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Abstract 

Skeleton Learning (SL) is the task for learning an undi-
rected graph from the input data that captures their depend-
ency relations. SL plays a pivotal role in causal learning and 
has attracted growing attention in the research community 
lately. Due to the high time complexity, anytime SL has 
emerged which learns a skeleton incrementally and im-
proves it overtime. In this paper, we first propose and advo-
cate the reliability requirement for anytime SL to be practi-
cally useful. Reliability requires the intermediately learned 
skeleton to have precision and persistency. We also present 
REAL, a novel Reliable and Efficient Anytime Learning al-
gorithm of skeleton. Specifically, we point out that the 
commonly existing Functional Dependency (FD) among 
variables could make the learned skeleton violate faithful-
ness assumption, thus we propose a theory to resolve such 
incompatibility. Based on this, REAL conducts SL on a re-
duced set of variables with guaranteed correctness thus dras-
tically improves efficiency. Furthermore, it employs a novel 
edge-insertion and best-first strategy in anytime fashion for 
skeleton growing to achieve high reliability and efficiency. 
We prove that the skeleton learned by REAL converges to 
the correct skeleton under standard assumptions. Thorough 
experiments were conducted on both benchmark and real-
world datasets demonstrate that REAL significantly outper-
forms the other state-of-the-art algorithms. 

 Introduction   

Skeleton Learning (SL) plays a pivotal role in causal learn-

ing and knowledge discovery and has attracted growing 

attention in the research community lately (Shanmugam et. 

al. 2015; Peters, Janzing and Schölkopf 2017, Bühlmann 

and Meinshausen 2016). It is the task for learning an undi-

rected graph from the input data that captures the varia-

bles’ dependency relations. Under causal sufficiency as-

sumption (i.e., the set of observed variables 𝒱 include all 

the common causes of pairs in 𝒱), each edge A–B in a 

skeleton has causal semantic: there exists direct cause-
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effect relationship between A and B but the direction is 

unknown. Thus for causal learning, SL is the primary step 

for performing interventions over directly linked variables 

in skeleton to discover cause effects (Kocaoglu, Dimakis 

and Vishwanath 2017; Lindgren et. al. 2018). In addition, 

SL has great potential in knowledge discovery (Chen et al., 

2012). For example, an engineer tries to diagnose the caus-

es of service degradation and how its impact propagates. 

 SL has a high computational complexity (Chickering 

1996). The cost of waiting till the final solution is often 

unacceptable for practical tasks that require decisions to be 

made within given time budget, e.g., 30 minutes for inves-

tigating a cloud service degradation (Lou et al., 2017). On 

the other hand, a partially learned skeleton can also provide 

important clues for obtaining local causal relations (Pearl 

2009) or for dependency analysis (Daly et al., 2006). This 

motivates the development of anytime SL techniques to 

incrementally learn a skeleton and improve it over time. 

 Two challenges need to be addressed to make anytime 

SL practically useful. One is reliability and the other is 

efficiency. The reliability challenge entails two require-

ments – precision and persistency. Precision means that the 

partially learned skeleton S(𝑡) at any time 𝑡 should contain 

only trustable edges that correctly encode the dependencies 

between variables. Persistency means that the skeleton 

𝑆(𝑡 + 1) updated at time 𝑡 + 1 should remove as few as 

possible edges from previously learned skeleton 𝑆(𝑡). This 

enables users to reuse their analysis models obtained from 

the previous step over newly added edges rather than start 

from scratch. To the best of our knowledge, the reliability 

issue was not addressed in the existing work.  

 Another major source of complication for SL stems from 

the inter-variable Functional Dependency (Vardi 1987) in 

real-world data. For FD (i.e., short for FD relationship) 

between two variables, the value of one variable can be 

fully determined by the other. For instance, Country de-

termines Continent, or Date determines Year. Using terms 

from relational database domain, FDs typically exist be-

tween the primary key and other non-key variables within 

a table. Thus, FD is prevalent in tabular datasets composed 

by joining multiple tables. We notice that certain FDs 
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could make the learned skeleton violate faithfulness as-

sumption. Faithfulness (Pearl, 2009) is an important as-

sumption that has been widely adopted in many independ-

ence-based approaches for BNSL (Spirtes et. al. 2001; 

Tsamardinos, Brown and Aliferis 2006). In our problem, to 

deal with such incompatibility, we suggest a weaker as-

sumption called harmony (i.e., the data distribution should 

satisfy Global Markov Property with respect to the learned 

graph G and G should be minimum) instead of faithfulness 

for SL, thus a theory for harmonious SL must be devel-

oped. 

 In this paper, we present REAL, a novel Reliable and 

Efficient Anytime skeleton Learning algorithm to achieve 

high reliability and high efficiency. Given FDs as input, we 

first provide a theory applied to FDs to create an FD in-

duced graph 𝐺𝐹𝐷 , and identify a reduced set of variables 

for subsequent skeleton learning algorithm. We prove that 

the learned skeleton following this way is guaranteed to be 

harmonious, thus both reliability and efficiency are signifi-

cantly improved. In contrary, existing SL algorithms do not 

take FD into consideration, which is more time consuming 

and is also prone to generate spurious edges in the learned 

skeleton. 

 To further achieve high reliability, REAL exploits a bot-

tom-up skeleton growing strategy for anytime SL. Specifi-

cally, REAL starts from an empty graph, and incrementally 

adds edges into the skeleton by a robust local evaluation 

procedure called RobustPCFinder. RobustPCFinder aims 

to find candidates of neighbors for each target variable T 

with low false positives. Furthermore, due to the property 

of RobustPCFinder, the growing of local neighbors for 

each variable is irrelevant to the order of variables priori-

tized, we thus propose a best-first search strategy to effec-

tively utilize the time budget by selecting variable with 

lowest overhead (i.e., time cost for local evaluation) first. 

When timeout or user interrupts, skeleton growing is 

stopped, and a lightweight post-processing is conducted to 

further remove false positives. In summary, we have made 

the following contributions. 

1. To the best of our knowledge, we are the first to propose 

reliability (i.e., precision and persistency) as an essential 

requirement for building anytime SL algorithms to be prac-

tically useful. 

2. We provide a theory to resolve incompatibility between 

FD and faithfulness, which significantly improves the reli-

ability and efficiency of the skeleton to be learned for da-

tasets with FDs. 

3. We propose a novel anytime skeleton growing algorithm 

by edge-insertion and best-first strategy to achieve high 

reliability and efficiency. We prove that the skeleton 

learned by REAL converges to the correct skeleton under 

standard assumptions. 

4. We conduct thorough evaluations on benchmark and 

real-world datasets to demonstrate that REAL significantly 

outperforms the other state-of-the-art algorithms. 

Approach 

Preliminaries 

A dataset D consists of 𝑁  records and 𝑑  categorical col-

umns, which represents 𝑁  instances drawn i.i.d. from 𝑑 

discrete variables 𝒱 = {𝑉1, 𝑉2, ⋯ , 𝑉𝑑} by a joint probability 

distribution 𝑃𝒱 . Denote the cardinality of 𝑉𝑖  (i.e., number 

of distinct values in the i-th column of D) as 𝑐𝑖, and 𝐶 =
{𝑐1, 𝑐2, ⋯ , 𝑐𝑑} is the cardinality set. To avoid degeneracy, 

we restrict 𝑐𝑖 > 1, ∀𝑖. 
Markov Factorization Property. Given a distribution 𝑃𝒱  

and a Directed Acyclic Graph (DAG) 𝐺, 𝑃𝒱  is said to satis-

fy Markov factorization property or Markovian (with re-

spect) to 𝐺  if 𝑃𝒱 ∶= 𝑃(𝑉1, 𝑉2, ⋯ , 𝑉𝑑) = ∏ 𝑃(𝑉𝑖|𝑝𝑎𝑖
𝐺)𝑑

𝑖=1 , 

where 𝑝𝑎𝑖
𝐺  is the parent set of 𝑉𝑖 in 𝐺.  

 Markov factorization property is the basis of graphical 

models, it encodes conditional independences in the distri-

bution that we can exploit for learning graph structure.  

Global Markov Property (GMP). A distribution 𝑃𝒱  is 

said to satisfy Global Markov Property or GMP (with re-

spect) to a DAG G if 𝑋 ⊥𝐺 𝑌|𝑍 ⇒ 𝑋 ⊥ 𝑌|𝑍.  Here ⊥𝐺  de-

notes d-separation, and ⊥ denotes statistical independence.  

 GMP indicates that any d-separation in graph G implies 

conditional independence in distribution 𝑃𝒱 . GMP is 

equivalent to Markov factorization property (Lauritzen 

1996). 

Minimality. A distribution 𝑃𝒱  satisfies minimality (with 

respect) to DAG G if it is Markovian to G, but not proper 

to any subgraph of G. 

 Minimality coincides with Occam’s Razor principle 

(Pearl 2009): when distribution 𝑃𝒱  is Markovian to both 

two graphs G and G’, we prefer to use the simpler one to 

interpret the data. In fact, minimality is a necessary con-

straint for DAG learning. Without minimality constraint, 

we can always construct a trivial graph 𝐺′  by setting 

𝑝𝑎𝑖
𝐺′ = {𝑉1, … 𝑉𝑖−1}, so that 𝑃𝒱  is always Markovian to 𝐺′ 

because 𝑃(𝑉1, 𝑉2,⋯ , 𝑉𝑑) ≡ ∏ 𝑃(𝑉𝑖|𝑉1~𝑉𝑖−1)
𝑑
𝑖=1 =

∏ 𝑃(𝑉𝑖|𝑝𝑎𝑖
𝐺′)𝑑

𝑖=1 . 

Faithfulness. a distribution 𝑃𝒱  is faithful (with respect) to 

a DAG G if 𝑋 ⊥ 𝑌|𝑍 ⇔ 𝑋 ⊥𝐺 𝑌|𝑍. 

 Faithfulness implies minimality (Peters, Janzing and 

Schölkopf 2017). In practice faithfulness is a strong as-

sumption that could be violated in different ways. In our 

problem, faithfulness can be violated when data contains 

FDs. 
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Approach Overview 

As depicted in Figure 1, the raw data is first fed into the 

module called FD Solver, which outputs a simplified FD 

graph 𝐺𝐹𝐷
′  and a subset of variables 𝒱′ for skeleton learn-

ing module. FD Solver first identifies FDs and then re-

solves the incompatibility between FDs and faithfulness 

assumption by outputting 𝐺𝐹𝐷
′  and 𝒱′. 𝒱′ is ensured to con-

tain no FDs. Then SL is conducted on 𝒱′ by incremental 

skeleton-growing which is designed in an anytime fashion 

that whenever time is expired (i.e., either by user interrup-

tion or timeout), the partially learned skeleton is output to 

the post-processing module. Post-processing module fur-

ther removes false-positives and then return the best-so-far 

skeleton to user. FD Solver runs fast with time complexity 

𝑂(𝑁𝑑2) . Skeleton growing module is time consuming, 

thus it is designed in an incremental manner. Starting from 

an empty graph, it iteratively selects a variable and tries to 

insert an edge on it. The variable selection is performed in 

a best-first way, so that the time budget can be effectively 

utilized. Post-processing is lightweight. Below we illustrate 

the details of each part. 

FD Solver 

Definition 1. A functional dependency 𝑋
𝐹𝐷

→𝑌  means that 

the value of Y is determined by the value of X. The specific 

mapping is denoted as 𝑌 = 𝑓(𝑋) , where Y is a discrete 

variable and X is a set of discrete variables. 

 FD (Vardi 1987) typically exists between the primary 

key and other non-key variables within a table. Thus, FD is 

prevalent in tabular datasets composed by joining multiple 

tables, which reflects consistent or deterministic inter-

variable relationship, such as Country
𝐹𝐷
→  Continent. In our 

problem, we restrict FD 𝑋
𝐹𝐷

→𝑌 to the case where |𝑋| = 1 

(i.e., X is a single variable), because it is the most common 

FD relationship (i.e., primary key is a single column) and 

detecting such kind of FDs is lightweight. FDs with |𝑋| >
1 are also useful for SL, but they are rarer and time cost for 

detecting such cases is exponential to |𝑋|, which is unsuit-

able for our problem. 

 Intuitively, given 𝑋
𝐹𝐷

→ 𝑌 , 𝑋  and 𝑌  naturally exhibit 

strong dependency. Furthermore, conditioning on 𝑋 would 

screen-off 𝑌 with other variables since 𝑌 becomes single-

valued. Thus FD has inherent connection to SL. These in-

tuitions can be described in the following two lemmas 

(NOTE: considering page limited, ALL proofs for lemmas 

and theorems are available at our website1): 

Lemma 1. If 𝑋
𝐹𝐷

→ 𝑌, then 𝑌 ∥ 𝑋; for any other variable set 

𝑍 , 𝑍 ⊥ 𝑌|𝑋 . Here symbol ∥  denotes dependent (i.e., two 

variables are not statistically independent). ∎ 

Lemma 2. If 𝑋
𝐹𝐷

→ 𝑌 and 𝑍 ⊥ 𝑋|𝑊, then 𝑍 ⊥ 𝑌|𝑊. Where 

𝑍 and 𝑊 are disjoint sets of variables other than 𝑋 and 𝑌. ∎  
 

FDs have the following properties: 

Transitivity: if 𝑋
𝐹𝐷

→ 𝑌 and 𝑌
𝐹𝐷

→ 𝑍, then 𝑋
𝐹𝐷

→ 𝑍 

Equivalence: If 𝑋
𝐹𝐷

→𝑌  and 𝑌
𝐹𝐷

→𝑋 , then 𝑋  is one-to-one 

correspondence of 𝑌, denoted as 𝑋 ↔ 𝑌. 

 FD equivalent variables are indistinguishable for skele-

ton learning tasks. If a dataset contains FD equivalent 

groups, we will only keep one variable from each FD 

equivalent group by pre-processing. We assume no varia-

bles are FD equivalent in subsequent discussion. 

Definition 2. (FD induced graph). Given a dataset D with n 

variables 𝑋1~𝑋𝑛 , an FD induced graph 𝐺𝐹𝐷  is a directed 

graph with n variables 𝑋1~𝑋𝑛, by assigning a directed edge 

from 𝑋𝑖 to 𝑋𝑗 whenever 𝑋𝑖
𝐹𝐷

→ 𝑋𝑗 in D. 

 𝐺𝐹𝐷 is a set of connected components, where each com-

ponent is a DAG. This is ensured since we have eliminated 

FD equivalent variables at preprocessing stage. 

Violation of Faithfulness Induced by FDs 

When a dataset contains FDs, the faithfulness assumption 

can be violated: Figure 2 shows a 𝐺𝐹𝐷 of 3 variables X, Y 

and Z. According to lemma 1, 𝑃𝒱  implies two conditional 

independencies: 𝑍 ⊥ 𝑌|𝑋  and 𝑍 ⊥ 𝑋|𝑌 . If faithfulness as-

sumption is hold, then {𝑍 ⊥ 𝑌|𝑋;  𝑍 ⊥ 𝑋|𝑌} ⇒
{𝑍 ⊥𝐺 𝑌|𝑋;  𝑍 ⊥𝐺 𝑋|𝑌} ⇒{no edge between Z and Y; no 

edge between Z and X}⇒ 𝑍 ⊥𝐺 𝑌 ⇒ 𝑍 ⊥ 𝑌 ⇒  contradic-

tion: because 𝑌
𝐹𝐷

→ 𝑍 ⇒ 𝑌 ∥ 𝑍 by lemma 1. Therefore, if we 

take faithfulness assumption to deal with variables have 

FDs, we could fail to get a DAG that is Markovian to 𝑃𝒱 .  

Skeleton Learning with FDs  

As illustrated above, the issue is due to faithfulness can be 

invalid when data contains FDs. On the other hand, GMP 

and minimality are weaker assumptions without such issue. 

We thus define harmonious: 

Definition 3 (harmonious). A DAG G is said to be harmo-

nious with respect to a distribution 𝑃𝒱  if 𝑃𝒱  satisfies both 

GMP and minimality to G. 

Now we formulate our graph structure learning as follows: 

                                                 
1 https://www.microsoft.com/en-us/research/project/real/ 

Best-First 
Skeleton Growing

Training Data

Resolving 
Incompatibility

(FD Solver)

Incremental

OutputTime 
expired?

No

Yes
Subset of 
variables

Simplified FD graph 𝐺𝐹𝐷
′

Post-Processing
• Pruning
• AND-Rule

Figure 1. Overview of REAL's workflow 

X Y ZFD FD

FD

Figure 2. Violation of faithfulness by simple FD structure 
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FD-DAG Problem (DAG Learning with FDs). Given a 

dataset D, corresponding distribution 𝑃𝒱 , and the FD in-

duced graph 𝐺𝐹𝐷 of D, given that faithfulness assumption 

is only valid for variables containing no FDs. Find a DAG 

G such that G is harmonious to 𝑃𝒱 . 

 Solving FD-DAG problem also solves the problem of 

skeleton learning since skeleton is the undirected version 

of G. Now we propose a theory to solve FD-DAG problem. 

Solving FD-DAG Problem 

We analyze how to obtain edges in the learned DAG with-

out conducting learning when data contains FDs. Our anal-

ysis starts from two typical structures of 𝐺𝐹𝐷. 

Single-Root Structure 

 If 𝐺𝐹𝐷  has only one root variable (i.e., variable with no 

parents), we say 𝐺𝐹𝐷 is a single-root structure. An example 

is shown at left-hand side of Figure 3, where X is the single 

root variable. 

Theorem 1. If 𝐺𝐹𝐷  of variables {𝑋, 𝑍1, … , 𝑍𝑛} is a single-

root structure with root X, then a harmonious DAG G is a 

single-root structure with root X, all the other variables are 

directly linked from X, but no other edges exist in G. ∎ 

Single-Sink Structure 

 If 𝐺𝐹𝐷 of variables {𝑋1, … , 𝑋𝑛 , 𝑍} has only one sink varia-

ble Z (i.e., variable with  no children) and all the other var-

iables 𝑋𝑖  are root variables linked to Z, we say 𝐺𝐹𝐷  is a 

single-sink structure. An example is shown at left-hand 

side of Figure 4, where Z is the single sink variable. 

Lemma 3. Suppose 𝑋1 → 𝑋2  in a DAG G, and no more 

edges link 𝑋2 with other variables. If G is Markovian to a 

distribution 𝑃𝒱 , then 𝑋2 ⊥𝐺 𝑌|𝑈 ⇒ 𝑋1 ⊥𝐺 𝑌|𝑈, ∀𝑌 ∈
{𝑋3, …𝑋𝑛}, ∀𝑈 ⊂ {𝑋3, … 𝑋𝑛}, 𝑌 ∉ 𝑈.  ∎ 

Theorem 2. If 𝐺𝐹𝐷  of variables {𝑋1, … , 𝑋𝑛, 𝑍} is a single-

sink structure with sink Z, then a harmonious DAG G is 

union of two graphs 𝐺1 and 𝐺2, where 𝐺1 is a DAG learned 

by any sound and complete DAG-learn algorithm over 

{𝑋1, … , 𝑋𝑛}, and 𝐺2 is 𝑋1 → 𝑍.  ∎ 

 The right part of Figure 4 is an example of theorem 2. 

General Structure 

The analysis on single-root and single-sink structures sug-

gest two ways to simplify the FD-DAG problem in general 

case. In 𝐺𝐹𝐷, when a set of variables share a common root 

X (i.e., single-root structure), theorem 1 suggests these var-

iables are directly linked from X in the learned DAG G; 

When a variable Z can be determined by multiple roots 

(i.e., single-sink structure), theorem 2 suggests we can just 

pick an arbitrary root 𝑋1, links Z from 𝑋1, and disconnect Z 

to any other variables in the learned DAG G. Below we 

show these suggestions are indeed correct in general. We 

first define “simplified FD graph”: 

Definition 4 (simplified FD graph). In 𝐺𝐹𝐷  over 𝑛 + 𝑚 

variables, denote the root variables as {𝑋1, …𝑋𝑛}, and the 

other variables as {𝑍1, … , 𝑍𝑚}. A simplified FD graph 𝐺𝐹𝐷
′  

is a subgraph of 𝐺𝐹𝐷 that each 𝑍𝑖 only preserves one edge 

from one root that links to it, and removes all the other 

edges. Figure 5 shows an example.  

Theorem 3. In 𝐺𝐹𝐷  over variables {𝑋1, … , 𝑋𝑛 , 𝑍1, … , 𝑍𝑚}, 
denote the root variables as {𝑋1, … , 𝑋𝑛}, denote the simpli-

fied FD graph as 𝐺𝐹𝐷
′ . Then a harmonious DAG G is union 

of two graphs 𝐺1 and 𝐺𝐹𝐷
′ , where 𝐺1 is a DAG learned by 

any sound and complete DAG-learn algorithm over root 

variables {𝑋1, … , 𝑋𝑛}. ∎ 

Uniqueness 

According to theorem 2, when there are multiple roots 

share same sink in 𝐺𝐹𝐷 , the learned harmonious DAG is 

not unique. Below we show that when a variable Z has 

only one parent X in 𝐺𝐹𝐷, then the edge between X and Z 

exists in every harmonious DAG. 

Theorem 4 (Uniqueness). If a variable Z can only be func-

tionally determined by another variable X, then the edge 

from X to Z exists in every harmonious DAG G.  ∎ 

 The uniqueness property provides convenience for ex-

perimental evaluation. We use these unique edges to check 

if a skeleton-learn algorithm can identify them or not. 

Variables Reduction 

Theorem 3 shows that when data contains FDs, we can use 

a subset of variables for subsequent SL algorithm, without 

loss of correctness, thus reduce the computational cost. 

X

Z1 Z2 Z3

FD
FD FD

Z4
FD

FD

…

X

Z1 Z2 Z3 Z4
…

𝐺𝐹𝐷
Learned DAG

FD

Figure 3. Example of single-root structure 

X1 X2 Xn…

Z

X1

Z

{X2 ~ Xn}…

DAG G1 learned by {X1~Xn}

𝐺𝐹𝐷 Learned DAG

FD
FD FD

G2

Figure 4. Example of single-sink structure 

X1 X2

Z1

Xk
…

GFD: FD induced graph

Z2 Zm…

Xn
…

Z3

X1 X2

Z1

Xk
…

Z2
Zm…

Xn
…

Z3

G’FD: simplified FD graph

Z1 X1

Z2 X2

Zm Xk

Isolated root 
variables

DAG G1 learned by {X1~Xn}

…

Learned DAG

Figure 5. Example of general structure and simplified FD graph 
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Corollary 1. Given 𝐺𝐹𝐷, the set of variables used for sub-

sequent SL is the set of root variables in 𝐺𝐹𝐷, these varia-

bles do not have FDs with each other.  ∎ 

 It is worthy to mention that, FD aided SL generates 

more stable skeleton than flat approach, because CI (condi-

tional independence) tests based or score-based DAG-learn 

algorithm cannot guarantee to find correct FD edges (e.g., 

FD edges with uniqueness property), but FDs typically 

reflect stable and consistent inter-variable knowledge. 

Best-First Skeleton Learning 

REAL’s skeleton learning strategy is in a growing manner 

which starts from an empty graph and incrementally insert-

ing edges. The newly added edges should contain few false 

positives. To accommodate these considerations, REAL 

maintains a variable set 𝑅𝑎𝑤𝑃𝐶[𝑇] to store each variable 

𝑇’s raw PCs (i.e., set of parents and children before post-

processing). Once the PC growing for T is complete, 

𝑅𝑎𝑤𝑃𝐶[𝑇]  is pruned to get 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇] . The output 

𝑃𝐶[𝑇] is based on 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇] by applying AND-Rule 

to appropriate variable pairs.  

Adding an edge. Once a variable T is selected, 𝑅𝑎𝑤𝑃𝐶[𝑇] 
is grown by iteratively adding a new, most-likely PC can-

didate by calling RobustPCFinder (see left part of Figure 

6). A sub-procedure RobustCorr is used to measure the 

“likelihood” of a variable V to be a PC candidate of T 

(right part of Figure 6). If there exists independence be-

tween V and T by conditioning on a subset of current 

𝑅𝑎𝑤𝑃𝐶[𝑇], which indicates V cannot be a PC of T (an 

implication if we assume faithfulness), thus V is discarded 

(line 2~5 in RobustCorr); otherwise, RobustCorr returns 

the kth percentile among the collection of correlations be-

tween V and T by conditioning on all possible subsets of 

current PC as a measure of the “likelihood” (line 7).  Ro-

bustPCFinder picks the variable with highest likelihood 

and insert it into 𝑅𝑎𝑤𝑃𝐶[𝑇]. Practically, kth percentile is a 

robust statistic rather than Max/Mean which is more toler-

ant to the unstable CI tests when sample size goes smaller. 

In this way, the learned RawPC achieves high precision. 

Best-First Skeleton Growing. RobustPCFinder only takes 

variable T and its current RawPC[T] as input, thus its next 

picked variable 𝑉∗ is irrelevant to the status of PCs of oth-

er variables. In other words, how RawPC[T] grows is irrel-

evant to the order of variables prioritized for calling Ro-

bustPCFinder. Also note that, as the size of RawPC[T] 

becomes larger, adding a new PC to T is more time con-

suming. Therefore, we could dynamically prioritize the 

variables (i.e., arrange the tasks to call RobustPCFinder), 

to let the easier tasks be executed earlier. In this way, given 

a limited time budget, we could output as many edges as 

possible by using a best-first skeleton growing strategy. 

Below we show how to prioritize variables.  

Lemma 4. Denote 𝑁𝑢𝑝𝑝𝑒𝑟  as the upper bound of time 

complexity of procedure 

𝑅𝑜𝑏𝑢𝑠𝑡𝑃𝐶𝐹𝑖𝑛𝑑𝑒𝑟(𝑇, 𝑅𝑎𝑤𝑃𝐶[𝑇]),  then 𝑁𝑢𝑝𝑝𝑒𝑟 =
𝑁𝑅𝑎𝑤𝑃𝐶[𝑇]𝑐𝑇 ∑ 𝑐𝑗𝑗:𝑉𝑗≠𝑇,𝑉𝑗∉𝑅𝑎𝑤𝑃𝐶[𝑇]

 where 𝑁𝑅𝑎𝑤𝑃𝐶[𝑇] =
∏ (𝑐𝑙 + 1)𝑙:𝑉𝑙∈𝑅𝑎𝑤𝑃𝐶[𝑇]

. ∎ 

 Thus, time complexity of RobustPCFinder mainly de-

pends on cardinalities of T and its PC. 𝑁𝑢𝑝𝑝𝑒𝑟 can be com-

puted or updated incrementally and quickly. 

Definition 5 (priority). We define the priority of a variable 

as the reciprocal of its 𝑁𝑢𝑝𝑝𝑒𝑟: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 1/𝑁𝑢𝑝𝑝𝑒𝑟 

Best-first strategy. As shown in algorithm 1 (left part of 

Figure 7), a priority queue ℚ is maintained, with each item 

is a 〈𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦〉 pair and priority is calculated by 

definition 5. Iteratively, REAL picks the variable with 

highest priority, executes RobustPCFinder on it, and then 

update priority and put it back into the queue (line 2~6). 

Post Processing. When timeout, skeleton growing is 

stopped, and a relatively lightweight post-processing is 

conducted to further remove false positives. The post pro-

cessing consists of two parts, Prune for each variable (line 

12~15) and AND-Rule checking for those variable pairs 

whose RawPCs are both completely acquired (line 17~19). 

 The procedure Prune is shown on the right top of Figure 

7. It eliminates false positives in RawPC[T]: if any variable 

V in RawPC[T] is independent of T by conditioning on a 

subset of RawPC[T]\{V}, then V is not a PC of T. This is 

 

Algorithm 1 BestFirstGrowing 

Input: priority queue ℚ, variable set 𝒱 
1:  while ℚ is not empty and no interrupt do 
2:    𝑇 ← variable with highest priority in ℚ 
3:    𝑉 ← 𝑅𝑜𝑏𝑢𝑠𝑡𝑃𝐶𝐹𝑖𝑛𝑑𝑒𝑟(𝑇, 𝑅𝑎𝑤𝑃𝐶[𝑇]) 
4:    if 𝑉 is not null 
5:   𝑅𝑎𝑤𝑃𝐶[𝑇] ← 𝑅𝑎𝑤𝑃𝐶[𝑇] ∪ {𝑉}   
6:   𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦[𝑇] ← 𝑈𝑝𝑑𝑎𝑡𝑒(𝑇, 𝑅𝑎𝑤𝑃𝐶[𝑇]) 
7:    else 
8:   remove 𝑇 from ℚ 
9:   𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇] ← 𝑃𝑟𝑢𝑛𝑒(𝑇, 𝑅𝑎𝑤𝑃𝐶[𝑇]) 
10:   ℎ𝑎𝑠𝑃𝑟𝑢𝑛𝑒𝑑[𝑇] ← 𝑡𝑟𝑢𝑒 
11:  end while  
12:  foreach pair 〈𝑋, 𝑌〉 in 𝒱 do 
13:    if ℎ𝑎𝑠𝑃𝑟𝑢𝑛𝑒𝑑[𝑋] is true, 
ℎ𝑎𝑠𝑃𝑟𝑢𝑛𝑒𝑑[𝑌] is true 
14:    𝑃𝐶[𝑋], 𝑃𝐶[𝑌] ← 𝐴𝑁𝐷𝑅𝑢𝑙𝑒(𝑋, 𝑌) 
15:  if interrupt occurred    
16:    foreach 𝑋 in 𝒱 do 
17:     if ℎ𝑎𝑠𝑃𝑟𝑢𝑛𝑒𝑑[𝑋] is false  
18:     𝑃𝐶[𝑋] ← 𝑃𝑟𝑢𝑛𝑒(𝑋,𝑅𝑎𝑤𝑃𝐶[𝑋]) 
19:  return 𝑃𝐶 

Procedure Prune 

Input: 𝑇,𝑅𝑎𝑤𝑃𝐶[𝑇]  
1: 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇] ← 𝑅𝑎𝑤𝑃𝐶[𝑇]  
2:  foreach 𝑋 in 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇]    
3:  𝑂𝑡ℎ𝑒𝑟 ← 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇]\{𝑋} 
   
4:  if 𝑅𝑜𝑏𝑢𝑠𝑡𝐶𝑜𝑟𝑟(𝑋, 𝑇, 𝑂𝑡ℎ𝑒𝑟) is 
null 
5:   𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇] ← 𝑂𝑡ℎ𝑒𝑟 
6:  return 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑇] 

Procedure ANDRule 

Input: 𝑋, 𝑌  
1: 𝑃𝐶[𝑋] ← 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑋], 𝑃𝐶[𝑌] ←
𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑌]  
2: if 𝑋 ∉ 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑌] 
3:  𝑃𝐶[𝑋] ← 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑋]\{𝑌}   
4: if 𝑌 ∉ 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑋] 
5:  𝑃𝐶[𝑌] ← 𝑃𝑟𝑢𝑛𝑒𝑑𝑃𝐶[𝑌]\{𝑋}   
6:  return 𝑃𝐶[𝑋], 𝑃𝐶[𝑌] 
 

Figure 7. Algorithm for Best-First Skeleton Learning 

 

Sub-Procedure RobustCorr 

Input: 𝑇, and its current 𝑅𝑎𝑤𝑃𝐶, 
𝑉 
1: 𝑅 ← ∅ 
2: foreach 𝑆 ⊆ 𝑅𝑎𝑤𝑃𝐶 do   
3:  𝑟 ← 𝐶𝑜𝑟𝑟(𝑉, 𝑇|𝑆) 
4:  if 𝑟 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
5:   return null 
6:  𝑅 ← 𝑅 ∪ {𝑟} 
7: return kth percentile of 𝑅 
 

 

Procedure RobustPCFinder 

Input: 𝑇, and its 𝑅𝑎𝑤𝑃𝐶 

Output: A new variable most likely to be a 

𝑃𝐶 of 𝑇 

1: 𝒱 ′ = 𝒱\{𝑅𝑎𝑤𝑃𝐶 ∪ {𝑇}}   

2: 𝑟∗ ← max𝑉∈𝒱 ′ 𝑅𝑜𝑏𝑢𝑠𝑡𝐶𝑜𝑟𝑟(𝑉, 𝑇, 𝑅𝑎𝑤𝑃𝐶) 
3: if 𝑟∗ is null 

4:  return null 

5: 𝑉∗ ←
argmax𝑉∈𝒱 ′ 𝑅𝑜𝑏𝑢𝑠𝑡𝐶𝑜𝑟𝑟(𝑉, 𝑇, 𝑅𝑎𝑤𝑃𝐶) 
6: return {𝑉∗, 𝑟∗} 
 

 

Figure 6. Procedure of RobustPCFinder 
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valid even when the RawPC[T] has not been fully acquired 

due to timeout. In summary, the variables eliminated by 

Prune are guaranteed to be false positives, thus the preci-

sion is further improved. Note that pruning will also be 

conducted during skeleton growing once all the raw PCs 

for a specific variable are acquired (line 8~10), to reduce 

the workload on post-processing.  AND-Rule is a standard 

rule applied by many independence-based approach (Mar-

garitis & Thrun, 2000; Tsamardinos, Brown and Aliferis 

2006), which is a symmetry constraint, saying that if X has 

an edge to T in skeleton G, then X must be in the PC of T 

and T must be in the PC of X. AND-Rule is only applicable 

when the RawPC[X] and RawPC[T] are completely ac-

quired and after pruning is conducted (line 17~19). Other-

wise, some true positives would be wrongly eliminated. 

 The post-processing is lightweight thus REAL responses 

to user interruption quickly. Although procedure Prune 

conducts CI tests among subsets of RawPC[T], many of the 

CI tests can be saved by using cache cumulated by calling 

RobustPCFinder. The size of RawPC[T] is closer to the 

size of true PC set due to good performance of Ro-

bustPCFinder.  

Lemma 5 (soundness and completeness of skeleton learn-

ing). Under faithfulness, correct CI tests, and infinite data 

assumptions, given sufficient time or without user interrup-

tion, BestFirstGrowing identifies correct skeleton.  ∎ 

REAL. Algorithm 2 in Figure 8 shows the overall proce-

dure of REAL. REAL first resolves incompatibility be-

tween faithfulness and FDs (line 1~3), and then BestFirst-

Growing is conducted on a subset of variables 𝒱′  (line 

4~6). The final output skeleton is the union of the learned 

skeleton G’ and the skeleton obtained by simplified FD 

induced graph 𝐺𝐹𝐷
′  (line 7).  

Theorem 5 (consistency). Given faithfulness assumption is 

only valid for variables with no FDs, under the correct CI 

tests and infinite data assumptions, the skeleton learned by 

REAL converges to the correct skeleton.  ∎ 

Experiments 

We conduct evaluations to compare REAL with state-of-

the-art SL algorithms on a) 19 large-scale benchmark da-

tasets with ground-truth skeletons, and b) 3 real-world da-

tasets, with feedback from domain experts. 

Evaluation on Benchmark Datasets 

Dataset. We use available benchmark datasets from 

Bayesian Network Repository (Scutari 2012) for evalua-

tion. In these datasets, we focus on large (~100 variables) 

and very large (~1000 variables) networks, since they re-

quire and would benefit from anytime analysis due to the 

large size. So we choose 19 large-scale networks. We sam-

ple 20,000 records from each network. Among these da-

tasets, ‘pathfinder’ and ‘diabetes’ are having unique FD 

edges (see theorem 4 for definition), so we use ‘pathfinder’ 

and ‘diabetes’ to evaluate effectiveness and efficiency of 

our FD Solver. 

Comparison algorithms. Due to the absence of stand-

alone anytime SL algorithm, we choose three most relevant 

and competitive algorithms: MINOBS (Lee and van Beek 

2017), BLIP (Scanagatta, et al. 2015) and PC (Spirtes, et 

al., 2001) as our baselines. MINOBS and BLIP are the 

state-of-the-art score-based algorithm for BNSL, while PC 

is an independence-based algorithm used to learn skeleton 

for causal discovery. We only call the skeleton learning 

part in PC for comparison, which is denoted as PC*. MI-

NOBS and BLIP do not directly learn skeleton, thus we 

use the skeleton from their resultant DAG for comparison. 

Configurations of MINOBS and BLIP are optimized on 

these datasets: because all networks are with max-in-

degree≤ 6 except ‘win95pts’ is with max-in-degree=7. We 

set max-in-degree threshold for BLIP and MINOBS to 6 

(change it to 7 would significantly degrade their efficien-

cy). 

Implementation. All experiments are conducted on a ma-

chine with 3.2GHz Intel i7-8700 processor and 16 GB 

RAM. We use the C++ implementation of MINOBS pro-

vided by the author, the Java implementation of BLIP pro-

vided by the author. Both are latest versions. For PC* and 

REAL, we implemented them by C#. All code are execut-

ed in single thread. 

Measures. We evaluate the quality of learned skeleton by 

precision and 𝐹0.5  against the ground-truth skeleton. For 

anytime setting, precision is more important than recall due 

to the requirement of reliability, so we choose 𝐹0.5 meas-

ure, a commonly used measure that weighs precision high-

er than recall (Sasaki 2007). For an anytime SL algorithm, 

we record the 𝐹0.5 and precision of its output given differ-

ent time budgets.  

Results. Figure 9 depicts precision and 𝐹0.5  for RE-

AL/PC*/BLIP/MINOBS on top-12 largest benchmark da-

Algorithm 2 REAL 

Input: data 𝐷, variable set 𝒱, cardinalities 𝐶 
Output: skeleton 𝐺: 
1: 𝐺𝐹𝐷 ← obtain FD induced graph from 𝐷,𝒱 
2: 𝐺𝐹𝐷

′ ← obtain simplified FD graph from 𝐺𝐹𝐷  
3: 𝒱′ ← get root nodes in 𝐺𝐹𝐷

′  
4: ℚ ← construct priority queue from 𝒱′, 𝐶 
5: 𝐺0 ← empty graph 
 /* skeleton growing allows timeout or user interrupt */ 
6: 𝐺′ ← BestFirstGrowing(𝐺0, ℚ) 
7: 𝐺 ←  𝐺′ ∪ 𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛(𝐺𝐹𝐷

′ )  
8: return 𝐺 

Figure 8. Algorithm of REAL 
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tasets (results for all 19 datasets are available in supple-

mentary materials in our website due to page limit). REAL 

significantly outperforms the other algorithms both from 

precision and 𝐹0.5 on 10 datasets except hepar2 and diabe-

tes.  

For these two exceptional cases, REAL’s precision is still 

significantly higher than the others while achieving similar 

𝐹0.5. Note that precision is more important than recall in 

anytime scenario. 

 Figure 10 shows the evaluation result of FD Solver. 

Specifically, ‘pathfinder’ contains 7 unique FD edges and 

‘diabetes’ contains 23 unique FD edges. We first find that 

100% of these edges exist in ground-truth skeletons, which 

justifies the usefulness of theorem of uniqueness in prac-

tice. In addition, by comparing with running REAL with-

out using FD solver (i.e., config=NoFD), it is shown that 

time is significantly saved while both precision and 𝐹0.5 are 

increased. All these results strongly support the effective-

ness and efficiency of FD theory. Note that in result of 

MINOBS, 5 out of 7 are missed on ‘pathfinder’ and 8 out 

of 23 are missed on ‘diabetes’ (last column of Figure 10). 

BLIP’s result is the same as MINOBS’s. 

Evaluation on Real-World Datasets 

We also evaluate REAL on three real-world, complex da-

tasets (Table 1). All these datasets are obtained from do-

main experts on their regular analytical tasks. They are 

with large number of records and high cardinality. Table 1 

also lists out the number of unique FD edges for each da-

taset. Since these datasets don’t have ground-truth skele-

ton, we conduct evaluation by: a) the effectiveness of find-

ing unique FD edges; b) in-depth study of the learned skel-

eton based on experts’ feedback. 

Table 1. Information of real datasets and results 

Dataset #var #records 𝐦𝐚𝐱
𝒊
𝒄𝒊 

#unique  

FD edges 

Missed by 

BLIP/MINOBS 

School 9 27,611 1486 3 1 

BirdStrikes 50 52,962 3377 2 2 

FlightDelays 20 1,048,575 1060 9 3 

 

dataset
time budget(s) → 1 2 4 8 15 30 1 2 4 8 15 30

REAL 0.905 0.941 0.977 0.977 0.977 0.977 0.855 0.904 0.902 0.902 0.902 0.902
PC* 0.280 0.334 0.839 0.839 0.839 0.832 0.323 0.379 0.823 0.823 0.823 0.808
BLIP 1.000 1.000 0.967 0.978 0.978 0.949 0.876 0.868 0.901 0.911 0.914 0.903
MINOBS 1.000 1.000 0.978 0.957 0.957 0.949 0.865 0.865 0.908 0.896 0.896 0.903
REAL 0.872 0.867 0.938 0.938 0.938 0.938 0.802 0.826 0.868 0.868 0.868 0.868
PC* 0.220 0.252 0.521 0.736 0.718 0.716 0.259 0.295 0.558 0.734 0.706 0.702
BLIP 0.821 0.775 0.802 0.746 0.744 0.727 0.793 0.737 0.800 0.753 0.755 0.745
MINOBS 0.904 0.800 0.761 0.754 0.711 0.727 0.817 0.763 0.762 0.762 0.721 0.745

time budget(s) → 10 20 40 80 150 300 10 20 40 80 150 300
REAL 0.879 0.976 0.976 0.971 0.971 0.971 0.817 0.878 0.878 0.827 0.827 0.827
PC* 0.414 0.417 0.411 0.411 0.407 0.391 0.448 0.450 0.444 0.444 0.439 0.421
BLIP 0.515 0.469 0.463 0.442 0.442 0.429 0.469 0.439 0.436 0.421 0.421 0.413
MINOBS 0.485 0.476 0.463 0.442 0.442 0.429 0.445 0.445 0.436 0.421 0.421 0.413
REAL 0.605 0.601 0.894 0.953 0.953 0.953 0.560 0.572 0.753 0.779 0.779 0.779
PC* 0.029 0.031 0.036 0.054 0.153 0.141 0.036 0.038 0.045 0.067 0.179 0.164
BLIP 0.757 0.757 0.710 0.662 0.662 0.647 0.653 0.653 0.656 0.620 0.624 0.613
MINOBS 0.737 0.784 0.699 0.686 0.667 0.664 0.636 0.678 0.646 0.643 0.631 0.629
REAL 0.930 0.979 0.979 0.979 0.979 0.979 0.916 0.942 0.942 0.942 0.942 0.942
PC* 0.257 0.372 0.745 0.745 0.745 0.744 0.300 0.423 0.766 0.766 0.766 0.765
BLIP 0.963 0.972 0.865 0.868 0.847 0.880 0.864 0.875 0.869 0.876 0.860 0.890
MINOBS 0.972 0.972 0.870 0.855 0.867 0.918 0.875 0.875 0.873 0.871 0.881 0.926

time budget(s) → 100 200 400 800 1500 3000 100 200 400 800 1500 3000
REAL 0.620 0.581 0.815 0.846 0.846 0.846 0.611 0.595 0.700 0.718 0.718 0.718
PC* 0.011 0.011 0.014 0.020 0.045 0.066 0.013 0.014 0.017 0.025 0.055 0.081
BLIP 0.835 0.837 0.853 0.704 0.764 0.789 0.764 0.767 0.796 0.695 0.755 0.786
MINOBS 0.833 0.842 0.877 0.716 0.714 0.780 0.762 0.771 0.816 0.707 0.713 0.781
REAL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
PC* 0.046 0.058 0.100 0.524 0.524 0.526 0.057 0.071 0.122 0.579 0.579 0.581
BLIP 1.000 1.000 0.944 0.953 0.953 0.952 0.935 0.935 0.955 0.962 0.962 0.961
MINOBS 1.000 1.000 0.949 0.956 0.953 0.950 0.935 0.935 0.959 0.965 0.962 0.960
REAL 0.558 0.774 0.998 0.998 0.998 0.998 0.503 0.699 0.841 0.841 0.841 0.841
PC* 0.041 0.050 0.072 0.201 0.273 0.274 0.050 0.061 0.087 0.229 0.301 0.302
BLIP 0.556 0.562 0.563 0.561 0.577 0.623 0.495 0.500 0.524 0.544 0.558 0.600
MINOBS 0.557 0.563 0.574 0.566 0.588 0.630 0.496 0.502 0.533 0.549 0.569 0.606
REAL 0.646 0.607 0.951 0.951 0.951 0.951 0.169 0.542 0.675 0.675 0.675 0.675
PC* 0.006 0.014 0.016 0.020 0.032 0.273 0.007 0.017 0.020 0.025 0.040 0.288
BLIP 0.755 0.755 0.767 0.713 0.700 0.716 0.645 0.645 0.661 0.641 0.636 0.651
MINOBS 0.758 0.753 0.743 0.681 0.679 0.684 0.648 0.644 0.641 0.615 0.618 0.622
REAL 0.481 0.660 0.572 0.941 0.941 0.941 0.081 0.535 0.523 0.677 0.677 0.677
PC* 0.004 0.007 0.007 0.008 0.009 0.015 0.005 0.009 0.009 0.011 0.011 0.019
BLIP 0.713 0.721 0.729 0.654 0.647 0.668 0.600 0.606 0.613 0.575 0.578 0.600
MINOBS 0.715 0.699 0.709 0.661 0.650 0.661 0.601 0.588 0.596 0.582 0.581 0.594
REAL 0.561 0.731 0.598 0.930 0.930 0.930 0.104 0.589 0.534 0.669 0.669 0.669
PC* 0.004 0.006 0.006 0.007 0.007 0.011 0.005 0.007 0.008 0.008 0.009 0.014
BLIP 0.793 0.772 0.788 0.720 0.687 0.677 0.679 0.660 0.674 0.645 0.624 0.618
MINOBS 0.765 0.768 0.772 0.689 0.670 0.666 0.654 0.657 0.660 0.620 0.609 0.607
REAL 0.444 0.624 0.595 0.950 0.950 0.950 0.085 0.507 0.541 0.676 0.676 0.676
PC* 0.005 0.006 0.007 0.008 0.009 0.019 0.006 0.008 0.008 0.010 0.012 0.023
BLIP 0.690 0.703 0.695 0.654 0.641 0.658 0.579 0.591 0.584 0.575 0.570 0.588
MINOBS 0.695 0.706 0.691 0.644 0.653 0.654 0.584 0.593 0.580 0.567 0.582 0.585
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Figure 9. Precision/F0.5 on 12 large-scale benchmark datasets (in first column, 70/123 means the network has 70 nodes and 123 edges) 

time(s) Precision Recall F0.5

FD 176 0.971 0.518 0.827

NoFD 208 0.970 0.503 0.818

FD 703 0.846 0.447 0.718

NoFD 760 0.834 0.409 0.690

#edges missed 

by BLIP/MINOBS

5

8

pathfinder

diabetes

performance of REAL
dataset config#unique FD edges

7

23

Figure 10. Effectiveness and Efficiency of FD theory 
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Finding unique FD edges. The right-most column in Ta-

ble 1 shows unique FD edges missed by BLIP and MI-

NOBS. We omit results from PC* since Out-Of-Memory 

incurred when running on BirdStrikes and FlightDelays. 

BLIP and MINOBS produce identical results on identify-

ing unique FD edges, i.e., at least one third of the unique 

FD edges are missed in their results, which indicates the 

learned DAG either violates global Markov property or is 

not minimal. E.g., in School dataset, there exists two FDs 

in three variables school_code, school_name and borough: 

school_code  school_name, and school_code  bor-

ough. This makes sense since school code is a unique ID 

for a specific school, which locates at a specific borough 

and with a fixed school name. But there exists different 

schools with same school name, thus these two FDs satisfy 

uniqueness property which implies a conditional independ-

ence: given school_code, school_name and borough are 

independent. However, BLIP and MINOBS don’t find the 

edge from school_code to school name, thus their result is 

not Markovian.   

Skeleton of BirdStrikes dataset. BirdStrikes dataset con-

tains the record for aero planes be struck by birds. Besides 

the regular information of each record such as date, time, 

location etc., there are two important indicator variables 

“Effect” and “Damage Level”. “Effect” records what ac-

tions taken when the bird strike occurred, such as “Aborted 

Take-off” / “Engine Shutdown” / “Precautionary Landing” 

/ “…”,  and “Damage Level” records the level of the dam-

age such as “High” / “Medium” / “Low” / “None”. Be-

sides, there also 14 Boolean variables indicate which spe-

cific part is struck by birds such as “Strike Engine” / 

“Strike Propeller” / etc., and 14 Boolean variables indicate 

which specific part is damaged by the strike such as “Dam-

age Engine” / “Damage Propeller” / etc. According to the 

feedback from domain experts, “Effect” should be the di-

rect effect of “StrikeX”, because whenever a strike oc-

curred, pilot or tower controllers must immediately take 

action regardless of whether damage is incurred or not, and 

the action is recorded in the “Effect” column. Therefore, in 

the learned skeleton, we would expect to see edges be-

tween “Effect” and “StrikeX”. REAL identifies 7 out of 14 

“StrikeX” variables as neighbors of “Effect”, but BLIP or 

MINOBS only identifies 1. In comparison, REAL’s result 

is more satisfactory according to the experts’ feedback. 

Related Work 

The motivation for SL largely stems from the resurgence 

of interest in causality in recent years (Pearl 2009, 

Shanmugam et. al. 2015; Peters, Janzing and Schölkopf 

2017). As a standard approach to building causal graphs 

for reasoning, a skeleton is first constructed, and human 

interventions are then applied to determine the edge direc-

tions. Whereas many recent studies focus on how to mini-

mize the cost for human intervention (Shanmugam et. al. 

2015; Kocaoglu, Dimakis and Vishwanath 2017; Lindgren 

et. al. 2018), the problem of how to reliably and efficiently 

build the skeleton for intervention has been largely over-

looked. 

 Independence-based BNSL methods generally use statis-

tical tests to determine whether two variables are inde-

pendent or not. These include PC (Spirtes et. al. 2001), 

MMPC (Tsamardinos, Brown and Aliferis 2006), etc. Spe-

cifically, PC starts from a fully connected skeleton and 

iteratively removes edges, which violates reliability. The 

skeleton growing in MMPC is not conducted in a best-first 

way, and its procedure for inserting edges is not robust 

thus false positives are largely included. 

 Score-based methods is another family of BNSL that can 

be used for SL. They fit a Bayesian network to the data by 

optimizing certain metrics, such as the posterior probability 

of a network given data (Cooper and Herskovits 1992). 

These include GOBNILP (Cussens 2011), MINOBS (Lee 

and van Beek 2017), A* (Yuan, Malone and Wu 2011), 

BLIP (Scanagatta et. al. 2015), etc. Since the metrics used 

by score-based methods are designed for BNSL and not 

tailored for SL, they may produce sub-optimal skeletons. 

 Anytime algorithms for BNSL have also been studied 

recently in the literature (Malone and Yuan 2013, Lee and 

van Beek 2017), several anytime score-based methods for 

BNSL have been investigated by previous works (Campos 

and Ji 2011; Cussens 2011; Fan 2015; Lee and van Beek 

2017; Jaakkola, Sontag, and Globerson 2010). However, 

these methods do not explicitly address reliability concerns 

for SL and may add spurious edges or delete true edges 

over the iterations. BLIP (Scanagatta et. al. 2015) also sup-

ports an anytime mode but it uses all time budgets allocat-

ed and cannot be interrupted to return an intermediate skel-

eton during the execution. 

 To deal with FD relationships for SL, Scheines et al. 

1996 suggests to ignore the variables that can be function-

ally determined by others. As we pointed out, FDs exhibit 

strong dependency, which is useful for further tasks; Ma-

brouk et al. 2014 proposes an efficient algorithm for BNSL 

when data contains FDs, however, the algorithm assumes 

all Z are parents of X in learned BN when Z can determine 

X, thus the learned BN is not harmonious since minimality 

could be violated. 

Conclusions 

In this paper, we present REAL, a novel Reliable and Effi-

cient Anytime skeleton Learning algorithm. REAL first 

resolves incompatibility between FD and faithfulness as-

sumption. Based on this, REAL conducts SL on a reduced 

set of variables with guaranteed correctness thus drastically 
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improves efficiency. Furthermore, it employs a novel edge-

insertion and best-first strategy in anytime fashion for skel-

eton growing to achieve high reliability and efficiency. 

Experimental results on benchmark and real-world datasets 

demonstrate that REAL significantly outperforms the other 

state-of-the-art algorithms. 
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