
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

HDDL: An Extension to PDDL for Expressing Hierarchical Planning Problems

Daniel Höller,1 Gregor Behnke,1 Pascal Bercher,1∗ Susanne Biundo,1

Humbert Fiorino,2 Damien Pellier,2 Ron Alford3

1Institute of Artificial Intelligence, Ulm University, 89081 Ulm, Germany
2University Grenoble Alpes, LIG, F-38000 Grenoble, France

3The MITRE Corporation, McLean, Virginia, USA
{daniel.hoeller, gregor.behnke, susanne.biundo}@uni-ulm.de, pascal.bercher@alumni.uni-ulm.de

{humbert.fiorino, damien.pellier}@imag.fr
ralford@mitre.org

Abstract

The research in hierarchical planning has made considerable
progress in the last few years. Many recent systems do not
rely on hand-tailored advice anymore to find solutions, but
are supposed to be domain-independent systems that come
with sophisticated solving techniques. In principle, this de-
velopment would make the comparison between systems eas-
ier (because the domains are not tailored to a single system
anymore) and – much more important – also the integration
into other systems, because the modeling process is less te-
dious (due to the lack of advice) and there is no (or less)
commitment to a certain planning system the model is cre-
ated for. However, these advantages are destroyed by the lack
of a common input language and feature set supported by
the different systems. In this paper, we propose an extension
to PDDL, the description language used in non-hierarchical
planning, to the needs of hierarchical planning systems.

1 Introduction
Much progress has recently been made in hierarchical plan-
ning (Bercher, Alford, and Höller 2019). Novel systems
based on the traditional, search-based techniques have been
introduced (Bit-Monnot, Smith, and Do 2016; Shivashankar,
Alford, and Aha 2017; Bercher et al. 2017; Höller et al.
2018; 2019), but also new techniques like the translation
to STRIPS/ADL (Alford, Kuter, and Nau 2009; Alford et
al. 2016a). Others have been revisited, e.g. the translation
to propositional logic (Behnke, Höller, and Biundo 2018a;
2018b; 2019a; 2019b; Schreiber et al. 2019). In contrast to
many earlier systems, these systems can be considered to be
domain-independent, they do not rely on hand-tailored ad-
vice to solve problems, but only on their solving techniques.

Even though the systems share the basic idea of being hi-
erarchical planning approaches, the feature set supported by
the different systems is manifold. Bit-Monnot, Smith, and
Do (2016) focus, e.g., on advanced support for temporal
planning, but lack the support for recursion; several systems
are restricted to models that do not include partial order-
ing between tasks (Alford, Kuter, and Nau 2009; Behnke,

∗Pascal Bercher is now at the College of Engineering and Com-
puter Science, the Australian National University.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Höller, and Biundo 2018a; Schreiber et al. 2019); and some,
like the one by Shivashankar, Alford, and Aha (2017) define
an entirely new type of hierarchical planning problems.

Even systems restricted to the maybe best-known and
most basic hierarchical formalism, Hierarchical Task Net-
work (HTN) planning, do not share a common input lan-
guage, though the differences between the input languages
are sometimes rather small. To the best of our knowl-
edge, the hierarchical language introduced for the first In-
ternational Planning Competition (IPC) by McDermott et
al. (1998) is not supported by any recent system.

The lack of a common language has several consequences
for the field. First, it makes comparison between systems
tedious due to the translation process. It has been identi-
fied as main problem for a hierarchical track at the IPC
2020 (Behnke et al. 2019). Second – and even more impor-
tant – it makes the use of hierarchical planning from a practi-
cal perspective laborious, because it is not possible to model
a problem at hand and try which system performs best on
it. Selecting the system in beforehand requires much insight
into the systems. A common input language would make the
comparison of systems easier, it could foster a common set
of supported features and result in a common benchmark set.

In this paper, we propose the Hierarchical Domain Defini-
tion Language (HDDL) as common input language for hier-
archical planning problems. It is widely based on the input
language of PANDA, the framework underlying the plan-
ning systems by Bercher et al. (2017), Höller et al. (2018;
2019), and Behnke, Höller, and Biundo (2018a; 2019a;
2019b), i.e. there is a large set of planners based on (1)
search in plan space, (2) progression search and (3) a trans-
lation to SAT already supporting HDDL. It is defined as an
extension of the STRIPS fragment (language level 1) of the
PDDL2.1 definition (Fox and Long 2003). To concentrate
on a set of features shared by many systems, we restricted
the language to basic HTN planning. However, we hope that
this is just the starting point for further language extensions
similar to the first PDDL version in classical planning.

HDDL will be the standard input language for the track
on hierarchical planning at the IPC 2020. The correspond-
ing website1 provides supplementary material like grammar

1ipc-2020.hierarchical-task.net

9883

definitions or translation tools; but also benchmark sets.
We first introduce a lifted HTN formalism from the lit-

erature. Then we introduce the new language, give its syn-
tax and meaning, discuss design choices and the differ-
ences and similarities to approaches from the literature,
namely PDDL1.2 (McDermott et al. 1998), SHOP(2) (Nau
et al. 2003), ANML (Smith, Frank, and Cushing 2008),
HPDDL (Alford et al. 2016a), GTOHP (Ramoul et al.
2017), HTN-PDDL (González-Ferrer, Fernández-Olivares,
and Castillo 2009), and HATP (de Silva, Lallement, and
Alami 2015). Afterwards we give a full EBNF syntax defi-
nition based on the definition of PDDL2.1 and discuss every
extension and change. We conclude with a short outlook.
Before we come to the new language definition, we want to
establish a common semantics definition close to the given
input language and therefore introduce a lifted HTN plan-
ning formalism as known from the literature (Section 2).

2 Lifted HTN Planning

In this section we formally define the problem class that
HDDL can describe, i.e., HTN planning as described by
Ghallab, Nau, and Traverso (2004). We therefore extend the
formalism by Alford, Bercher, and Aha (2015a; 2015b).

Our lifted formalism is based on a quantifier-free first-
order predicate logic L = (P, T, V, C). All sets mentioned
in the following are finite. T is a set of type symbols and
V a set of typed variable symbols. P is a set of predicate
symbols, each having an arity. The arity defines its number
of parameter variables (taken from V). C is a set of typed
constants, syntactic representations of the objects in the real
world. Notice that a single constant can have several types,
e.g. truck and vehicle to support a type hierarchy.

There are two distinct kinds of tasks: primitive tasks (also
called actions) and compound tasks (also called abstract
tasks). Each task is given by its name followed by a param-
eter sequence. For instance, a task for driving from a source
location ?ls to a destination location ?ld is given by the first-
order atom drive(?ls, ?ld). We use the expressions task and
task names synonymously.

The basic data structure in HTN planning is a task net-
work, which represents a partially ordered multi-set of tasks.

Definition 1 (Task Network). A task network tn over a set
of task names X (first-order atoms) is a tuple (I,≺, α,VC)
with the following elements:
1. I is a (possibly empty) set of task identifiers.
2. ≺ is a strict partial order over I .
3. α : I → X maps task identifiers to task names.
4. VC is a set of variable constraints. Each constraint can

bind two task parameters to be (non-)equal and it can
constrain a task parameter to be (non-)equal to a con-
stant, or to (not) be of a certain type.

Task identifiers (ids) are arbitrary symbols which serve
as place holders for the actual tasks they represent. We use
ids because a task can occur multiple times within the same
network. We call a task network ground if all parameters are
bound to (or replaced by) constants from C.

An action a is a tuple (name, pre, eff), where name is its
task name, a first-order atom such as drive(?ls, ?ld) consist-

ing of the (actual) name followed by a list of typed parameter
variables. pre is its precondition, a first-order formula over
literals over L’s predicates. eff is its effect, a conjunction of
literals over L’s predicates. We define eff+ and eff− as the
sets of atoms occurring non-negated/negated in eff. All vari-
ables used in pre and eff have to be parameters of name.
We also write name(a), pre(a), and eff(a) to refer to these
elements. We require that action names name(a) are unique.

A compound task is simply a task name, i.e., an atom. Its
purpose is not to induce state transition, but to reference a
pre-defined mapping to one or more task networks by which
that compound task can be refined. This mapping is given
by a set of (decomposition) methods M . A method m ∈ M
is a triple (c, tn,VC) of a compound task name c, a task
network tn, and a set of variable constraints VC that allow
to (co)designate parameters of c and tn.
Definition 2 (Planning Domain). A planning domain D is a
tuple (L, TP , TC ,M) defined as follows:
• L is the underlying predicate logic.
• TP and TC are sets of primitive and compound tasks.
• M is a set of decomposition methods with compound tasks

from TC and task networks over the names TP ∪ TC .
The domain implicitly defines the set of all states S, being

defined over all subsets of all ground predicates.
Definition 3 (Planning Problem). A planning problem P is
a tuple (D, sI , tnI , g), where:
• D is a planning domain.
• sI ∈ S is the initial state, a ground conjunction of positive

literals over the predicates.
• tnI is the initial task network (not necessarily ground).
• g is the goal description, a first-order formula over the

predicates (not necessarily ground).
HTN planning is not about achieving a certain state-based

goal, so it makes perfect sense to specify no goal formula
at all. We added it to be closer to the PDDL specification.
Supporting it is more convenient in case it is needed, it has
clearly defined semantics, and causes no problems to sys-
tems that do not support it directly (since it can be compiled
away, see Geier and Bercher, 2011).

Solutions in HTN planning are executable, ground, prim-
itive task networks that can be obtained from the problem’s
initial task network via applying methods, adding ordering
constraints, and grounding.

Lifted problems are a compact representation of their
ground instantiations that are up to exponentially smaller
(Alford, Bercher, and Aha 2015a; 2015b). We define the se-
mantics of a lifted problem (i.e. the set of solutions) in terms
of the standard semantics of its ground instantiation. For de-
tails on the grounding process, we refer the reader to Alford,
Bercher, and Aha (2015a). There are currently only two pub-
lications devoted to grounding in more detail (see Ramoul et
al., 2017, and Behnke et al., 2020). We now give the fol-
lowing definitions based on a ground problem. Note that we
do not need to represent variable constraints anymore since
their constraints are represented in the grounding.

Given ground problems we define executability of task
networks as follows. Let A be the set of ground actions ob-
tained from TP . An action a ∈ A is called executable in

9884

a state s ∈ S if and only if s |= pre(a). The state transi-
tion function γ : S × A → S is defined as follows: If a is
executable in s, then γ(s, a) = (s \ eff −(a)) ∪ eff +(a),
otherwise γ(s, a) is undefined. The extension of γ to action
sequences, γ∗ : S ×A∗ → S is defined straightforwardly.

Definition 4 (Executability). A task network tn = (I,≺, α)
is called executable if and only if there is a sequence
i1, . . . , in of its task identifiers with n = |I|, such that
α(i1), . . . , α(in) is executable in sI .

Decomposition is used to transform one task network into
another. When a task is decomposed using a method, it is re-
moved from the network, the method’s subtasks are added,
and they inherit the ordering relations that held for the ab-
stract task. Formally it is defined as:

Definition 5 (Decomposition). Let m = (c, (Im,≺m, αm))
be a decomposition method, tn1 = (I1,≺1, α1) a task net-
work, and Im∩I1 = ∅ (the latter can be achieved by renam-
ing). Then, m decomposes a task identifier i ∈ I1 into a task
network tn2 = (I2,≺2, α2) if and only if α1(i) = c and

I2 = (I1 \ {i}) ∪ Im
≺2 = (≺1 ∪ ≺m ∪ {(i1, i2) ∈ I1 × Im | (i1, i) ∈ ≺1} ∪

{(i1, i2) ∈ Im × I1 | (i, i2) ∈ ≺1})
\ {(i′, i′′) ∈ I1 × I1 | i′ = i or i′′ = i}

α2 = (α1 ∪ αm) \ {(i, c)}
Now we can formally define the solution criteria.

Definition 6 (Solutions). Let P = (D, sI , tnI , g) be a
planning problem with D = (L, TP , TC ,M) and tnS =
(IS ,≺S , αS). tnS is a solution to an HTN planning prob-
lem P if and only if the following conditions hold:

• There is a sequence of decompositions from tnI to tn =
(I,≺, α), such that I = IS , ≺ ⊆ ≺S , and α = αS and

• tnS is primitive and has an executable action lineariza-
tion leading to a state s |= g.

3 The Hierarchical Domain Definition

Language

In this section we explain our extensions to the PDDL def-
inition based on a transport domain. To keep the example
simple, the domain includes only a single transporter that
has to deliver one or more packages. For each new language
element we introduce its syntax and meaning and discuss the
way it is modeled in other input languages.

The predicate and type definition is the same as in PDDL:

1 (define (domain transport)
2 (:types location package - object)
3 (:predicates
4 (road ?l1 ?l2 - location)
5 ...)

All other languages except for HATP (de Silva, Lalle-
ment, and Alami 2015) use the same theoretical model of
objects and predicates as PDDL. HATP models its objects in
an object-oriented way instead and further allows for SAS+
variables (Bäckström and Nebel 1995) in the input language.

deliver(?p, ?ld)

get-to(?lp) pickup(?lp, ?p) get-to(?ld) drop(?ld, ?p)

get-to(?ld)

get-to(?li) drive(?li, ?ld)

get-to(?ld)

drive(?ls, ?ld)

get-to(?l)

∅

Figure 1: The method set of a simple transport domain. Ac-
tions are given as boxed nodes, abstract tasks are unboxed.
All methods are totally ordered. There exists a smaller,
equivalent model. However, the model has been created this
way to illustrate the different language features. Two meth-
ods contain additional constraints that are not given in the
figure but are discussed in the respective sections.

The full method set of the domain is illustrated in Fig-
ure 1. Each method will be discussed in this section, but first
we introduce how abstract tasks are defined.

3.1 Abstract Task Definition

The domain contains two abstract tasks deliver and get-to.
We propose to include an explicit definition of abstract tasks
as it is the case for actions. HPDDL (Alford et al. 2016a)
also defines abstract tasks explicitly, albeit with a slightly
different syntax. Both ANML (Smith, Frank, and Cush-
ing 2008) and HTN-PDDL (González-Ferrer, Fernández-
Olivares, and Castillo 2009) require an explicit declaration
of abstract tasks and their parameter types as well, but here
the declaration is not separated from other elements of the
domain as both declare methods together with their abstract
tasks.

Some description languages for HTN problems define ab-
stract tasks only in an implicit way by their use in methods.
This includes the language used by SHOP and SHOP2 (Nau
et al. 2003), PDDL1.2 (McDermott et al. 1998), HATP, as
well as GTOHP (Ramoul et al. 2017). Implicit definition of
the compound task set has also been chosen in some formal
definitions of hierarchical problem classes (Alford, Bercher,
and Aha 2015a; 2015b). However, this can be very cumber-
some when debugging domains. If the modeler forgot to de-
fine a specific primitive task, the domain will still be valid,
as it would be interpreted as an abstract task.

Another problem with such a definition is that the
argument types are defined implicitly, namely as those
with which the task can be instantiated via any method.
The language of GTOHP further does not allow for us-
ing different types (that share a common ancestor in the
type hierarchy) to be used for the same task. For ex-
ample, there might be different methods for the deliver
task, depending on the type of transported package, e.g.
regularPackage and valuablePackage (the latter requiring
an armored transporter). We assume that regularPackage
and valuablePackage are disjunct types, sharing a common
super-type package , which would be the correct parameter
type for the deliver task. If the type is not declared explicitly,

9885

the planner can either reject the domain, as GTOHP does, or
infer possible types of the arguments of an abstract task.

Declaring abstract tasks and their parameter types explic-
itly is also in line with the design choices of PDDL. Similar
to abstract tasks, PDDL could omit the explicit definition of
predicates as their types could be inferred from their usages.
This is however discouraged from a modeling point of view.

Omitting the distinct definition of tasks and methods
would also mean a significant deviation from the contempo-
rary theoretical work on HTN planning. It could hinder fur-
ther language extensions like annotating abstract tasks with
constraints, e.g. preconditions and effects, as done by a cou-
ple of systems (see e.g. the survey by Bercher et al., 2016).

Here is the abstract task definition for the example:

6 (:task deliver :parameters (?p - package
?l - location))

7 (:task get-to :parameters (?l - location))

3.2 Decomposition Method Definition

There is only a single method in the model to decompose
deliver tasks (given at the top of Figure 1). It decomposes
the task into four ordered subtasks: getting to the package,
picking it up, getting to its final position, and dropping the
package. The definition in HDDL could look like this:

8 (:method m-deliver
9 :parameters (?p - package

?lp ?ld - location)
10 :task (deliver ?p ?ld)
11 :ordered-subtasks (and
12 (get-to ?lp)
13 (pick-up ?ld ?p)
14 (get-to ?ld)
15 (drop ?ld ?p)))

The method definition starts with the method’s name. We
decided to give parameters explicitly (line 9). This allows
e.g. to restrict the types used in the subtasks and the decom-
posed task to subtypes of the original task parameters.

We assume these parameters to be a superset of all pa-
rameters used in the entire method definition. The parameter
definition is followed by the specification of the abstract task
decomposed by the method and its parameters (line 10).

The same syntactical structure is used by HPDDL. In con-
trast, ANML, PDDL1.2, HATP and HTN-PDDL aggregate
all decomposition methods belonging to a certain abstract
task and define them as part of the definition of the task. As
such, the variables that are declared as the arguments of an
abstract task are automatically variables in a methods’ task
network. All of them type variables in methods explicitly.

In GTOHP’s language, methods don’t have names but are
identified via the abstract task they refine.

In SHOP, all variables inside a method are defined im-
plicitly by their usage as parameters. The definition of a
SHOP method starts e.g. with :method followed by an ab-
stract task and its parameters – which if they are variables
are automatically declared as new (untyped) variables. The
same holds for variables that only occur as parameters of
a method’s subtasks. GTOHP and HTN-PDDL follow this
pattern, but enforce that the parameters of the abstract task

are typed, i.e. declared explicitly. Their languages however
do not allow specifying the types of variables that occur
in the method that are not parameters of the abstract task.
Declaring the variables is, again, in line with the PDDL stan-
dard and e.g. done the same way in actions. We think it less
error-prone. When the modeler explicitly defines the vari-
ables and their types, the system can check the compatibil-
ity of types and warn the modeler when undeclared variables
are used.

Subtasks and Ordering The subtasks of the decompo-
sition method are given afterwards (starting in line 11).
We decided to have two keywords to start the definition
:ordered-subtasks (as given here) and :subtasks
(which we will show in the next method definition). When
the :ordered-subtasks keyword is used, the given list
of subtasks is supposed to be totally ordered. HPDDL uses
the keyword :tasks, which might cause errors if mixed up
with the :task keyword. Since GTOHP does only support
totally-ordered HTN planning problems, its language only
allows for specifying sequences of actions with the keyword
:expansion.

In the subtask section, all abstract tasks and actions de-
fined in the domain can be used as subtasks (and only these).
Variables defined in the method’s parameters and constants
from the domain can be used as parameters.

The get-to task from our example domain is again ab-
stract and can be decomposed by using one of the three
methods given at the bottom of Figure 1. We start with the
left one that is used when there is no direct road connection.
Then the transporter needs to go to the final location ?ld
via some intermediate location ?li. Therefore the method
decomposes the task into another abstract get-to task, fol-
lowed by a drive action with the destination location ?ld.

16 (:method m-drive-to-via
17 :parameters (?li ?ld - location)
18 :task (get-to ?ld)
19 :subtasks (and
20 (t1 (get-to ?li))
21 (t2 (drive ?li ?ld)))
22 :ordering (and
23 (< t1 t2)))

Line 19 shows the mentioned :subtask definition that al-
lows for partially ordered tasks. The task definition contains
ids (named t1 and t2) that can be used to define order-
ing constraints (line 22). They consist of a list of ordering
constraints between subtasks. However, in the given exam-
ple the resulting ordering is, again, a total order (and is just
defined that way to demonstrate this kind of definition).

HPDDL uses the same keyword, but with a slightly
different syntax. The format omits the and and the <
signs. We would argue that our notation is more read-
able. As stated above, GTOHP cannot specify partial or-
ders. ANML is primarily designed for temporal domains and
uses a temporal syntax, e.g. end(t1) < start(t2).
SHOP2 and HTN-PDDL use a different approach to rep-
resent the task ordering. Instead of specifying a set of
constraints they require specifying the order as a sin-
gle expression. This is a nested definition that contains

9886

two constructors: ordered and unordered. In SHOP2,
e.g. ((:unordered (t1 t2) t3) t4) corresponds
to the ordering constraints (< t1 t2), (< t2 t4), and
(< t3 t4). This construction cannot express all possible
orderings. Consider an ordering over five task identifiers t1,
. . . , t5, where (< t1 t4), (< t2 t4), (< t2 t5),
and (< t3 t5). This ordering cannot be expressed with
SHOP’s nested ordered/unordered constructs. PDDL1.2 also
uses this mode as a default, but does also allow for an order
specification as we and HPDDL do. Notably PDDL1.2 in-
tertwines the definition of a method’s subtasks and the defi-
nition of their order. The syntax of PDDL1.2 to specify the
contents of methods and the order of tasks in them is some-
what convoluted and not easily readable, so we have not
adopted their syntax.

HATP uses a programming-language-style syntax for the
encoding of methods. It provides explicit means to deter-
mine the order in which groundings of methods should
be explored during progression search. HATP’s syntax for
methods allows for specifying partial order, but its semantics
is different from standard HTN planning. A HATP method
containing partial order is interpreted as multiple totally-
ordered method, one for each linearization of the given par-
tial order. This allows for a more compact representation,
but prohibits task interleaving.

HDDL – like HPDDL, SHOP2, HTN-PDDL, and ANML
– only allows to specify a fixed set of ordering constraints.
Notably, the HTN planner UMCP (Erol, Hendler, and Nau
1994) allows for arbitrary formulae that specify the order-
ings. E.g. they allow to specify an ordering (t1 ≺ t2) ⇒
(t3 ≺ t4). We have not included such a generic means to for-
mulate ordering constraints as they do not seem to be used
and supported by any current HTN planning system.

Method Preconditions A common feature of many HTN
planning systems is the possibility of specifying state-based
preconditions for methods as supported by the SHOP2 sys-
tem. The feature is somewhat problematic: First, because it
is (at least from our experience) usually used to guide the
search and thus often breaks with the philosophy of PDDL
to specify a model that does not include advice.

The second problem is the question how it is realized in
the planning systems. Some systems introduce a new prim-
itive task that holds the method’s preconditions. It is added
to the method and placed before all other tasks in the sub-
task network. Consider a totally ordered domain (i.e., the
subtasks of all methods and the initial task network are to-
tally ordered): here, the action is executed directly before
the other subtasks of the method and the position where the
preconditions are checked is fine. But consider a partially or-
dered domain: here, the newly introduced action is not nec-
essarily placed directly before the other subtasks, but we just
know that it is placed somewhere before, i.e., the condition
did hold at some point before the other tasks are executed,
but may have changed meanwhile.

Other systems check the precondition exactly before the
first action resulting from a subtask of the method. Here, it
is fully specified when the precondition is checked, but the
system needs to (natively) support this feature, because a

compilation is not easily possible.
Though we are aware of these problems, the feature is

often used and thus we integrated it. However, to make the
burden of supporting it as small as possible, we assume the
compilation semantics as given above and consider the other
definition a feature for future extensions.

The preconditions are defined as follows:

24 (:method m-already-there
25 :parameters (?l - location)
26 :task (get-to ?l)
27 :precondition (tAt ?l)
28 :subtasks ())

Here the method can be applied in a state where the trans-
porter is already located at its destination. The given method
has therefore no subtasks, but still has to assure that the
transporter is at its destination.

Method preconditions are typically featured in lan-
guages expressing HTNs. HPDDL uses the same syntax
we are proposing. GTOHP uses, as noted above, a separate
:constraints section, where the method precondition
has to be specified as a before constraint. This is (presum-
ably) to allow for other state constraints later on. PDDL1.2
also features method preconditions, but they are specified
as part of the task network. In ANML, there is no explicit
means for writing down method preconditions, but they can
be encoded into the state constraints allowed by ANML.

There is a strong contrast between what can be expressed
in SHOP2 and all other HTN formats. In SHOP, several
methods for the same abstract task can be arranged in a sin-
gle method declaration, each featuring its own method pre-
condition. For the ith method to be usable, it is not suffi-
cient that its precondition is satisfied. In addition, the pre-
conditions of all previous methods have to be not satisfied
as well. Thus SHOP’s method preconditions are in essence
a chain of if-else constructs. This structure can be compiled
into several individual methods with preconditions. In case
one of the preconditions contains an existential quantifier (or
in SHOP’s case a free variable) this leads to universal quan-
tified preconditions in the methods after it. Nevertheless we
propose to drop the ability to use such if-else chains, most
notably since none of the newer languages supports it. Fur-
ther, this kind of if-else is essentially a means to guide a
depth-first search planner in an efficient way.

In addition to method preconditions, HPDDL features
method effects, which are modeled after SHOP2’s assert and
retract functionality. Method effects are executed in the state
in which the method preconditions are evaluated. As far as
we know, their formal semantics is not defined in any publi-
cation. We propose to drop this feature (at least for the given
definition intended to be the core language), since it is not
commonly used. Note that even without method effects in
the description language, they can still be simulated with
additional actions in the methods’ definitions (at least in the
compilation-based definition as given above).

2This also applies to HTN-PDDL, it uses a similar syntax. The
description is unfortunately not explicit on the critical point in se-
mantics (González-Ferrer, Fernández-Olivares, and Castillo 2009).

9887

General Constraints Sometimes it might be useful to de-
fine constraints in a method, e.g. on its variables or sorts.
This is demonstrated in the following example where the
transporter’s source position must be different from its des-
tination.

29 (:method m-direct
30 :parameters (?ls ?ld - location)
31 :task (get-to ?ld)
32 :constraints
33 (not (= ?li ?ld))
34 :subtasks (drive ?ls ?ld))

We are aware that PDDL allows for variable constraints in
the precondition of actions. Due to consistency we also al-
low this when method preconditions are specified. How-
ever, many HTN models are defined without methods that
have preconditions and we think it is not intuitive to spec-
ify a precondition section solely to define variable con-
straints. Furthermore, we think that other constraints apart
from simple variable constraints might be added to the stan-
dard, e.g. state constants like used by Erol, Hendler, and
Nau (1994). Therefore we integrated a constraint section to
the method definition (line 32f.) though our current defini-
tion only allows for equality and inequality constraints.

HPDDL places the variable constraints of a decompo-
sition method into its preconditions. In addition to equal-
ity and inequality it features type constraints, where e.g.
(valuablePackage ?p) is the constraint that ?p be-
longs to the type valuablePackage. GTOHP allows
for equality and inequality constraints that are also within
the :constraints section, but are located in a separate
before block. In SHOP’s syntax, variable constraints have
to be compiled into method preconditions referring to pred-
icates for the individual types and an explicitly declared
equals predicate. ANML also allows for variable con-
straints that can be declared freely inside a method.

3.3 Action Definition

We left the action definition unchanged compared to the
PDDL standard we build on.

35 (:action drive
36 :parameters (?l1 ?l2 - location)
37 :precondition (and
38 (tAt ?l1)
39 (road ?l1 ?l2))
40 :effect (and
41 (not (tAt ?l1))
42 (tAt ?l2)))
43 ...)

3.4 Problem Definition

The problem definition is slightly adapted to represent the
additional elements necessary for HTN planning (line 6).

1 (define (problem p)
2 (:domain transport)
3 (:objects
4 city-loc-0 city-loc-1 city-loc-2 -

location
5 package-0 package-1 - package)

6 (:htn
7 :tasks (and
8 (deliver package-0 city-loc-0)
9 (deliver package-1 city-loc-2))

10 :ordering ()
11 :constraints ())
12 (:init
13 (road city-loc-0 city-loc-1)
14 (road city-loc-1 city-loc-0)
15 (road city-loc-1 city-loc-2)
16 (road city-loc-2 city-loc-1)
17 (at package-0 city-loc-1)
18 (at package-1 city-loc-1)))

The section starts with a keyword that specifies the problem
class, here it starts with :htn. However, there are several
other problem classes in hierarchical planning, e.g. HTN
planning with task insertion. An overview of hierarchical
problem classes can be found in the survey by Bercher, Al-
ford, and Höller (2019). Some problem classes are even syn-
tactically equivalent to HTN planning and only differ in their
solution criteria. By making the specification of the problem
class explicit, extensions to the language can easily add new
classes. The initial task network is nested in this section. It
has the same form as the methods’ subtask networks. The
other description languages for HTN planning also allow for
a similar definition of the initial plan. Again, all of them use
a slightly different syntax to describe them.

In the given example, the planning process is started with
two unordered deliver tasks, one for each package.

In the original PDDL standard, the domain designer has
to specify a state-based goal. This is often not specified in
HTN planning, so we made it optional.

4 Full Syntax Definition

The following is defined as close as possible to the STRIPS
part (i.e., language level 1) of PDDL 2.1 by Fox and
Long (2003). Large parts are identical to their definition.
Changes and extensions are discussed in the following.

The domain definition has been extended by definitions
for compound tasks (line 6) and methods (line 7).

1 <domain> ::= (define (domain <name>)
2 [<require-def>]
3 [<types-def>]:typing

4 [<constants-def>]
5 [<predicates-def>]
6 <comp-task-def>*
7 <method-def>*
8 <action-def>*)

The definition of the basic elements is nearly unchanged.

9 <require-def> ::=
(:requirements <require-key>+)

10 <require-key> ::= ...
11 <types-def> ::= (:types

<typed list (name)>* <base-type>+)
12 <base-type> ::= <name>
13 <constants-def> ::=

(:constants <typed list (name)>)
14 <predicates-def> ::= (:predicates

<atomic-formula-skeleton>+)

9888

15 <atomic-formula-skeleton> ::=
(<predicate> <typed list (variable)>)

16 <predicate> ::= <name>
17 <variable> ::= ?<name>
18 <typed list (x)> ::= x+ - <type>

[<typed list (x)>]
19 <primitive-type> ::= <name>
20 <type> ::= (either <primitive-type>+)
21 <type> ::= <primitive-type>

We changed the definition of <types-def> (given
in line 11 and 12) in combination with the definition of
<typed list (name)> (line 18). In the PDDL2.1 stan-
dard, this can be realized by a list of names, e.g. in an un-
typed way. Our intention was to enforce a typed model and
therefore allow for untyped elements only in the type defini-
tion. There, it is necessary to define the base type(s). In every
other definition that includes <typed list (name)>
(e.g. parameter and constant definitions), we wanted to en-
force a typed list.

Abstract tasks are defined similar to actions.

22 <comp-task-def> ::= (:task <task-def>)
23 <task-def> ::= <task-symbol>

:parameters (<typed list (variable)>)
24 <task-symbol> ::= <name>

In a standard HTN setting, methods consist of a parameter
list (line 26), the abstract task they decompose (line 27), and
the resulting task network (line 29).

25 <method-def> ::= (:method <name>
26 :parameters (<typed list (variable)>)
27 :task (<task-symbol> <term>*)
28 [:precondition <gd>]
29 <tasknetwork-def>)

We use the same syntax definition for method subnet-
works and the initial task network. Here, the keyword
subtasks would seem odd. Therefore the syntax also al-
lows for the keys tasks and ordered-tasks (line 31)
that are supported to be used in the initial task network. The
definition includes subtasks (line 31), ordering constraints
(line 32), and variable constraints (line 33) between any
method parameters.

30 <tasknetwork-def> ::=
31 [:[ordered-][sub]tasks

<subtask-defs>]
32 [:order[ing] <ordering-defs>]
33 [:constraints <constraint-defs>]

When the key :ordered-subtasks is used, the net-
work is regarded to be totally ordered. In the other cases,
ordering relations may be defined explicitly. This is done by
including ids into the task definition that can then be refer-
enced in the ordering definition.

The subtask definition may contain several subtasks. A
single task consists of a task symbol and a list of parameters.
In case of a method’s subnetwork, these parameters have to
be included in the method’s parameters, in case of the initial
task network, they have to be defined as constants in s0 or
in a dedicated parameter list (see definition of the initial task
network, line 81).

34 <subtask-defs> ::= () | <subtask-def>
| (and <subtask-def>+)

35 <subtask-def> ::= (<task-symbol> <term>*)
| (<subtask-id> (<task-symbol>
<term>*))

36 <subtask-id> ::= <name>

The ordering constraints are defined via the task ids. They
have to induce a partial order.

37 <ordering-defs> ::= () | <ordering-def>
| (and <ordering-def>+)

38 <ordering-def> ::=
("<" <subtask-id> <subtask-id>+)

39 <constraint-defs> ::= () | <constraint-def
> | (and <constraint-def>+)

40 <constraint-def> ::= ()
| (not (= <term> <term>))
| (= <term> <term>)

The original action definition of PDDL has been split to
reuse its body in the task definition.

41 <action-def> ::= (:action <task-def>
42 [:precondition <gd>]
43 [:effects <effect>])

We restricted the definition of preconditions and effects to
level 1, i.e., the STRIPS part of the overall language.

44 <gd> ::= ()
45 <gd> ::= <atomic formula (term)>
46 <gd> ::=:negative-preconditions <literal (term)>
47 <gd> ::= (and <gd>*)
48 <gd> ::=:disjunctive-preconditions (or <gd>*)
49 <gd> ::=:disjunctive-preconditions (not <gd>)
50 <gd> ::=:disjunctive-preconditions (imply <gd> <gd>)
51 <gd> ::=:existential-preconditions

(exists (<typed list (variable)>*)
<gd>)

52 <gd> ::=:universal-preconditions

(forall (<typed list (variable)>*)
<gd>)

53 <gd> ::= (= <term> <term>)
54 <literal (t)> ::= <atomic formula(t)>
55 <literal (t)> ::=

(not <atomic formula(t)>)
56 <atomic formula(t)> ::= (<predicate> t*)
57 <term> ::= <name>
58 <term> ::= <variable>
59 <effect> ::= ()
60 <effect> ::= (and <c-effect>*)
61 <effect> ::= <c-effect>
62 <c-effect> ::=:conditional-effects

(forall (<variable>*) <effect>)
63 <c-effect> ::=:conditional-effects

(when <gd> <cond-effect>)
64 <c-effect> ::= <p-effect>
65 <p-effect> ::=

(not <atomic formula(term)>)
66 <p-effect> ::= <atomic formula(term)>
67 <cond-effect> ::= (and <p-effect>*)
68 <cond-effect> ::= <p-effect>

The problem definition includes the initial task network
(line 73). Since a state-based goal definition is often not in-

9889

cluded in HTN planning, we made the goal definition op-
tional (line 75).

69 <problem> ::= (define (problem <name>)
70 (:domain <name>)
71 [<require-def>]
72 [<p-object-declaration>]
73 [<p-htn>]
74 <p-init>
75 [<p-goal>])
76 <p-object-declaration> ::=

(:objects <typed list (name)>)
77 <p-init> ::= (:init <init-el>*)
78 <init-el> ::= <literal (name)>
79 <p-goal> ::= (:goal <gd>)

The initial task network contains the definition of the
problem class (line 80). In this first definition we only in-
cluded standard HTN planning, but we integrated this def-
inition to allow for other classes, e.g. HTN planning with
task insertion.

80 <p-htn> ::= (<p-class>
81 [:parameters (<typed list (variable

)>)]
82 <tasknetwork-def>)
83 <p-class> ::= :htn

5 Discussion

We consider the language proposed in this paper as a first
step towards a standardized language for hierarchical plan-
ning problems and hope that it helps to find a minimal set of
features supported by the diverse systems.

First of all, we think it is important to remain as close as
possible to PDDL and to reuse its features to allow domain
designers to create both hierarchical and non-hierarchical
problems with minimal learning effort. Then, we must de-
cide which features have to be at the core of the language,
and which ones are secondary and possibly could be ig-
nored. This is especially important to establish a competition
to compare the performance of different systems (as recently
proposed by Behnke et al., 2019).

A feature that was present in the early HTN formalisms
(e.g. the one by Erol, Hendler, and Nau, 1994) is the pos-
sibility to define more elaborated constraints in task net-
works. Recent work in hierarchical planning was not based
on such a rich definition language, but on rather minimalis-
tic formalisms like the one introduced by Geier and Bercher,
(2011). In this first definition we only included very basic
constraints: ordering constraints, variable constraints, and
method preconditions. However, we think that a constraint
set as given in PDDL3 might be a nice extension beneficial
for domain designers. To foster the application in real world
domains, it may be necessary to integrate support for num-
bers and time. Since our definition builds on the PDDL2.1
definition, at least the extension of the language in that di-
rection could easily be done. Another possible extension is
the support for preconditions and effects in the definition of
abstract tasks (see Bercher et al. (2016) for an overview).

Besides new features, it might be interesting to include
new problem classes like HTN planning with task insertion,

decompositional planning, or HGN planning, which comes
with the ability to decompose not tasks, but also goals (Shiv-
ashankar et al. 2012) and that even has been combined with
task decomposition (Alford et al. 2016b).

6 Conclusion
We propose a common description language for hierarchical
planning problems. We argue that the core feature set un-
derlying many planners from the last years is HTN planning
and introduced its elements as an extension of PDDL. We
defined the language in a way that can easily be extended by
further features as has been done in PDDL. We introduced
our novel language elements “by example” and discussed
our design choices, the syntax used in related work, and the
proposed meaning.

Acknowledgements
This work was partly funded by the technology trans-
fer project “Do it yourself, but not alone: Companion-
Technology for DIY support” of the SFB/TRR 62 funded
by the German Research Foundation (DFG). The indus-
trial project partner is the Corporate Research Sector of the
Robert Bosch GmbH.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015a. Tight bounds
for HTN planning. In Proceedings of the 25th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 7–15. AAAI Press.
Alford, R.; Bercher, P.; and Aha, D. W. 2015b. Tight bounds
for HTN planning with task insertion. In Proceedings of
the 24th International Joint Conference on Artificial Intelli-
gence (IJCAI), 1502–1508. AAAI Press.
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016a. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In Proceedings of the 26th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 20–
28. AAAI Press.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016b. Hierarchical planning: Relating task
and goal decomposition with task sharing. In Proceedings
of the 25th International Joint Conference on Artificial In-
telligence (IJCAI), 3022–3029. IJCAI/AAAI Press.
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A small amount of domain knowledge can
go a long way. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), 1629–1634.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–656.
Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2019. Hierarchical planning in the
IPC. In Proceedings of the Workshop on the IPC (WIPC).
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On succinct groundings of HTN planning prob-
lems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI). AAAI Press.

9890

Behnke, G.; Höller, D.; and Biundo, S. 2018a. totSAT –
Totally-ordered hierarchical planning through SAT. In Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelli-
gence (AAAI), 6110–6118. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018b. Tracking
branches in trees – A propositional encoding for solving
partially-ordered HTN planning problems. In Proceedings
of the 30th International Conference on Tools with Artificial
Intelligence (ICTAI), 73–80. IEEE Computer Society.
Behnke, G.; Höller, D.; and Biundo, S. 2019a. Bringing
order to chaos – A compact representation of partial order
in SAT-based HTN planning. In Proceedings of the 33rd
AAAI Conference on Artificial Intelligence (AAAI), 7520–
7529. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019b. Finding opti-
mal solutions in HTN planning – A SAT-based approach. In
Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI), 5500–5508. IJCAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A survey on
hierarchical planning – One abstract idea, many concrete re-
alizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI), 6267–6275.
ijcai.org.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a name? On implications of preconditions and
effects of compound HTN planning tasks. In Proceedings
of the 22nd European Conference on Artificial Intelligence
(ECAI), 225–233. IOS Press.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI), 480–488. AAAI Press.
Bit-Monnot, A.; Smith, D. E.; and Do, M. 2016. Delete-free
reachability analysis for temporal and hierarchical planning.
In Proceedings of the 22nd European Conference on Artifi-
cial Intelligence (ECAI), 1698–1699. IOS Press.
de Silva, L.; Lallement, R.; and Alami, R. 2015. The HATP
hierarchical planner: Formalisation and an initial study of
its usability and practicality. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems (IROS),
6465–6472. IEEE.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. UMCP: A
sound and complete procedure for hierarchical task-network
planning. In Proceedings of the 2nd International Con-
ference on Artificial Intelligence Planning Systems (AIPS),
249–254. AAAI Press.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1955–1961. AAAI Press.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning – Theory and Practice. Elsevier.

González-Ferrer, A.; Fernández-Olivares, J.; and Castillo,
L. 2009. JABBAH: A java application framework for the
translation between business process models and HTN. In
Proceedings of the International Competition on Knowledge
Engineering for Planning and Scheduling (ICKEPS), 28–37.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A generic method to guide HTN progression search with
classical heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019.
On guiding search in HTN planning with classical planning
heuristics. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI), 6171–6175.
ijcai.org.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL –
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research 20:379–
404.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017.
Grounding of HTN planning domain. International Journal
on Artificial Intelligence Tools 26(5):1–24.
Schreiber, D.; Pellier, D.; Fiorino, H.; and Balyo, T.
2019. Tree-REX: SAT-based tree exploration for efficient
and high-quality HTN planning. In Proceedings of the
29th International Conference on Automated Planning and
Scheduling (ICAPS), 382–390. AAAI Press.
Shivashankar, V.; Alford, R.; and Aha, D. W. 2017. Incorpo-
rating domain-independent planning heuristics in hierarchi-
cal planning. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence (AAAI), 3658–3664. AAAI Press.
Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R.
2012. A hierarchical goal-based formalism and algorithm
for single-agent planning. In Proceedings of the Interna-
tional Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 981–988. IFAAMAS.
Smith, D.; Frank, J.; and Cushing, W. 2008. The ANML
language. In Proceedings of the Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS).

9891

