs of H
if |[V/(H)| = 1 then
| return 1

Let D be the set of dominating vertices in I
Let S=V(H)\ Dandd = |D|
if So1[S,d] = NULL then
Sol[S,d] =0
forr € V(H) do
Let H' be a copy of H
for a — b an edge in H with
distg (r,a) < distg(r,b) do
| Replace a —bbya — bin H’
while H' contains a — b — c as induced
subgraph do
| Replace b —cby b — cin H’

Remove all directed edges of H’
So1[S,d] += Tl¢ comn. comp. of 21 GetPartSol(C)

=TI B LY B N R S

10
11

12

13
14

15 return Sol [S, d]

Our main contribution is a new algorithm which extends
RootPicking by combining the notion of cores (He and Yu
2016) with dynamic records. In this section, we present the
algorithm and prove correctness. In the next section, we will
then prove that the algorithm in fact runs in polynomial time
on a broad subclass of chordal graphs, among others imply-
ing that #MAO is polynomial-time tractable on all interval
graphs. We begin by recalling the definition of cores.

Definition 1. The core (or core graph) of a graph G is ob-
tained from G by removing all dominating vertices, i.e., is
given by G[V(G) \ {v € V(G) | v is dominating in G}|.

From this definition it is obvious that the core of a graph
can be computed in polynomial time from the graph. Con-
versely, G can be reconstructed (up to isomorphism) from
its core graph and the number of dominating vertices. This
easy observation lies at the heart of the presented dynamic
programming algorithm (Algorithm 2 along with its Subrou-
tine GetPartSol).

Theorem 2. AnonMAO correctly solves #MAO.

Proof. The algorithm proceeds just as RootPicking when-
ever Sol[S, d] = NULL in Line 5 of GetPartSol. By initiali-
sation of So1 this is the case for all entries of Sol at the be-
ginning of the algorithm. Because of this and Lines 3 and 4
of GetPartSol we can assume that an entry Sol[S,d] #
NULL contains the number of MAOs of some UUCG H that
is an induced subgraph of G, has d dominating vertices D
and V(H)\ D = S. This same number is returned when en-
countering an induced subgraph H' of G which has d dom-
inating vertices D’ and V(H') \ D’ = S. H and H’ can
be easily seen to be isomorphic by mapping D to D’ arbi-
trarily and S to S with the identity mapping. This means
GetPartSol returns the number of MAOs of H which is by
isomorphism the same as the number of MAOs of H’. [

4 Polynomially Tractable Instances of #MAQ

In this section, we will prove that AnonMAO solves #MAO
in polynomial time whenever there is a polynomial bound
on the number of subtrees of the clique-tree. For the fol-
lowing considerations, we fix an UCCG G together with an
associated clique-tree (7, x). We also introduce the follow-
ing notation: for a subtree T of 7 and v € V(G), we let

TW ={t e V(T) | v € x(t)}.

Sub-blocks. A crucial notion that will help us understand
the behavior of AnonMAO is that of sub-blocks. The defini-
tion of sub-blocks is motivated by the following insight into
the behavior of the RootPicking algorithm.

Lemma 3. Let v # u — v be an edge of G that is
oriented during the RootPicking algorithm when consid-
ering some root v € V(G). Then dist7 (T T <
dist (7™, 7). Moreover, there is a node s € V(T) on
the path from T to T) such that u € x(s) and v ¢ x(s).

Proof. Because u # r, the orientation © — v results from
a non-empty sequence of morally propagating orientations
following an orientation of an edge incident to the root. This

10139

describes a path in G that starts in 7 and ends in u. We pro-
ceed by induction along the length of a shortest such path,
i.e., a shortest path of orientations from the root to w.

In base case, when the sequence consists of just one
morally propagating orientation, i.e., 7 — u is an edge in G,
there has to be s € V(7)) such that 7,u € x(s). Similarly
because u — v is an edge in G there is some ¢t € V(7T) such
that u, v € x(t). As u — v must be replaced due to a morally
propagating orientation, r — v is not an edge in G and thus
v ¢ x(s). By the properties of the clique-tree, s lies on the
path from 7 (") to 7(*) which proves the base case.

For the inductive step, assume that the claim holds when-
ever we have an induced subgraph w — u — v of G where
the orientation of w — wu can be explained by a sequence
of propagating orientations of length ¢ — 1. Consider an in-
duced subgraph w — u — v of G where the orientation of
u — v follows from a shortest path of orientations from r
to u (through w) such that this path has length ¢1. Now, con-
sider the unique bag s in 7(*) that is closest to 7). By
our inductive assumption about the orientation of the edge
w — u, w € x(s). But then s cannot contain v, since v is
not adjacent to w. Since 7(*) does intersect 7(*) and s is
the bag in T closest to 7, s must lie on the path from
T to T()—in particular, it satisfies the conditions of the
lemma. O

Informally, Lemma 3 shows that every morally propagat-
ing orientation (i.e., all orientations of edges not incident to
the current root) u — v implies the existence of a “distin-
guishing” bag that appears in the root-direction inside the
clique-tree. This motivates the following definition, which
identifies “sub-blocks” in a clique-tree which are not distin-
guished by such a bag (i.e., where all the bags have the same
intersection with the neighbouring bag in the root direction).

Definition 4. A clique-tree sub-block is a tuple (T, Out)
where T is a subtree of T and out C N (V(T)).

The body By ou: of a clique-tree sub-block (T, Out) is
the vertex set of G given by U, ey () X(£) \ Useone X(1).

A clique-tree sub-block is called propagation identical
with respect to some v € V(QG) if either Vt € V(T) r €
x(t), orVt € out Vs, s' € V(T) x(s)Nx(t) = x(s")Nx(¢).

A clique-tree sub-block is propagation identical w.r.t. a
set R of roots if it is a propagation identical w.r.t. each
vertex in R. Intuitively, by Lemma 3, a propagation iden-
tical sub-block (or PIS, in short) (7', 0ut) provides a tem-
plate for specifying a vertex set of (G, namely its body, be-
tween whose vertices no morally propagating orientations
take place. We will use propagation identicality to show that
each subinstance considered by RootPicking is the body of
some clique-tree sub-block, where each root picked up to
that point is either a dominating vertex in the subinstance or
lies in the direction of some node ¢ € Out. In combination
with the following observation, this will provide us with an
upper bound on the number of subinstances considered by
AnonMAO.

Observation 5. The number of clique-tree sub-blocks is at
most p?, where p is the number of subtrees of T.

To formalise and prove the desired claim, we first consider
subinstances containing the latest root picked separately in
Lemma 6. We use this as a base for proving the general case
in Lemma 7 and Lemma 8.

Lemma 6. Consider a subinstance C' that is recursed on
during the RootPicking algorithm which arises from another
subinstance C' after picking a root r € V(C") such that r €
Na(V(C)). Then C is a connected component of G[{u €
V(C)\A{r} |3t e V(T) :ue x(t) Ar e x(t).

Proof Sketch. Since Z = {u € V(C')\ {r} | 3t €
V(T)u e x(t) Ar € x(t)} is the set of all vertices at dis-
tance 1 from 7 in C”, it obviously contains V' (C'). The proof
follows by showing that no edge in G[Z] can be influenced
by a morally propagating orientation. O

For the following lemma, it will be useful to recall that
R is the set of roots chosen by RootPicking.

Lemma 7. Consider a subinstance C' that is recursed on
during the RootPicking algorithm applied to G. There is a
PIS (T, out) with respect to R¢ such that C'is a connected
component of G[Br, oy \ Rc)-

Proof Sketch. We prove the lemma by induction on the re-
cursion depth needed to reach C' as a subinstance. For the
base case, notice that V(G) = By g and G = G[Br g \ 0].

Now assume that the lemma holds for all instances arising
at recursion depth at most i. Let C’ be an arbitrary subin-
stance at recursion depth 7, and using the induction hypoth-
esis let (IT”,0ut’) be a PIS with respect to Rc» such that
G[B71/ out’] \ Rer has C” as a connected component and
let r € V(C") be an arbitrary vertex of C’, i.e., a possible
choice for a root when recursing on C”.

We show that for every C' which occurs as subinstance at
recursion depth 7 + 1 arising from C” after picking r as the
new root, C' is a connected component of G[Br out \ Rc]
for some PIS (T,0ut) w.rt. Re = Rev U {r}. Note that
any clique-tree sub-block whose tree is contained in 7" is
trivially propagation identical w.r.t. R N UteV(T’) x(t).

For any C' such that r € Ng(V/(C)), the claim follows
from Lemma 6 by setting 7' = 7"(") and Out = out’ N
N7 (T'")). Now, consider a subinstance C' arising from the
case where € N (V(C')). We now proceed in two steps.
1. We show that that V'(C') is contained in some By out \ R
for some PIS (T, Out). To this end, let T be an inclusion-
minimal connected subtree T of 7" such that V(C) C
UteV(Tc) x(t). Lett € Ny (T¢) be a node with minimum
distr(t, T(T)).

IfVs, s’ € V(Te) x(s)Nx(t) = x(s")Nx(t) and V(C)N
x(t) = 0, weset (T,0ut) to (T, (Out’ NNy (Te))U{t}).
Obviously with this choice V(C') € By o, and it remains
to show that (7', Out) indeed is propagation identical. This
is the case, because for s, s € V(T¢) C V(T") it holds that
for any ¢’ € out’ that x(s) N x(t') = x(s") N x ('), and by
assumptionont, Vs, s € V(T¢) x(s)Nx(t) = x(s")Nx(1).

Otherwise, we proceed iteratively by extending T
by ¢, considering the next ¢ € Ny (T¢) minimising
dist(t, 7)) for the updated T, and checking the con-
dition again. It can be shown that this results in a node ¢

10140

and subtree T satisfying Vs, s’ € V(T¢) x(s) N x(t) =
x(s") N x(t), and we can proceed as per the previous case.

2. We conclude the proof by showing that no edge in
G[Brout \ Rc] for these By oy is directed during Root-
Picking in the branch of root choices that led to C'. This suf-
fices as C' is, as a subinstance of RootPicking, a connected
component that arises after removing the edges directed due
to previous root choices. 0

The next lemma provides the core statement we need to
argue the desired runtime bounds for AnonMAO. In essence,
it shows that every subinstance called by AnonMAO will
occur as the body of a clique-tree sub-block.

Lemma 8. Consider a subinstance C' that is recursed on
during the RootPicking algorithm applied to G. There is a
cligue-tree sub-block (T, out) such that C' = G[Br,oue \
Rc.

Proof Sketch. Due to Lemma 7, there is a PIS (7", 0ut’)
wrt. Rc such that C' is a connected component of
G[B717 out \ Rc]. As C'is connected in G and a subgraph of
G[B1/ out’] we can find an inclusion-maximal subtree T of
T" such that V(C) € Usey (1) X(t) and forall ¢ € V(T¢),
x(t) N V(C) # 0. By using the propagation identicality
of (T”,0ut’) (which ensures that vertices in T¢ intersect
with Out’ in the same way as 7”), it can be shown that set-
ting out = (out’ N Ny (V(T¢))) U Ny (V(1¢)) yields
C = Bry, out, concluding the proof.]

Picked Roots. As we have seen in the preceding subsec-
tion, we can identify subinstances of the RootPicking algo-
rithm by the bodies of clique-tree sub-blocks, with the caveat
that we lose information about the precise identities of the
picked roots. In this subsection we take care of this issue by
fixing choices for the roots that can be seen as locally iso-
morphic to whichever roots were actually chosen by Root-
Picking.

Assume that the vertices of G are ordered in an ar-
bitrary way—whenever we speak about vertices being
‘smaller’ or ‘minimal’, we understand these terms in
regard to this ordering. A clique-tree sub-block (7, 0ut)
together with a number d € {0,...,|Brou|} induces
a subgraph G(T,0ut,d) of G in the following way.
First, we let D(T,0ut,d) = {v1,...,v4 € Brouw |
v; i minimal dominating for By oy« {v1,...,01}
(D(T,out,d) will serve as our locally isomor-
phic choice for the previously picked roots). Then
we set V(T,0ut,d) Brow: \ D(T,0ut,d) and
G(T,out,d) = G[V(T,out,d)].

Lemma 9. Consider a subinstance C' that is recursed on
during the RootPicking algorithm applied to G. There is a
clique-tree sub-block (T, Out) and a number d such that C
is isomorphic to G(T, out, d).

Proof Sketch. By Lemma 8, there is a clique-tree sub-block
(T, 0ut) such that C' = G[Brout \ Re]. Let £ = | By o N
Rc|. It is not difficult to show that G[Bp oue \ Re] is isom-
porphic to G(T, Out, £), and the lemma follows.

—— AnonMAO ---- Heand Yu 2016
—— Root Picking Dynamic Programming ----- Dynamic Programming in Tree Decomposition

10 min
n =32 / n =064 /

1 min A

10 s

—_
©»
!

0.1 s

Running time

10 ms

1 ms

0.1 ms 1

10 min

1 min 4

10 s

—_
©»
1

0.1 s

Running time

10 ms 1

1 ms

0.1 ms 1

10 min

1 min 1

10 s

—_
%
!

0.1 s

Running time

10 ms

1 ms - 1

0.1 ms 1 1

2 3 4 6 8 12 16 24 32 2 3 4 6 8 12 16 24 32
Density r Density r

Figure 1: The running times of the algorithms for different numbers of vertices n as functions of the density parameter 7. Both
axes are logarithmic. The results from 50 repetitions with different inputs for each algorithm, n and r are summarised using
a box plot: the box shows the range between the first and third quartile, and the whiskers show the minimum and maximum
running times.

10141

Relating G(T,0ut,d) and AnonMAOQO. With all the
components in place, now it just remains to formalise the
link between the records G(T',0ut,d) introduced in this
section and the instances considered by AnonMAO.

Lemma 10. Let (S, d) be such that there is a subinstance C
of RootPicking applied to G with d dominating vertices and
G|[S] as core. Then there is a clique-tree sub-block (T, Out)
and some d' € {0,...,|Brout|} such that G(T, out,d’)
has d dominating vertices and G[S] as core.

Proof. By Lemma 9, there is a clique-tree sub-block
(T,out) and some d’' € {0,...,|Brou|} such that C is
isomorphic to G(T, out, d’).

It is easy to see that, because G(T', Out, d) and C are iso-
morphic, they have the same number of dominating vertices.
This means G (7', Out, d’) has d dominating vertices.

By choice of (T,0ut) in the proof of Lemma 9, we
can also assume that C G[Brow \ Rc]. Hence
V(C) = Brou: \ Re. By definition V(G(T, 0ut,d’)) =
V(T,0ut,d) = Brou: \D(T,0Out,d"). We show that any
v e V(C)\V(G(T,0out,d)) is dominating in C, and con-
versely any v € V(G(T, out,d")) \ V(C) is dominating in
V(G(T,0ut,d’)) which implies the lemma:

Letv € V(C)\ V(G(T,out,d')) = (Brouw \ Rc)N
D(T,out,d’). By definition of D(T,0ut,d’), v — w is
an edge in V(C) for every w € V(C) N (Brouw \
D(T,out,d")) =V(C)\ D(T,0ut,d). Forw € V(C) N
D(T,out,d’), either v was included into D(T,Out,d’)
with a smaller index than w, in which case v dominates w,
or vice versa. In any case v is dominating in C.

Conversely letv € V(G(T,0ut,d’))\V(C) = (Brout \
D(T,out,d"))NRc. By propagation identicity with respect
to Re N Uy () x(0), for s,s" € V(T), Rc N x(s)
Rc N x(s"). Thus for all t € V(T'), v € x(t) which implies
v is dominating in G(T, Out, d’). O

We can now present our main theoretical contribution.

Theorem 11. On graphs accompanied by a clique-tree such
that the tree has polynomially many, say p(|V(G)|), sub-
trees, AnonMAQO runs in polynomial time.

Proof. Let G be such a graph and (7, x) be such a clique-
tree of G. Lemma 10 and its proof provide a surjection
from the set of clique-tree sub-blocks and natural num-
bers bounded by the cardinality of their bodies to the set
of core-dominating vertex pairs for subinstances consid-
ered by AnonMAO. Thus AnonMao distinguishes at most
p(]V(G)])? - |V (G)] subinstances using Observation 5. [

Since interval graphs can be characterised as chordal
graphs whose clique-tree is a path (Ibarra 2009; Fulkerson
and Gross 1965), we obtain the following corollary.

Corollary 12. AnonMAO runs in polynomial time on inter-
val graphs.

10142

5 On Clique-Trees with Few Subtrees

We consider now briefly the graph class for which we have
shown #MAO to be polynomial time solvable.

One can reformulate the condition of a clique-tree having
a polynomially bounded number of subtrees as a more local
condition on the clique-tree. Among others, this allows us
to check in linear time whether a clique-tree has a desired
polynomial bound on the number of subtrees or not.

For a tree 7', let ht denote the number of vertices with
degree at least three, which we refer to as high-degree ver-
tices, Ar denote the maximum degree of a vertex in 7', and
st denote the number of subtrees of 7.

Observation 13. For any tree T, sy < |V (T) | "Ar,

Lemma 14. For any sequence of (hyp)nen and (An)nen
such that there is a sequence of trees (T,)n such
that |V (T,,)| n, hr, hn and Ar,
there is a sequence of such (T,)nen and st

hn'(An_2)
max{2An,2hn,(L J+1) }

From this, we can show:
Corollary 15. For a general class of trees T, each st can
be polynomially (in |V (T')|) upper-bounded for all T € ¥,
if and only if hr, Ar < ¢ for a constant c for all T € .

n»

>

n—h,—2
hn'(An_Q)

Proof Sketch. The condition is clearly sufficient by Obser-
vation 13. It is also necessary: By Lemma 14, ¥ may con-
tain a series of trees 7" with arbitrarily large |V (7T')| such that

sp > maX{QAT72hT, ({MJ n 1)hT~(AT2)}-
O

hr-(Ar—2)

This statement shows that we can express our requirement
for polynomial-time solvability (i.e., that the clique-trees
have at most polynomially many subtrees) equivalently by
requiring that the clique-trees have at most a constant num-
ber of high-degree vertices and maximum vertex degree. We
remark that one can also show a similar relationship to the
number of leaves in the clique-tree.

6 Experimental Results

We compared the practical performance of the AnonMAO
algorithm to the state-of-the-art algorithms, notably:

e RootPicking Dynamic Programming: The root picking al-
gorithm due to He, Jia, and Yu (2015) with the dynamic

programming speedup (Talvitie and Koivisto 2019).

He and Yu 2016: The algorithm by He and Yu (2016)
based on recursively computing polynomials P(m) for
core graphs such that P(m)m! is the number of MAOs
when we add m dominating vertices.

Dynamic Programming in Tree Decomposition: The algo-
rithm by Talvitie and Koivisto (2019) based on dynamic
programming on the clique-tree with time-complexity in
O(2%k!k?n) parameterised by the treewidth k.

We implemented”> AnonMAO using C++, and for the other
algorithms, we used the C++ implementations of Talvitie

2 github.com/ttalvitie/efficient-markov-equivalent-dag-counting

and Koivisto (2019). All the implementations use only one
thread of execution and compute the result exactly.

We use the experimental setup formulated for this prob-
lem by He, Jia, and Yu (2015), in which we run the algo-
rithms on randomly generated UCCGs instances with given
number of vertices n and given density parameter r. The in-
stances are generated by first generating a tree of n vertices
by successively adding each vertex as a neighbour to a ran-
domly chosen previously added vertex, and then, as long as
the graph has less than rn edges, repeatedly choosing a ran-
dom pair of elements and adding an edge between them if
the resulting graph is chordal.

For each number of vertices 32 < n < 1024 and density
parameter 2 < r < 32, we generated 50 UCCG instances,
and ran each algorithm for each instance. The time limit was
set to 10 minutes and the memory limit to 32 gigabytes. The
results are shown in Figure 1. From the results we see that
AnonMAO can handle much denser instances than the other
algorithms, and it typically is the fastest algorithm except in
very sparse cases, where the tree decomposition-based dy-
namic programming algorithm is faster.

7 Conclusion

We presented AnonMAO as a new exact algorithm for
#MAO. AnonMAQO is based on a simple dynamic program-
ming enhancement of RootPicking in which dominating
vertices are anonymised. Our empirical analysis signifies
the superiority of AnonMAO compared to previously im-
plemented exact approaches in terms of time performance
on most instances. Our theoretical analysis even shows
polynomial-time complexity on a large class of graphs.
However one can construct a series of instances (Gy,)nen,
for which AnonMAO recurses on an exponential number of
subinstances:

o V(G,) =A{v1,...,0};

e forl <i< j<n/2 v;—wvjisanedgein G;and

o forn/2+1<i<mnandje{l,...,n/2}\ {i —n/2},

v; —v; isan edge in G.

The (for these examples unique) clique-tree of each G, is
given by 7,, where each 7, consists of n/2 4+ 1 nodes,
t,t1,...ty)o such that t —¢; for 1 < i < n/2is an edge
in 7,,. Note that each T,, has O(2%) subtrees. One can show
that for G,, AnonMAO considers O(2%) instances.

The above example shows that the complexity of #MAO
on general UCCGs remains an interesting open problem. We
believe our analysis of AnonMAO may also provide useful
structural insights for investigating the problem on general
UCCGs, primarily in the direction of tractability.

Acknowledgments. Robert Ganian and Thekla Hamm ac-
knowledge support from the Austrian Science Fund (FWEF,
Project P31336: NFPC). Thekla Hamm is co-funded by
FWEF project W1255-N23.

References

Andersson, S. A.; Madigan, D.; and Perlman, M. D. 1997. A char-
acterization of markov equivalence classes for acyclic digraphs.
Ann. Statist. 25(2):505-541.

10143

Bernstein, M., and Tetali, P. 2017. On sampling graphical Markov
models. ArXiv e-prints 1705.09717.

Blair, J. R. S., and Peyton, B. 1993. An introduction to chordal
graphs and clique trees. IMA Volumes in Mathematics and its Ap-
plications 56:1-29.

Brandstédt, A.; Le, V. B.; and Spinrad, J. P. 1999. Graph Classes:
A Survey. Society for Industrial and Applied Mathematics.

Fulkerson, D. R., and Gross, O. A. 1965. Incidence matrices and
interval graphs. Pacific J. Math. 15(3):835-855.

Ghassami, A.; Salehkaleybar, S.; Kiyavash, N.; and Bareinboim,
E. 2018. Budgeted experiment design for causal structure learn-
ing. In Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmdissan, Stockholm, Swe-
den, July 10-15, 2018, 1719-1728.

Ghassami, A.; Salehkaleybar, S.; Kiyavash, N.; and Zhang, K.
2019. Counting and sampling from markov equivalent dags us-
ing clique trees. In The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019., 3664-3671.

Gillispie, S. B., and Perlman, M. D. 2002. The size distribution for
markov equivalence classes of acyclic digraph models. Artif. Intell.
141(1/2):137-155.

He, Y., and Yu, B. 2016. Formulas for counting the sizes of
Markov equivalence classes of directed acyclic graphs. ArXiv e-
prints 1610.07921.

He, Y.; Jia, J.; and Yu, B. 2015. Counting and exploring sizes of
Markov equivalence classes of directed acyclic graphs. Journal of
Machine Learning Research 16:2589-2609.

Ibarra, L. 2009. The clique-separator graph for chordal graphs.
Discrete Applied Mathematics 157(8):1737-1749.

Maathuis, M. H.; Kalisch, M.; and Biihlmann, P. 2009. Estimat-
ing high-dimensional intervention effects from observational data.
Ann. Statist. 37(6A):3133-3164.

Meek, C. 1995. Causal inference and causal explanation with back-
ground knowledge. In Proceedings of the 11th Conference on Un-
certainty in Artificial Intelligence (UAI), 403—410.

Radhakrishnan, A.; Solus, L.; and Uhler, C. 2017. Counting
markov equivalence classes by number of immoralities. In Pro-
ceedings of the Thirty-Third Conference on Uncertainty in Artifi-
cial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017.

Radhakrishnan, A.; Solus, L.; and Uhler, C. 2018. Counting
markov equivalence classes for DAG models on trees. Discrete
Applied Mathematics 244:170-185.

Talvitie, T., and Koivisto, M. 2019. Counting and sampling markov
equivalent directed acyclic graphs. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019., 7984-7991.

Verma, T., and Pearl, J. 1990. Equivalence and synthesis of causal
models. In Proceedings of the 6th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI), 255-270.

Vose, M. D. 1991. A linear algorithm for generating random num-
bers with a given distribution. /EEE Trans. Software Eng. 17:972—
975.

Walker, A. J. 1977. An efficient method for generating discrete
random variables with general distributions. ACM Trans. Math.
Softw. 3(3):253-256.

