
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Lifted Fact-Alternating Mutex Groups and
Pruned Grounding of Classical Planning Problems

Daniel Fišer
Czech Technical University in Prague,

Faculty of Electrical Engineering,
Prague, Czech Republic

danfis@danfis.cz

Abstract

In this paper, we focus on the inference of mutex groups in
the lifted (PDDL) representation. We formalize the inference
and prove that the most commonly used translator from the
Fast Downward (FD) planning system infers a certain sub-
class of mutex groups, called fact-alternating mutex groups
(fam-groups). Based on that, we show that the previously pro-
posed fam-groups-based pruning techniques for the STRIPS
representation can be utilized during the grounding process
with lifted fam-groups, i.e., before the full STRIPS represen-
tation is known. Furthermore, we propose an improved infer-
ence algorithm for lifted fam-groups that produces a richer
set of fam-groups than the FD translator and we demonstrate
a positive impact on the number of pruned operators and over-
all coverage.

Introduction

Although classical planning problems are often described
in the (schematic) Planning Domain Definition Language
(PDDL) (McDermott 2000), i.e., in the lifted representation,
most planners operate with a (non-schematic) ground repre-
sentation such as STRIPS (Fikes and Nilsson 1971) or the
finite domain representation (FDR or SAS+) (Bäckström
and Nebel 1995). These planners need to employ a trans-
lation process, called grounding, that transforms the lifted
representation (PDDL) into STRIPS. The subsequent trans-
formation from STRIPS, where states are described as sets
of facts, into FDR, where states are assignments to a finite
set of variables, requires an additional step of inference of
mutex groups.

Mutex groups are sets of facts of which at most one is
present in every reachable state. They are state invariants
needed for the construction of a concise FDR representa-
tion, because they allow us to group sets of (STRIPS) facts
into (FDR) variables so we do not need to encode each fact
as a binary variable. This, however, is not the only appli-
cation of mutex groups, because they provide a more gen-
eral information about the structure of the planning task that
can be used in pruning (Alcázar et al. 2013; Alcázar and
Torralba 2015; Fišer and Komenda 2018), merge&shrink

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristics (Helmert et al. 2014; Sievers, Wehrle, and Helmert
2014), pattern databases (Culberson and Schaeffer 1996;
Edelkamp 2001), SAT-based planning (Rintanen, Heljanko,
and Niemelä 2006), or computing upper bounds on plan
lengths (Abdulaziz, Gretton, and Norrish 2017).

It was shown that the inference of the maximum-sized
mutex group is PSPACE-Complete, but there also exists
a subclass of mutex groups, called fact-alternating mutex
groups (fam-groups), defined over the input problem rather
than over the whole reachable state space, of which infer-
ence is NP-Complete (Fišer and Komenda 2018).

In this paper, we focus on the inference of schematic mu-
tex groups in the lifted representation. We show that the
lifted mutex groups described by Helmert (2009) are always
fam-groups after grounding because of the constraints posed
on their structure and not because of the proposed inference
algorithm. We propose an improvement of the Helmert’s in-
ference algorithm that produces a richer set of lifted fam-
groups. Based on the previous results on operator pruning
using fam-groups in STRIPS (Fišer and Komenda 2018), we
introduce an operator pruning technique utilized during the
grounding phase that uses the inferred lifted fam-groups.

PDDL and STRIPS

We consider the normalized non-numeric, non-temporal
PDDL tasks without conditional effects and negative pre-
conditions, and with all formulas being conjunctions of
atoms (represented as sets of atoms). Since we will ground
PDDL into STRIPS, we also split effects of PDDL actions
into add effects (positive literals) and delete effects (nega-
tive literals) directly in the definition below to simplify the
presentation.

In contrast to the normalization of PDDL tasks described
by Helmert (2009), we do not support axioms (derived pred-
icates) and we keep and utilize PDDL types. We also dis-
regard conditional effects, but our implementation supports
the full fragment of PDDL that is used in deterministic
tracks of International Planning Competitions (IPCs).

Definition 1. A normalized PDDL task is a tuple P =
〈B, T ,V,P,A, ψI , ψG〉 where B is a non-empty set of ob-
jects, T is a non-empty set of types containing a default
type denoted by t0 ∈ T , objects and types are associated by

9835



a total function D : T �→ 2B such that D(t0) = B and for
every pair of types ti, tj ∈ T it holds that D(ti) ⊆ D(tj)
or D(ti) ⊇ D(tj) or D(ti) ∩ D(tj) = ∅. V is a denumer-
able set of variable symbols, each variable v ∈ V has a type
τvar(v) ∈ T .
P is a set of predicate symbols, each predicate p ∈ P

has arity ar(p) ∈ N and an associated type τpred(p, i) ∈
T for every i ∈ {1, ..., ar(p)}. An atom is of the form
p(s1, . . . , sn), where p ∈ P is a predicate symbol, n =
ar(p) is the arity of p, and each si is either an object
o ∈ D(τpred(p, i)), or a variable v ∈ V with D(τvar(v)) ⊆
D(τpred(p, i)). For a given atom α = p(s1, . . . , sn), V[α] ⊂
V denotes a set of variables appearing in the atom, i.e.,
V[α] = {s1, . . . , sn} ∩ V , and P[α] = p denotes the pred-
icate of α. Given a set of atoms X , we define V[X] =⋃

x∈X V[x] and P[X] =
⋃

x∈X P[x]. A ground atom is
an atom α such that V[α] = ∅.

An action a ∈ A is a tuple a = 〈pre(a), add(a), del(a)〉
where pre(a), add(a) and del(a) are sets of atoms, called
preconditions, add effects, and delete effects, respectively.
By V[a] = V[pre(a) ∪ add(a) ∪ del(a)] we denote a set of
variables appearing in the action. For every pair of actions
ai, aj ∈ A, ai 
= aj , it holds that V[ai] ∩ V [aj ] = ∅. A
ground action is an action a such that V[a] = ∅.
ψI and ψG are sets of ground atoms, called initial state

and goal, respectively.

Note that the type t0 corresponds to the default PDDL
type “object”. The following definition describes the process
of grounding, i.e., replacing all variables with objects of the
corresponding type.

Definition 2. Given a set of variables V ⊆ V , a grounding
γ restricted to V is a function γ : V ∪B �→ V ∪B such that
γ(v) ∈ D(τvar(v)) for every v ∈ V , and γ(v) = v for every
v ∈ V \ V , and γ(o) = o for every o ∈ B, i.e., γ maps each
variable v ∈ V to an object from its corresponding domain
D(τvar(v)), and it is identity for everything else.

For an atom α = p(s1, . . . , sn), by γ�α� we denote the
atom p(γ(s1), . . . , γ(sn)). For a set of atoms X , we define
γ�X� = {γ�α� | α ∈ X}. For an action a ∈ A, we define
γ�a� = 〈γ�pre(a)�, γ�add(a)�, γ�del(a)�〉.

A set of all groundings is denoted by G, and a set of all
groundings restricted to V ⊂ V is denoted by GV . For a set
of groundings G ⊆ G and an atom or an action x we define
G�x� = {γ�x� | γ ∈ G}. For a set of groundings G ⊆ G
and a set of atoms X we define G�X� =

⋃
γ∈G γ�X�. For

an action a ∈ A, Ga denotes a shorthand for GV[a].

With the grounding defined, we can define the STRIPS
planning task and the full grounding of a PDDL task, which
is constructed by replacing all variables with all possible
combinations of objects.

Definition 3. A STRIPS planning task Π is specified by
a tuple Π = 〈F ,O, sI , sG〉, where F = {f1, . . . , fn} is a
set of facts, and O = {o1, . . . , om} is a set of operators. A
state s ⊆ F is a set of facts, sI ⊆ F is an initial state and
sG ⊆ F is a goal specification. An operator o is a tuple
o = 〈pre(o), add(o), del(o)〉, where pre(o) ⊆ F is a set
of preconditions of the operator o, and add(o) ⊆ F and

del(o) ⊆ F are sets of add and delete effects, respectively.
All operators are well-formed, i.e., add(o)∩del(o) = ∅ and
pre(o)∩add(o) = ∅. An operator o is applicable in a state s
if pre(o) ⊆ s. The resulting state of applying an applicable
operator o in a state s is the state o[s] = (s\del(o))∪add(o).
A state s is a goal state iff sG ⊆ s.

A sequence of operators π = 〈o1, . . . , on〉 is applicable
in a state s0 if there are states s1, . . . , sn such that oi is ap-
plicable in si−1 and si = oi[si−1] for i ∈ {1, . . . , n}. The
resulting state of this application is π[s0] = sn. π is called a
plan iff π[sI ] ⊇ sG,

A set of facts F ⊆ F is reachable if there exists an
operator sequence π such that F ⊆ π[sI ]. A set of facts
F ⊆ F is relaxed reachable if there exists an operator
sequence π = 〈o1, . . . , on〉 such that F ⊆ π′[sI ] where
π′ = 〈o′1, . . . , o′n〉 and o′i = 〈pre(oi), add(oi), ∅〉 for ev-
ery i ∈ {1, . . . , n}. An operator o is (relaxed) reachable iff
pre(o) is (relaxed) reachable. A state s is a dead-end state
iff sG 
⊆ s and there is no applicable operator sequence π
such that sG ⊆ π[s].
Definition 4. Given a normalized PDDL task P =
〈B, T ,V,P,A, ψI , ψG〉, the full grounding of P is a
STRIPS planning task Πfull

P = 〈F ,O, sI , sG〉 constructed
as follows.

Let A =
⋃

a∈A Ga�a�, and X = ψI ∪ ψG ∪⋃
a∈A(pre(a)∪add(a)∪del(a)). Then F := {fx | x ∈ X},

sI := {fx | x ∈ ψI}, sG := {fx | x ∈ ψG}, and
O := {oa | a ∈ A} with pre(oa) = {fx | x ∈ pre(a)},
add(oa) = {fx | x ∈ add(a)} \ pre(oa), and del(oa) =
{fx | x ∈ del(a)} \ {fx | x ∈ add(a)}.

The full grounding is not what would be used as a
grounded representation of a PDDL task in practice. How-
ever, we will use it as a tool to prove that a certain lifted
structure, if grounded, is a state invariant in the full ground-
ing and therefore it is also a state invariant in the grounded
representation obtained by a more constrained grounding.
In the following, we formally define mutex groups and fact-
alternating mutex groups (fam-groups), and we show (The-
orem 6) that there is no point in looking for fam-groups that
are disjoint with the initial state, because these facts can be
easily pruned with the relaxed reachability. Therefore, it is
reasonable for all algorithms for the inference of fam-groups
to search only for the fam-groups that cover exactly one fact
from the initial state (instead of at most one).
Definition 5. Given a STRIPS planning task Π =
〈F ,O, sI , sG〉, a set of facts M ⊆ F is a mutex group
if |M ∩ s| ≤ 1 for every state s reachable from sI , and
M ⊆ F is a fact-alternating mutex group (fam-group) if
|M ∩ sI | ≤ 1 and |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)|
for every operator o ∈ O.
Theorem 6. Let Π = 〈F ,O, sI , sG〉 denote a STRIPS plan-
ning task. If M ⊆ F is a fam-group such that M ∩ sI = ∅,
then M is not relaxed reachable in Π.

Proof. (By contradiction) If M is relaxed reachable in Π,
then there exist two states s, s′ and an operator o ∈ O
such that s is relaxed reachable in Π, and s ∩M = ∅, and
pre(o) ⊆ s, and s′ = s ∪ add(o), and s′ ∩M 
= ∅. Since

9836



|M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)| and pre(o) ∩M ⊆
s ∩M = ∅, we can conclude that s′ ∩M = ∅.

Lifted Mutex Groups

A lifted mutex group is a structure defined on the lifted
(PDDL) level, that generates mutex groups through the
grounding process. When describing the translation from
PDDL to FDR, Helmert (2009) proposed an algorithm for
the inference of lifted mutex groups that are used for a con-
struction of FDR variables after grounding. In this section,
we formalize lifted mutex groups and we show that the lifted
mutex groups proposed by Helmert (2009) are in fact lifted
fam-groups, i.e., when they are grounded they always form
fam-groups in STRIPS.

We start with introducing an invariant candidate and in-
variant grounding that together provide a way to generate
sets of facts in the corresponding ground (STRIPS) repre-
sentation. Then we say that the invariant candidate is a lifted
mutex group if all generated sets of facts are mutex groups.
Finally, we provide a way to prove on the lifted level that an
invariant candidate is a lifted fam-group.

Definition 7. An invariant candidate is a tuple ν =
〈Vfix[ν],Vcnt[ν], atoms(ν)〉, where Vfix[ν] ⊂ V is a finite
set of fixed variables and Vcnt[ν] ⊂ V is a finite set of
counted variables such that Vfix[ν] ∩ Vcnt[ν] = ∅, and
atoms(ν) is a finite set of atoms such that V[atoms(ν)] =
Vfix[ν] ∪ Vcnt[ν].

Definition 8. An invariant grounding is a tuple ξ =
〈γ,G〉, where γ ∈ G is a grounding and G ⊆ G is a
set of groundings. For an invariant candidate ν, we define
a set of all invariant groundings Hν = {〈γ,GVcnt[ν]〉 |
γ ∈ GVfix[ν]}. For an invariant candidate ν and a corre-
sponding invariant grounding ξ = 〈γ,G〉 ∈ Hν , we define
ξ�ν� = γ�G�atoms(ν)��.

Intuitively, replacing the fixed variables with different
combinations of objects generates different sets of ground
atoms, whereas replacing the counted variables generates the
ground atoms within each set.

For example, let at(v1: vehicle, c1: location) describe an
invariant candidate ν consisting of a single atom of a predi-
cate at with arity 2, where the first argument, v1, is a fixed
variable with the type vehicle and the second argument, c1,
is a counted variable with the type location. If we have two
objects, t1 and t2, of the type vehicle and two objects, loc1
and loc2, of the type location, then applying all invariant
groundings from Hν generates the following two sets of
ground atoms, {at(t1, loc1), at(t1, loc2)} and {at(t2, loc1),
at(t2, loc2)}.

For the invariant candidate at(c1: vehicle, c2: location)
with both variables counted and the same objects, the in-
variant groundings generate a single set of ground atoms,
{at(t1, loc1), at(t1, loc2), at(t2, loc1), at(t2, loc2)}.

Definition 9. Let Πfull
P = 〈F ,O, sI , sG〉 denote the full

grounding of P. An invariant candidate ν is a lifted mutex
group (lifted fam-group) if for every invariant grounding
ξ ∈ Hν it holds that M = {fx | x ∈ ξ�ν�} ∩ F is a mutex
group (fam-group) in Πfull

P .

Now we have defined lifted mutex groups and we know
that if we find them on the lifted level, we can ground them
and use them on the ground (STRIPS) level as mutex groups.

In the following, we borrow the notions of balance and
weight from Helmert (2009) to formulate sufficient condi-
tions for an invariant candidate to be a lifted fam-group.

Definition 10. An invariant candidate ν is balanced in an
action a ∈ A if for every invariant grounding ξ ∈ Hν and
every grounding γ ∈ Ga, it holds that for every α ∈ ξ�ν� ∩
add(γ�a�) there exists α′ ∈ ξ�ν� ∩ pre(γ�a�) ∩ del(γ�a�).

An invariant candidate ν is balanced if it is balanced in
every action a ∈ A.

Note that the notion of balance, as we use it, considers
each add effect in isolation. That is, it may happen that two
different ground atoms from the add effect can be both bal-
anced by the same ground atom from the precondition and
delete effect, and we would still call such invariant candi-
date balanced. That is why we use the notion of weight to
limit the number of ground atoms that can appear in the add
effect.

Definition 11. The weight of the invariant candidate ν is
weight(ν) = maxξ∈Hν ,a∈A,γ∈Ga |add(γ�a�) ∩ ξ�ν�|.

The init-weight of the invariant candidate ν is
i-weight(ν) = maxξ∈Hν |ψI ∩ ξ�ν�|.

The weight of an invariant candidate is the maximum
number of ground atoms of the invariant candidate that can
appear in the add effect of any ground action (and similarly
for the initial state). The invariant candidate is balanced in
an action, if having a ground atom in action’s add effect im-
plies having another ground atom in its precondition and
delete effect. Therefore, if the weight is at most one and
the invariant candidate is balanced, then no ground action
can increase the number of ground atoms in a state. And if
we combine this with the condition that at most one ground
atom is present in the initial state, then we must conclude
that the invariant candidate is a lifted fam-group (and there-
fore also a lifted mutex group).

Theorem 12. Let ν denote an invariant candidate. If
i-weight(ν) ≤ 1 and weight(ν) ≤ 1 and ν is balanced,
then ν is a lifted fam-group.

Proof. Let Πfull
P = 〈F ,O, sI , sG〉 denote the full grounding

of P, and let M = {Xξ | ξ ∈ Hν}, where Xξ = {fx |
x ∈ ξ�ν�}. |M ∩ sI | ≤ 1 for every M ∈ M follows di-
rectly from i-weight(ν) ≤ 1. From weight(ν) ≤ 1 it fol-
lows that |M ∩ add(o)| ≤ 1 for every M ∈ M and every
o ∈ O. Since ν is balanced, then for every operator o ∈ O
and every M ∈ M such that |M ∩ add(o)| = 1 it holds
that |M ∩ pre(o) ∩ del(o)| ≥ 1, therefore |M ∩ add(o)| ≤
|M ∩ pre(o) ∩ del(o)| for every M ∈ M and every o ∈ O.

Note that the implementation of the tests for the weight
and balance do not require to iterate over all possible
groundings. The tests can run in polynomial time, because
we can look for the renaming of the variables of actions and
the invariant candidate. In the case of the weight test, we
must iterate (in the worst case) over all pairs of atoms in all

9837



(lifted) add effects. And in the case of the balance test, we
need to test the combination of every add effect with every
precondition that is also a delete effect.

The details are described by Helmert (2009). In fact, we
use the same reasoning as Helmert: What he calls a mono-
tonicity invariant corresponds here to the invariant candidate
ν that is balanced and with weight(ν) ≤ 1, i.e., the invari-
ant that does not increase the number of atoms in a state.
Helmert’s inference algorithm first looks for monotonicity
invariants without considering the initial state, and only af-
ter the problem is grounded, the monotonicity invariants are
grounded and checked against the initial state to form mutex
groups.

We improved upon Helmert’s findings by showing that
this kind of invariant is not only a (lifted) mutex group,
but specifically a (lifted) fam-group. This means that, as we
show in the next section, we can use the lifted fam-groups
during the grounding process for removing operators that
are either unreachable, or that can generate only dead-end
states. Moreover, it also means that this kind of invariants
always generates a subset of mutexes obtainable from the h2
heuristic (Fišer and Komenda 2018).

Pruned Grounding

In this section, we move from the full grounding of PDDL
tasks to the grounding that uses relaxed reachability and uti-
lizes pruning of operators that are either unreachable or can
lead only to dead-end states (dead-end operators).

We start with the definition of a relaxed grounding as a
grounding where we keep only relaxed reachable operators
and facts, and we extend this notion with a pruning of oper-
ators using a pruning function that maps the ground actions
to 1 if they are to be removed (or skipped during grounding),
and to 0 otherwise.
Definition 13. Given a normalized PDDL task P =
〈B, T ,V,P,A, ψI , ψG〉 and a pruning function ω :
G�A� �→ {0, 1}, the relaxed grounding of P pruned with
ω is a STRIPS planning task Πrelax

P,ω = 〈F ,O, sI , sG〉 con-
structed as follows.

Let L0 = ψI , G0 = ∅, A0 = ∅, and for every i ≥ 1
let Gi =

⋃
a∈AGi,a denote a set of groundings such that

Gi,a = {γ | γ ∈ Ga, pre(γ�a�) ⊆ Li−1, ω(γ�a�) = 0}, and
letAi =

⋃
a∈AGi,a�a� and let Li = Li−1∪

⋃
a∈Ai

add(a).
Finally let k ≥ 0 denote the smallest number such that Lk =
Lk+1. Then F := {fx | x ∈ Lk ∪ ψG}, sI := {fx | x ∈
ψI}, sG := {fx | x ∈ ψG}, and O := {oa | a ∈ Ak}
with pre(oa) = {fx | x ∈ pre(a)}, add(oa) = {fx | x ∈
add(a)} \pre(oa), and del(oa) = {fx | x ∈ del(a)∩Lk} \
{fx | x ∈ add(a)}.

Since we want to use lifted fam-groups for finding out
which operators can be pruned, we need to make sure that
(pruned) relaxed groundings preserve lifted fam-groups. If
we remove a set of operators and unreachable facts, then all
mutex groups will be preserved, because it can only make
less states reachable. However, fam-groups are not defined
over the reachable state space, but over the input planning
task, so we need to make sure that the conditions from Defi-
nition 5 hold.

Removing operators preserves also fam-groups, because
the second condition in Definition 5 must hold for all opera-
tors, therefore it must also hold for the operators remaining
after the removal. Removing unreachable facts can change
the operators, but only their delete effects because remov-
ing unreachable facts from a precondition would mean that
the corresponding operator is also unreachable. Therefore,
pre(o) ∩ del(o) remains the same for all operators o, which
is enough to show that fam-groups are preserved in any re-
laxed grounding pruned with any pruning function.
Theorem 14. Let P denote a PDDL task, let ν denote a
lifted fam-group, let ω denote a pruning function, and let
Πrelax

P,ω = 〈F ,O, sI , sG〉 denote the relaxed grounding of P
pruned with ω. Then for every invariant grounding ξ ∈ Hν

it holds that M = {fx | x ∈ ξ�ν�} ∩ F is a fam-group in
Πrelax

P,ω .

Proof. Let Πfull
P = 〈F ′,O′, sI , sG〉 denote the full ground-

ing of P and let M ′ = {fx | x ∈ ξ�ν�} ∩ F ′ denote the
corresponding fam-group in Πfull

P . Clearly F ⊆ F ′, and
M ⊆ M ′, and every f ∈ F is relaxed reachable in Πrelax

P,ω

or f ∈ sG, and for every operator o ∈ O it holds that
o is relaxed reachable in Πrelax

P,ω , and therefore there exists
o′ ∈ O′ such that pre(o) = pre(o′), add(o) = add(o′),
and del(o) = del(o′) ∩ F . Therefore M ′ ∩ add(o′) =
M ∩ add(o) and M ′ ∩ pre(o′) = M ∩ pre(o) and thus
also M ′ ∩ pre(o′) ∩ del(o′) = M ∩ pre(o) ∩ del(o) be-
cause pre(o) = pre(o′) ⊆ F . Therefore |M ∩ add(o)| ≤
|M ∩ pre(o) ∩ del(o)| holds. Finally, since both Πfull

P and
Πrelax

P,ω have the same initial state and M ⊆ M ′, then
|M ∩ sI | ≤ 1 holds.

Now we introduce a novel pruning technique on the lifted
level that uses lifted fam-groups to remove unreachable and
dead-end operators during grounding, i.e., before the (re-
laxed or full) grounding is explicitly constructed. In Defi-
nition 16, we define a pruning function that uses lifted fam-
groups (1.) to prune unreachable operators and (2.) to prune
dead-end operators (Proposition 15). In Theorem 17, we
show that with this pruning function, all plans are preserved.
Proposition 15. (Fišer and Komenda 2018, Corollary 8) Let
M ⊆ F denote a set of facts, let s denote a state and let
o ∈ O denote an operator applicable in s. If M is a fam-
group and |M ∩ sG| ≥ 1 and |M ∩ pre(o) ∩ del(o)| ≥ 1
and |M ∩ add(o)| = 0, then o[s] is a dead-end state.
Definition 16. Given a set of lifted fam-groups L, the fam-
group pruning function ωL is a pruning function such that
for every a ∈ G�A�:
1. ωL(a) = 1 if there exist ν ∈ L and ξ ∈ Hν such that

|pre(a) ∩ ξ�ν�| ≥ 2;
2. ωL(a) = 1 if there exist ν ∈ L and ξ ∈ Hν such that

|del(a) ∩ pre(a) ∩ ξ�ν�| = 1 and |add(a) ∩ ξ�ν�| = 0
and |ψG ∩ ξ�ν�| ≥ 1;

3. ωL(a) = 0 otherwise.
Theorem 17. Let P denote a PDDL task, let Πfull

P =
〈F ,O, sI , sG〉 denote the full grounding of P, let L denote a
set of lifted fam-groups, and let Πrelax

P,ωL
= 〈F ′,O′, sI , sG〉

9838



denote the relaxed grounding of P pruned with the fam-
group pruning function ωL. And for a given sequence of op-
erators π = 〈o1, . . . , on〉, let π|F ′ = 〈o′1, . . . , o′n〉, where
pre(o′i) = pre(oi), add(o′i) = add(oi), and del(o′i) =
del(oi)∩F ′ for every i ∈ {1, . . . , n}. If π is a plan in Πfull,
then π|F ′ is a plan in Πrelax

P,ωL
. And if π′ is a plan in Πrelax

P,ωL
,

then there exists a plan π in Πfull such that π|F ′ = π′.

Proof Sketch. In Definition 16, 1. avoids grounding of un-
reachable operators, because they would be applicable only
in states violating one of the fam-groups, i.e., in the un-
reachable states, and 2. avoids grounding of operators that
can produce only dead-end states (Proposition 15 and Theo-
rem 14), therefore they cannot be part of any plan. The rest
of the reachable operators are the same in Πfull and Πrelax

P,ωL

except that operators in Πrelax
P,ωL

does not have relaxed un-
reachable facts in their delete effects.

Inference of Lifted FAM-Groups

In this section, we introduce an extension of the algorithm
proposed by Helmert (2009). In a nutshell, Helmert’s algo-
rithm is a “guess, check, and repair” algorithm that main-
tains a set of invariant candidates and, in each cycle, one
candidate is tested against all actions. If the candidate is bal-
anced in all actions and the weight is at most 1, then it is
proved to be a monotonicity invariant and, after grounding,
checked against the initial state whether it forms a mutex
group. If the candidate has the weight larger than 1, then
the candidate is thrown away. And finally, if the candidate
is not balanced, it is refined in such a way the balance test
passes, and the refined candidate is put back into the set of
candidates.

The initial candidates are created from all predicates. For
each predicate p, ar(p) + 1 candidates are created so that
one candidate has all variables fixed and the remaining ar(p)
candidates have one of the arguments set to a counted vari-
able and the rest to fixed variables.

The refinement of the candidate is done by taking the first
action a in which the balance test fails and the candidate is
extended with an atom that covers one of the atoms in the
intersection of the precondition and delete effect so that the
add effect is balanced by the refined candidate. The newly
added atom is always of a predicate that is not yet part of
the candidate, and the atom can contain at most one counted
variable.

We improve this algorithm by the following. (i) We al-
low any number of counted variables in all atoms. (ii) We
introduce new refinement techniques that allow us to refine
also the candidates that fail weight test: the refinement of
types, and the refinement of counted variables. (iii) We intro-
duce a new refinement technique for the proved lifted mutex
groups so that the algorithm does not stop once an invariant
candidate is proved to be a lifted fam-group, but it allows
to construct supersets of the proved lifted fam-groups. An-
other difference is that we infer directly lifted fam-groups
instead of proving monotonicity invariants first. The reason
is purely practical. Allowing any number of counted vari-
ables can generate a huge number of candidates, but restrict-

Algorithm 1: Inference algorithm.
Input: A PDDL task P = 〈B, T ,V,P,A, ψI , ψG〉
Output: A set of lifted fam-groups M

1 C ← {〈∅, {c1, . . . , car(p)}, {p(c1, . . . , car(p)}〉 | p ∈ P};
2 M ← {};
3 while |C| > 0 do
4 ν ←Pop(C);
5 if i-weight(ν) = 1 then
6 if weight(ν) ≤ 1 then
7 if ν is balanced then
8 M ←M ∪ {ν};
9 C ← C ∪ RefineProved(ν);

10 else C ← C ∪ RefineUnbalanced(ν) ;
11 else C ← C ∪ RefineHeavyAction(ν) ;
12 else C ← C ∪ RefineHeavy(ν, ψI) ;
13 return M ;
14 function RefineProved(ν)
15 C ← ∅;
16 for each a ∈ A s.t. both pre(a) and del(a) can be

unified with some α ∈ atoms(ν), but add(a) cannot be
unified with atoms(ν) do

17 C ← C∪ RefineExtend(ν, add(a));
18 return C;
19 function RefineUnbalanced(ν)
20 Let a be an action s.t. ν is not balanced in a;
21 Let β ∈ add(a) be the atom that can be unified with the

corresponding atom α from ν;
22 C ← Refine types of variables V[α] so that β cannot be

unified with the refined α;
23 return C∪ RefineExtend(ν, del(a));
24 function RefineExtend(ν, X)
25 C ← ∅;
26 for each δ ∈ X s.t. P[δ] 
∈ P[atoms(ν)] do
27 C ← C∪ Refine ν by extending it with an atom α of

the predicate P[δ] s.t. δ can be unified with α;
28 return C;
29 function RefineHeavyAction(ν)
30 Let a ∈ A be an action failing the weight test;
31 return RefineHeavy(ν, add(a));
32 function RefineHeavy(ν, X)
33 Let β1, β2, β1 
= β2, be two atoms from X that can be

unified with the corresponding atoms α1, α2 from ν;
34 C ← Refine types of variables V[α1] (V[α2]) so that β1

(β2) cannot be unified with the refined α1 (α2);
35 if α1 = α2 then
36 C ← C∪ Refine counted variables from V[α1] so

that {β1, β2} cannot be unified with the refined α1;
37 return C;

ing the candidates to those that has init-weight exactly one
reduces the number significantly.

The main part of the algorithm is described as a pseudo-
code in Algorithm 1. The remaining parts are described in
the text below. As already mentioned, testing whether there
exist groundings so that action atoms can be ground to the
same atoms as invariant candidate’s atoms can be done in a
polynomial number of steps by renaming variables of the
atoms. If there exists such a renaming, we say that these
atoms can be unified.
Initial Invariant Candidates For each predicate p ∈

9839



P , one invariant candidate consisting of a single atom
p(c1, . . . , car(p)) with all variables being counted variables
is created. Such candidates almost always fail the weight
test, but we have the refinement of the counted variables,
descried below, that allows to change the candidate in such
a way, that the weight test is passed in the following cycles.
Refinement by Extension This type of refinement is the
same as is used by Helmert for recovering from a failed bal-
ance test, but we use it also for the refinement of the proved
lifted fam-groups. When we prove a lifted fam-group ν, the
algorithm looks for actions that cannot add any atom from
ν, but it deletes something from ν. For these actions, we try
to extend ν with atoms from the add effect, because adding
such atoms cannot violate balance in these actions.
Refinement of Variable Types Consider the atom p(v1: t1)
with variable v1 of type t1 and the atom p(v2: t2) with vari-
able v2 of type t2 that is a sub-type of t1, i.e., D(t2) ⊂
D(t1). Clearly, p(v1: t1) can be unified with p(v2: t2) be-
cause t2 is a sub-type of t1. However, if we change the type
t1 to some other sub-type t3 such that D(t3) ⊂ D(t1) and
D(t3) ∩ D(t2) = ∅, then p(v1: t3) can no longer be unified
with p(v2: t2) and the change is valid in the sense that the
predicate p must accept variables (objects) of type t3.

This idea of type refinement is used by our inference al-
gorithm to fix the weight test. If any candidate’s atom can
be unified with some atom from an add effect or the initial
state, and the candidate’s atom has, in some argument, more
general type than the other atom, then we can decrease the
weight by applying the change of types described above.
Refinement of Counted Variables This refinement simply
changes counted variables into fixed variables. If the weight
test fails because two atoms from some add effect (or the
initial state) are covered by a single atom from the invari-
ant candidate because of a counted variable, then changing
the counted variable to the fixed variable fixes the weight
test. For example, consider an invariant candidate with a sin-
gle atom p(v1, c1) with a fixed variable v1 and a counted
variable c1, and the add effect {p(w1, w2), p(w1, w3)}. As-
suming all variables have the same type, the invariant candi-
date can be unified with both atoms from the add effect, be-
cause the invariant grounding can expand the counted vari-
able c1 into two different objects covering both w2 and w3.
Changing c1 to a fixed variable, however, prevents it, thus
the weight test passes.

Experimental Results

The grounding of PDDL tasks and the inference of lifted
fam-groups was implemented1 in C and experimentally eval-
uated on a cluster of computing nodes with Intel Xeon Scal-
able Gold 6146 processors. We implemented both Helmert’s
original algorithm, referred to as H, and our improved algo-
rithm, referred to as H+. Both H and H+ ran with the limit on
the number of considered invariant candidates set to 10 000.
We used domains from all IPCs from 2006 to 2018.

We compared the inferred (ground) fam-groups in terms
of the mutex group cover number, i.e., the minimum num-
ber of mutex groups needed to cover all facts, and the num-

1https://gitlab.com/danfis/cpddl.git, branch aaai20

domain #ps avg. cover number num. mutex groups
H H+ F H �H+ H+ �H F �H F �H+

agricola 40 0.70 0.47 0.35 0 40 627 587
barman 74 0.88 0.19 0.19 0 1 640 1 640 0
cavediving 40 0.73 0.73 0.22 0 40 1 272 1 232
cybersec 30 0.94 0.72 0.39 26 162 528 1 566 1 372
maintenance 25 1.00 1.00 0.99 0 0 6 6
nomystery 40 0.08 0.05 0.05 0 40 40 0
organic-synthesis 9 1.00 0.83 0.62 0 47 1 415 1 368
parcprinter 70 0.61 0.61 0.24 0 0 4 034 4 034
pegsol 70 0.34 0.34 0.34 0 0 223 223
rovers 40 0.43 0.43 0.43 0 0 2 2
scanalyzer 70 0.18 0.18 0.18 0 0 172 172
snake 19 0.74 0.74 0.34 0 0 1 553 1 553
sokoban 100 0.20 0.20 0.20 0 0 8 8
spider 26 0.43 0.43 0.21 0 818 2 151 1 333
tetris 32 0.90 0.04 0.03 0 136 1 400 1 264
thoughtful 20 0.55 0.55 0.42 0 0 1 023 1 023
tidybot 60 0.98 0.63 0.63 0 429 656 227
tpp 25 0.30 0.30 0.30 0 0 237 237
transport 140 0.25 0.05 0.05 0 432 432 0
trucks 12 0.86 0.06 0.06 0 180 1 092 912
woodworking 100 0.58 0.58 0.57 2 1 151 1 906 757
caldera 40 0.83 0.83 - 0 920 - -
citycar 40 0.71 0.09 - 0 201 - -
flashfill 20 0.21 0.11 - 0 61 964 - -
settlers 40 0.96 0.95 - 0 140 - -
overall w/o CE 1777 0.42 0.34 0.29 28 167 481 21 455 16 310
overall with CE 1957 0.44 0.35 - 28 230 706 - -

Table 1: Left: the comparison of average C/F (the smaller
is the better), where C is the mutex group cover number and
F is the number of facts. Right: for every A�B, the number
of fam-groups found by A that are not a subset of any fam-
group found by B. “overall w/o CE” counts only problems
without conditional effects, and “overall with CE” counts
all problems: averages over all counted problems on left and
sums on right. H is Helmert’s algorithm; H+ is our improve-
ment; F is a complete alg. for all maximal fam-groups.

ber of fam-groups that were not found by other methods.
Since Fišer and Komenda (2018) introduced a complete al-
gorithm for inference of maximal fam-groups (based on re-
peated solving of Integer Linear Program), we compare also
to this method, denoted by F, because it shows how close we
are to the best possible results.

Table 1 shows results for problems where the computa-
tion of fam-groups by all methods finished within 5 minutes
time and 8 GB memory limit and also the mutex group cover
number was computed within 1 hour. To deal with different
sizes of problems, mutex group cover numbers are divided
by the number of facts for each problem and averaged within
each domain. The domains with conditional effects (under
the first horizontal line) do not contain results for F, because
it is not clear how to find a complete set of fam-groups with-
out compiling conditional effects away. Only domains with
some difference are shown. Since F must always dominate
both H and H+, the numbers in the F column are in bold if
they are strictly better than the other two, and the numbers
for H+ are in bold if they are strictly better than H.

The improvement by H+ in agricola, tetris, tidybot, and
citycar was due to multiple counted variables used in a sin-
gle atom. The type refinement helped in nomystery, organic-
synthesis, and transport, where some predicates formed mu-
tex groups only for certain sub-types of their arguments. In
barman, trucks, settlers, and woodworking, the combination
of the type refinement and the extension of proved fam-
groups provided a richer set of mutex groups. In 13 domains
both H and H+ found the complete set of fam-groups, and in

9840



domain #ps mutex + dead-end + h2 fw/bw
H H+ H H+ H H+

agricola 20 0.00 0.00 0.00 0.00 64.99 65.13
barman� 74 15.42 15.42 15.42 45.95 25.50 57.83
citycar� 40 0.00 0.00 1.61 1.61 1.61 1.61
flashfill 18 0.10 0.10 0.10 0.10 7.06 7.06
floortile� 70 0.00 0.00 22.79 22.79 35.43 35.43
organic-synthesis� 7 0.00 11.44 14.14 23.11 90.85 90.85
parcprinter� 30 0.00 0.00 40.83 40.83 70.00 70.00
parking 80 3.09 3.09 3.09 3.09 6.19 6.19
scanalyzer 30 1.34 1.34 1.34 1.34 28.12 28.12
spider 15 0.00 3.47 0.00 3.47 16.61 16.61
trucks� 30 0.00 0.00 0.00 82.14 19.09 82.94
woodworking� 30 0.00 0.00 10.08 10.08 51.41 51.41
overall from above 444 3.22 3.52 10.62 21.52 27.70 37.40
overall 1247 1.15 1.25 3.78 7.66 17.83 21.28

Table 2: The average percentage of removed operators,
overall is the average over all problems. Column “mutex”:
lifted fam-groups used for detection of unreachable oper-
ators (their preconditions are mutex); “+dead-end”: addi-
tional pruning of dead-end operators; “+h2 fw/bw”: addi-
tional pruning using h2 in forward and backward with fam-
groups used for the disambiguation. Domains in which dead-
end detection pruned additional operators are starred.

barman, nomystery, and transport only H+ found a complete
set of fam-groups.
H found some fam-groups not found by H+ in cybersec be-

cause of the limit on the number of invariant candidates, and
in woodworking because of the init-weight restriction we
use in H+. If we did not set the limit on the number of invari-
ant candidates and we created one auxiliary type per each
object, H+ would dominate H in all domains, but the time
spent in the inference would significantly increase. Note that
the numbers of fam-groups found by one method and not the
other may sometimes be misleading (especially for cybersec
and flashfill), because there may be many overlapping fam-
groups. So for example, finding fam-groups {A,B}, {B,C}
is reported as two fam-groups even if there is a maximal
fam-group {A,B,C} not found by that method.

The time spent in the inference was under a millisecond
in 1490 out of 1957 tested problems for H+ (1640 for H),
between one millisecond and one second in 418 (284) prob-
lems, and more than a second for the remaining 49 (33)
problems from the caldera, cybersec, and flashfill domains.
Fwas orders of magnitude slower (as previously reported by
Fišer and Komenda (2018)).

The limit on the number of candidates (10 000) was
reached only in the cybersec domain for H, and in the
caldera, cybersec, flashfill, and organic-synthesis domains
for H+. So, increasing the limit could provide more fam-
groups only in these domains, but it would also require more
time to process all candidates.

As Table 1 shows (non-zero values in the F�H+ column),
H+ is not complete with respect to all maximal (ground)
fam-groups. The reason is that the algorithm allows at most
one atom of each predicate in lifted fam-groups, and all vari-
ables are restricted to the types defined in the input PDDL.
So, for example, suppose we have three objects l1, l2, l3 of a
type loc, there is no sub-type of loc, and the correspond-
ing ground problem has a maximal (ground) fam-group
{at(l1), at(l2)}. This fam-group cannot be found by H+,
because the invariant candidate at(c: loc) (with a counted

domain #ps m&s comp1 comp2
fd H H+ fd H H+ fd H H+

agricola 20 3 3 3 9 8 8 6 7 9
barman 34 11 11 11 12 11 14 11 12 15
caldera 20 12 12 12 11 13 14 12 13 15
citycar 20 14 16 16 10 15 16 13 16 16
settlers 20 9 9 9 8 9 8 9 9 9
tetris 17 11 11 11 11 11 12 13 13 13
tidybot 40 11 11 31 32 32 38 31 30 39
transport 70 24 24 24 33 29 33 33 29 33
trucks 30 9 10 10 14 13 13 10 12 13
Σ from above 271 104 107 127 140 141 156 138 141 162
childsnack 20 0 0 0 0 0 0 1 2 2
data-network 20 12 12 12 13 14 14 13 12 12
nurikabe 20 12 12 12 12 11 11 11 10 10
organic-synth 20 7 10 10 7 10 10 7 10 10
parcprinter 50 41 41 41 43 43 43 41 43 43
petri-net-align 20 7 7 7 19 20 20 19 19 19
rovers 40 7 7 7 14 13 13 13 13 13
spider 20 6 6 6 12 11 11 11 12 12
storage 30 15 15 15 16 15 15 15 15 15
tpp 30 7 6 6 12 13 13 15 15 15
woodworking 50 31 31 31 47 46 46 47 48 48
Σ 1 166 593 598 618 725 727 742 745 754 775

Table 3: The number of solved problems in the optimal track
for selected planners. fd: FD with the original translator.
The top part lists domains where H and H+ differ.

variable c) would correspond to {at(l1), at(l2), at(l3)}. And
even if there was a sub-type for each li, then the invari-
ant candidate {at(v1: l1), at(v2: l2)} (with fixed variables
v1, v2) is not constructed by H+, because it contains two
atoms of the same predicate.

Next, we compared the pruning power of H, H+ and h2
heuristic in forward and backward direction (Alcázar and
Torralba 2015) with fam-groups from H and H+ used for dis-
ambiguation. Table 2 shows the results for problems where
all variants finished within the 5 minutes time limit. The ta-
ble lists only the domains in which at least one operator was
pruned during grounding or there was a difference between
h2 with H and with H+.

The pruning of dead-end operators during grounding
had effect in 7 domains (difference between “mutex” and
“+dead-end” columns). Overall, using H for pruned ground-
ing removes more than 3.7% operators and using H+ about
twice as that (7.6%). Moreover, inferring a richer set of fam-
groups using H+ provides more pruning power even for h2:
about 3.5% more operators are removed.

Lastly, we measured a coverage with the Fast Downward
planner (FD) (Helmert 2006), where we switched the origi-
nal translator from PDDL to FDR with our implementation,
used h2 fw/bw preprocessor, and set the time limit to 30 min-
utes and the memory limit to 8 GB. For the satisficing track,
we evaluated LAMA-11 (Richter and Westphal 2010) and
FF (Hoffmann and Nebel 2001) planners, but we did not find
a significant difference between H and H+. LAMA-11 with
H+ solved two more problems overall, FF with H solved one
more problem overall, and the most notable difference was
that FF with H+ solved 5 more problems in citycar.

For the optimal track, we used A� with the LM-Cut
(lmc) heuristic (Helmert and Domshlak 2009), the merge-
and-shrink (m&s) heuristic with SCC-DFP merge strategy
and non-greedy bisimulation shrink strategy (Helmert et al.
2014; Sievers, Wehrle, and Helmert 2016), the potential
(pot) heuristic optimized for all syntactic states (Seipp, Pom-
merening, and Helmert 2015), and two non-portfolio win-

9841



ners of the last IPC 2018, Complementary1 (comp1) (Franco
et al. 2018), and Complementary2 (comp2) (Franco et al.
2017; Franco, Lelis, and Barley 2018). The only difference
for lmc was that H+ solved three more problems in barman
and one less in transport. For pot, H+ solved three less prob-
lems in spider and two more in tetris.

The most interesting results were found with m&s and
comp1/2 planners shown in Table 3. The table also shows
the results with the original translator from FD (fd) which
implements H. However, there are some differences in the
grounding process (e.g., handling of negative preconditions
and conditional effects, deduplication of operators, ordering
of the unification steps, ...), so we do not think fd is directly
comparable to H and H+, because it does not measure just
the difference between different sets of lifted fam-groups.

All these planners use some variant of abstraction heuris-
tics, where we expected to see the most difference because
they depend on the complexity and the number of inferred
mutex groups. However, the implementation of m&s and
pattern databases in FD uses FDR variables derived from
fam-groups instead of fam-groups directly. We think this ap-
proach possibly disregards some useful information from the
overlapping fam-groups that could improve the heuristic es-
timates.

Conclusion

Any translator from PDDL to FDR must, at some point, infer
a set of mutex groups in order to create FDR variables. The
most commonly used translator (Helmert 2009) infers mutex
groups on a lifted (PDDL) level and then grounds them as it
grounds the task into STRIPS. We proved that these lifted
mutex groups are lifted fam-groups, i.e., they are a certain
subclass of mutex groups previously described by Fišer and
Komenda (2018).

Moreover, we showed how to use lifted fam-groups to re-
duce the number of operators during grounding by utiliz-
ing the ability of fam-groups to determine unreachable and
dead-end operators. The experimental evaluation on IPC do-
mains confirmed that operators are pruned in a sizable num-
ber of problems.

Finally, we proposed an extension of the Helmert’s (2009)
algorithm that produces a richer set of lifted fam-groups,
which in turn increased the number of removed operators
during grounding and the overall number of solved tasks for
the heuristic search with abstraction heuristics.

Acknowledgements

The work was supported by the Czech Science Foun-
dation (grant no. 18-24965Y). The experimental evalu-
ation was supported by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for
Informatics”.

References

Abdulaziz, M.; Gretton, C.; and Norrish, M. 2017. A state-space
acyclicity property for exponentially tighter plan length bounds. In
Proc. ICAPS’17, 2–10.

Alcázar, V., and Torralba, Á. 2015. A reminder about the impor-
tance of computing and exploiting invariants in planning. In Proc.
ICAPS’15, 2–6.
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R. 2013.
Revisiting regression in planning. In Proc. IJCAI’13, 2254–2260.
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.
Culberson, J. C., and Schaeffer, J. 1996. Searching with pattern
databases. In Canadian Conference on AI, volume 1081 of Lecture
Notes in Computer Science, 402–416. Springer.
Edelkamp, S. 2001. Planning with pattern databases. In Proc.
ECP’01, 13–24.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2:189–208.
Fišer, D., and Komenda, A. 2018. Fact-alternating mutex groups
for classical planning. Journal of Artificial Intelligence Research
61:475–521.
Franco, S.; Torralba, A.; Lelis, L. H.; and Barley, M. 2017. On cre-
ating complementary pattern databases. In Proc. IJCAI’17, 4302–
4309.
Franco, S.; Lelis, L. H. S.; Barley, M.; Edelkamp, S.; Martinez, M.;
and Moraru, I. 2018. The Complementary1 planner in IPC 2018.
In IPC 2018 planner abstracts, 28–31.
Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Complemen-
tary2 planner in IPC 2018. In IPC 2018 planner abstracts, 32–36.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In Proc.
ICAPS’09, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & shrink abstraction: A method for generating lower bounds
in factored state spaces. Journal of the Association for Computing
Machinery 61(3):16.1–16.63.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
McDermott, D. 2000. The 1998 AI planning systems competition.
The AI Magazine 21(2):35–55.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127–177.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Planning as sat-
isfiability: parallel plans and algorithms for plan search. Artificial
Intelligence 170(12-13):1031–1080.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New optimiza-
tion functions for potential heuristics. In Proc. ICAPS’15, 193–
201.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized la-
bel reduction for merge-and-shrink heuristics. In Proc. AAAI’14,
2358–2366.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analy-
sis of merge strategies for merge-and-shrink heuristics. In Proc.
ICAPS’16, 294–298.

9842


