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Abstract

Multimodal summarization with multimodal output (MSMO)
is to generate a multimodal summary for a multimodal news
report, which has been proven to effectively improve users’
satisfaction. The existing MSMO methods are trained by the
target of text modality, leading to the modality-bias problem
that ignores the quality of model-selected image during train-
ing. To alleviate this problem, we propose a multimodal ob-
jective function with the guidance of multimodal reference
to use the loss from the summary generation and the im-
age selection. Due to the lack of multimodal reference data,
we present two strategies, i.e., ROUGE-ranking and Order-
ranking, to construct the multimodal reference by extending
the text reference. Meanwhile, to better evaluate multimodal
outputs, we propose a novel evaluation metric based on joint
multimodal representation, projecting the model output and
multimodal reference into a joint semantic space during eval-
uation. Experimental results have shown that our proposed
model achieves the new state-of-the-art on both automatic
and manual evaluation metrics. Besides, our proposed eval-
uation method can effectively improve the correlation with
human judgments.

1 Introduction

Generally, most existing summarization researches focus on
either texts (Wan and Yang 2006; Celikyilmaz et al. 2018) or
images (Wang, Jia, and Hua 2011; Sharma et al. 2015) in iso-
lation. Recently, researchers (Chen and Zhuge 2018; Zhu et
al. 2018) begin to pay attention to summarizing multimodal
news to multimodal outputs, which can be called multimodal
summarization with multimodal output (MSMO) (Zhu et al.
2018), to help improve users’ satisfaction.

Although great efforts have been made in multimodal
summarization, we find that the existing methods have the
following problems:

Modality-bias. The current multimodal summarization
models are trained by the target of text modality, which
causes a modality-bias problem. It means the system tends
to only optimize the text summary generation process, while
the image quality is ignored during training. We give an
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Figure 1: An example of the modality-bias problem. Sum-
mary A and B are considered similar when calculating the
loss only with the text reference. But with the multimodal
reference, we can distinguish A from B.

example in Figure 1 to illustrate this phenomenon. In the
training process, if we only consider the text reference, then
Summary B is regarded as better than A; but A will be dis-
tinguished as better than B if the multimodal reference is
available, which is in line with the ground truth.

Lack of good evaluation metric. The existing methods
evaluate multimodal summaries from three aspects: (1) the
ROUGE value between the texts in the model output and
reference, (2) the precision of the images in the model output
and reference, and (3) the image-text similarity in the model
output. However, all these metrics consider each modality
separately. We argue that the multimodal output should be
treated as a whole in the evaluation process to maintain the
information integrity (See an example in Section 3.3).

Therefore, this paper aims to guide multimodal summa-
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rization with the multimodal reference as the target and to
evaluate multimodal outputs as a whole. Specifically, we
first propose a multimodal objective function which takes
into account both the negative log-likelihood loss (NLL)
of the summary generation and the cross-entropy loss (CE)
of the image selection. In order to extend the text refer-
ence to the multimodal reference, we then introduce two
strategies: ROUGE-ranking and Order-ranking. ROUGE-
ranking uses the ROUGE (Lin 2004) value between the
corresponding caption and the text reference to sort the im-
ages; Order-ranking measures the image salience directly
according to the order in which they appear in the original
news. Finally, to better evaluate the multimodal outputs, we
employ the image-caption pairs to train a joint multimodal
representation model to help calculate the similarity between
two multimodal segments.

Our main contributions are as follows:

• We introduce a multimodal objective function to incorpo-
rate the multimodal reference into the training process, in
which both the summary generation and the image selec-
tion are considered. To the best of our knowledge, this is
the first work that guides multimodal summarization with
multimodal reference.

• We propose a novel evaluation method to evaluate a mul-
timodal summary by projecting both the multimodal sum-
mary and the reference into a joint semantic space.

• The experimental results show that our proposed model
outperforms existing methods with both automatic and
manual evaluation metrics. Moreover, our proposed eval-
uation method can effectively improve the correlation
with human judgments.

2 Background

For MSMO task, given a multimodal news report M =
{T, V }, where T = {t1, t2, · · · , tm} is a text sequence
and V = {v1, v2, · · · , vn} is a collection of images (m de-
notes the text sequence length and n denotes the image num-
ber), the system summarizes M into a multimodal summary
{Y, v∗}, where Y = {y1, y2, · · · , yl} denotes the textual
summary limited by length l and v∗ is an image extracted
from the image collection V .

2.1 Multimodal Attention Model

Zhu et al. (2018) propose a multimodal attention model, in
which the news with images is considered as input and a
multimodal summary is gained as output. As shown in the
left half in Figure 2, the model consists of a text encoder, an
image encoder, a multimodal attention layer, and an attentive
summary decoder. The text encoder maps the source text to
a sequence of hidden states hi. The image encoder extracts
the global fc7 image feature vectors g for all images and
projects g into g∗, the same dimension as hi. Previous re-
searches (Li et al. 2018a; Zhu et al. 2018) have shown that
the global features are more effective than the local features,
thus we only consider the global features in this paper.

During decoding, the summary decoder reads the previ-
ous predicted word and the multimodal context vector ctmm

to predict the next word. Then, the summary decoder reaches
a new decoder state st. ctmm is a weighted sum of the tex-
tual context vector cttxt and the visual context vector ctvis,
which is obtained through the multimodal attention mech-
anism (Li et al. 2018a). cttxt and ctvis are obtained through
textual attention layer (Bahdanau, Cho, and Bengio 2015;
Luong, Pham, and Manning 2015) and visual attention
layer (Li et al. 2018a), respectively. A multimodal coverage
mechanism (Li et al. 2018a), which maintains both a textual
coverage vector covt

txt and a visual coverage vector covtvis,
is introduced to alleviate repeated attention to the source.

The summary generation is based on the pointer-generator
network (See, Liu, and Manning 2017), which either gen-
erates a word from the vocabulary distribution or copies a
word from the source text. The loss for timestep t is the sum
of negative log-likelihood (NLL) loss of the target word wt

and the multimodal coverage loss:

Lt = −logP(wt) +
∑

i

min(αt
txt,i, covt

txt,i)

+
∑

j

min(αt
vis,j , covt

vis,j)
(1)

where αt
txt and αt

vis is the attention weight for the text fea-
tures and the image features, respectively.

The salience of images is measured by the visual coverage
vector in the last decoding step, which is the sum of the vi-
sual attention on image features over all the decoding steps.
The input image with the highest salience score will be se-
lected. The core idea of this model is to sort images by their
visual coverage while calculating the NLL loss of text gen-
eration, to accomplish the goal of the multimodal summary.

2.2 Multimodal Automatic Evaluation

To evaluate the quality of a multimodal summary, Zhu
et al. (2018) propose the multimodal automatic evaluation
(MMAE) which is defined to be a linear combination of
three metrics: salience of text, salience of image, and image-
text relevance. The weight of linear combination is obtained
by fitting the human judgment scores.

The salience of text is measured by ROUGE. They define
the image precision (IP), which represents whether an out-
put image is in the gold summary, to depict the salience of
an image. The image-text relevance is indirectly obtained by
a cross-modal retrieval model (Faghri et al. 2018), which is
trained using the image-caption pairs. Specifically, for im-
ages, they directly use the global fc7 features; for text, a
unidirectional GRU with max-over-time pooling (Collobert
and Weston 2008) is applied to encode the text to a single
vector representation. Next, they employ two feed-forward
neural networks to project the text features and the image
features into a joint semantic space. The whole network is
trained using the max-margin loss:

L =
∑

ĉ

max(β − s(i, c) + s(i, ĉ), 0)

+
∑

î

max(β − s(i, c) + s(̂i, c), 0)
(2)

where i and c denote the paired image and caption, î and
ĉ are the negative ones, s(·) is the cosine similarity between
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Figure 2: Overview of our work. We divide it into four parts: (1) Baseline (Section 2.1); (2) Image Selection and multimodal
objective function (MOF) (Section 3.1); (3) Data Extension (Section 3.2); (4) Evaluation (Section 3.3). We take the model,
which uses the last hidden state of decoder, as an example.

the text vector and the image vector, β is the margin. We em-
ploy the model to calculate the similarity between an image
and a text.

3 Our Model
The current multimodal summarization methods have the
following two drawbacks: 1) Due to the lack of multimodal
reference, the existing multimodal summarization systems
are trained by the target of text modality (Eq.1), which will
lead to the modality-bias problem. 2) Existing evaluation
metrics consider each modality separately, which ignores the
information integrity.

Therefore, in this work, we propose a multimodal objec-
tive function, which considers both the text loss and image
loss, to improve multimodal summarization with the guid-
ance of multimodal reference. To this end, we introduce
an image discriminator based on the multimodal attention
model, which is described in Section 3.1 together with our
multimodal objective function. Due to the lack of multi-
modal reference, we explore two strategies to construct the
multimodal reference by extending the text reference, which
is described in Section 3.2. Finally, we design a multimodal
automatic evaluation metric by treating the multimodal out-
puts as a whole during evaluation, which is described in Sec-
tion 3.3.

3.1 Multimodal Objective Function

Suppose we have the image reference besides the text refer-
ence during model training. To utilize the multimodal refer-
ence in training, we propose a multimodal objective function

(MOF), which considers the cross-entropy loss of the image
selection in addition to the negative log-likelihood loss of
text summary. Thus, we decompose the multimodal sum-
marization into two subtasks: summary generation and text-
image relation recognition. To achieve that, we propose an
image discriminator to guide the image selection. The image
discriminator is to determine whether an image is related to
the text content. We apply multitask learning (Caruana 1997;
Collobert and Weston 2008) to train the two subtasks si-
multaneously, as illustrated in the right half of Figure 2. In
our multitask setup, we share the text encoder and the sum-
mary decoder for two subtasks. Since summary generation
has been described in Section 2.1, we focus on text-image
relation recognition in this section.

We use another image encoder to transform the global im-
age features g to g′. Then the text information can be pre-
sented in two ways: (1) the last hidden state of the text en-
coder; or (2) the last hidden state of the summary decoder.
To project the two vectors into a joint semantic space, we
use two multilayer perceptrons with ReLU activation func-
tion (Nair and Hinton 2010) to transform the textual vector
and the visual vector to Itxt and Ivis. We then employ the
L2-norm to turn Itxt, Ivis into I∗txt, I∗vis. The degree of rele-
vance between images and text information is calculated as
Eq.3.

P(img) = softmax(I∗txt · I∗vis) (3)

The images are divided into text-related and non-text-
related, which means the text-image relation recognition can
be regarded as a classification task. Hence we adopt the
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cross-entropy loss here:

Lvis =
∑

−PA(img)logP(img) (4)

where PA(img) denotes the actual probability distribution of
images (If we choose the top-k ranked images as the target,
then the probability of an image is 1/k.). Finally, the cross-
entropy loss, weighted by a hyperparameter λ, is added to
the loss function of summary generation (Eq.1) to yield a
new loss function that takes both the text reference and im-
age reference into consideration:

Ltxt =
∑

t

Lt

Lmm = Ltxt + λLvis

(5)

3.2 Data Extension

Due to the lack of multimodal reference in existing multi-
modal summarization dataset, the gold standard is plain text
during the training process or validation process. Thus, we
consider two methods to sort the images and choose top-k
images in order to extend text reference to multimodal ref-
erence:

ROUGE-ranking. It sorts the images according to the
ROUGE-2 value between the corresponding caption and the
text reference since the image is assumed to semantically
match with the corresponding caption.

Order-ranking. It sorts the images according to the order
in the original news because the core information tends to
appear at the front of the news reports.

3.3 Joint Multimodal Representation

A problem with the current multimodal evaluation metric
(MMAE) is that it compares the model output with the ref-
erence from individual modalities, such as ROUGE and IP.
Therefore, we argue that MMAE cannot evaluate the infor-
mation integrity of the multimodal summary. Consider the
example in Figure 3, where two summaries express the same
two events: winning the championship and crying with joy.
Since the text ROUGE value between TA and TB, the im-
age precision between IA and IB, the image-text similarity
between IA (IB) and TA (TB) all are very low, A is quite dif-
ferent from B from the perspective of MMAE, which is con-
tradictory to the truth. Thus, it is critical to find a new way
to evaluate the overall quality of multimodal summaries.
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Figure 4: Overview of our proposed joint multimodal repre-
sentation model.

To the best of our knowledge, no one has studied how
to overall evaluate multimodal summaries. Although exist-
ing method attempts to measure the cross-modal similar-
ity, it only focuses on the image and text in the modal
output, rather than the multimodal output as a whole to
compare with the multimodal reference. We extend the ba-
sic cross-modal retrieval model (Section 2.2) and propose
the joint multimodal representation model in this work.
In cross-modal retrieval, the input is a pair of an image
and a text. But the input becomes a pair of multimodal
segments (ma,mb) in our proposed model, where ma =
(Imagea,Texta) and mb = (Imageb,Textb). The critical
problem is how to construct the training data. There are lots
of image-caption pairs in MSMO dataset, and each image
is assumed to match the corresponding caption. Thus, we
exchange the image (or text) of two image-caption pairs to
get a matching multimodal segment pair (m∗

a,m
∗
b), where

m∗
a = (Imageb,Texta) and m∗

b = (Imagea,Textb), as
shown in Figure 4. It is worth noting that since Imagea in
m∗

b matches Texta in m∗
a and Imageb in m∗

a matches Textb
in m∗

b , m∗
a semantically matches m∗

b . We encode the image
and the text as described in Section 2.2. Then we use the
multimodal attention mechanism (Li et al. 2018a) to fuse
the text vector and the image features. Finally, our model is
trained under a new max-margin loss:

L∗ =
∑

m̂

max(β − s(m,m∗) + s(m, m̂), 0) (6)

where (m,m∗) is a matching multimodal segment pair,
(m, m̂) is a negative pair sampled from a batch. We also
use the image-caption pairs in MSMO dataset to construct
the training data.

4 Related Work

Multimodal summarization has been proposed to extract the
most important information from the multimedia informa-
tion. The most significant difference between multimodal
summarization (Mademlis et al. 2016; Li et al. 2017; 2018b;
Zhu et al. 2018) and text summarization (Zhu et al. 2017;
Paulus, Xiong, and Socher 2018; Celikyilmaz et al. 2018;
Li et al. 2018c; Zhu et al. 2019) lies in whether the input
data contains two or more modalities of data. One of the
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most significant advantages of the task is that it can use the
rich information in multimedia data to improve the quality
of the final summary.

Multimodal summarization can be categorized into
single-modal output (Evangelopoulos et al. 2013; Li et al.
2017) and multimodal output (Bian et al. 2015; Zhu et al.
2018). Evangelopoulos et al. (2013) detect the keyframes in
a movie based on the saliency of individual features for au-
ral, visual and linguistic representations. Li et al. (2017)
generate a textual summary from a set of asynchronous
documents, images, audios, and videos by maximizing the
salience, non-redundancy, and coverage. Bian et al. (2017)
propose a multimedia topic model to separately identify the
representative textual and visual samples and then produce a
comprehensive visualized summary. Zhu et al. (2018) pro-
pose a multimodal attention model to generate a multimodal
summary from the multimodal input.

However, these researches either generate the text and the
image separately or use the single-modal reference. The for-
mer ignores the relationship between the texts and the im-
ages in the output. The latter may cause a modality-bias
problem which means that the system will deviate towards
optimizing single-modal output (e.g., text summary). None
of the above works focuses on using a multimodal reference
to jointly generate the texts and the image as the multimodal
output. This is one of the goals in this paper. Another differ-
ence is that no one has taken into account the information
integrity. In this work, we propose a joint multimodal repre-
sentation model which maps the multimodal summary and
the reference into a joint semantic space during evaluation.

5 Experiments

5.1 Dataset

We use the MSMO dataset (Zhu et al. 2018) which con-
tains online news articles (723 tokens on average) paired
with multiple image-caption pairs (6.58 images on average)
and multi-sentence summaries (70 tokens on average). It is
worth noting that in the definition of MSMO, the input is the
text (excluding captions for generalization) and images, and
the output is a multimodal summary which is actually a text
summary with an image. The dataset includes 293,965 train-
ing pairs, 10,355 validation pairs, and 10,261 test pairs. For
test data, based on the text reference, at most three images
are annotated to produce a multimodal reference.

We design two sets of experiments: (1) To verify the ef-
fectiveness of evaluation metric using the joint multimodal
representation model (MR), we calculate its correlation with
human judgments and compare it with other existing met-
rics. Then we integrate our proposed MR into the current
multimodal automatic evaluation metric (MMAE) to explore
whether we can obtain an evaluation model more correlated
with human judgments (Section 5.2); (2) We compare our
model with existing multimodal summarization methods in
the aspect of multiple metrics (including our proposed met-
rics) and manual evaluation (Section 5.3).

Metric r ρ τ

ROUGE-1 .3006 .2941 .2152
ROUGE-2 .2735 .2742 .2002
ROUGE-L .3144 .3087 .2272
Msim .2849 .2749 .2033
Img-Sum .2380 .2075 .1556
IP .6407 .6482 .5789

MRmax .5765 .5909 .4534
MRavg .5328 .5551 .4039
MR-Summax .5451 .5625 .4186
MR-Sumavg .4883 .5013 .3734

Table 1: Correlation with human judgment scores (training
set for evaluation), measured with Pearson r, Spearman ρ,
and Kendall τ coefficients.

5.2 Analysis of Evaluation metrics

To illustrate the effectiveness of our evaluation metric MR,
we conduct an experiment on correlations between MR and
human judgment scores. Three graduate students are asked
to compare the generated multimodal summary with the ref-
erence, and assess each summary from the perspective: How
informative the multimodal summary is? Each summary is
assessed with a score from 1 (worst) to 5 (best), and we take
the average value as the final score. We randomly extract 600
multimodal summaries from different systems. These sam-
ples are divided into the training set (450 samples to train
a new multimodal automatic evaluation model) and test set
(150 samples). We compare other existing evaluation met-
rics with MR in terms of the correlation with human judg-
ments. The correlation is calculated by three widely used
metrics, including Pearson correlation coefficient (r), Spear-
man coefficient (ρ), and Kendall rank coefficient (τ ). The
existing metrics are as follows:

1) ROUGE: It is the standard evaluation metric for text
summarization evaluation. We calculate the ROUGE scores
between the texts in model summary and reference.

2) Msim: It is an image-text relevance metric which calcu-
lates the maximum similarity between the image and each
sentence in the model summary by cross-modal retrieval
model.

3) Img-Sum: Similarity between the image and the whole
text summary in the model summary.

4) IP: The image precision of the model summary with
the gold standard as the reference.

We design several metrics based on MR:
5) MRmax: The maximum similarity between the image-

sentence pairs in model summary and the image-sentence
pairs in the reference. Similar is MRavg (the average value).

6) MR-Summax: The maximum similarity between the
image-summary pair in model summary and the image-
summary pairs (Since the reference in the original human-
labeled test set consists of a text summary and multiple im-
ages, and it can be composed of multiple image-summary
pairs.) in the reference. Similar is MR-Sumavg ( the average
value).

9753



Our results of correlation test are given in Table 1. We find
that MRmax correlates best with human judgments among
the multiple MR metrics. It can be attributed to two reasons:
(1) MR model is trained by using the image-caption pairs
where the caption is always one sentence. Thus, when the
whole text summary is considered into MR, the effect of the
MR will be affected, leading to a better performance with
MR than MR-Sum; (2) Once one segment in a multimodal
summary is found to be similar to another segment in an-
other multimodal summary, people will naturally think of
the two as related.

Our proposed MR metrics perform better than most exist-
ing metrics, except IP. This is because people can easily tell
whether an image appears in the reference and IP is more rel-
evant to human intuition. However, as a discrete metric, the
value of IP is binary for a single sample, which is a short-
coming as an evaluation metric. It leads to a phenomenon
that given two multimodal summaries, none of their images
appears in the reference, and it is impossible to distinguish
the quality of them in this way. But MR has this capability,
which is an advantage of MR over IP.

We then incorporate MRmax metric into the MMAE
method by the same linear regression method as in Zhu
et al. (2018) to explore whether it can further improve the
correlation and we note the new method as MMAE++. In
MMAE++, the weight for R-L, Msim, IP, and MRmax is
1.54, 0.42, 1.25, and 0.98 respectively and the intercept is
1.40. The correlation results over the test evaluation sam-
ples are given in Table 2. In addition to the correlation met-
rics, we compare MMAE with MMAE++ in terms of mean
square error and mean absolute error. As shown in Table 2,
we can find MMAE++ outperforms MMAE from all the
metrics, which further illustrates the effectiveness of MR.

5.3 Multimodal Summarization Methods

To show the effectiveness of our model with the multimodal
objective function, we compare our model with the existing
multimodal summarization methods (ATG, ATL, HAN, and
GR) (Zhu et al. 2018) using multiple metrics including our
proposed MR and MMAE++:

1) ATG: It refers to the multimodal attention model (Sec-
tion 2.1). The image salience is measured by the visual at-
tention distribution over the global features.

2) ATL: It replaces the global fc7 features with the lo-
cal pool5 image features in multimodal attention and mea-
sures the image salience based on the sum of attention distri-
butions over the patches contained in the image. The image
features are all extracted by the VGG19 pretrained on Ima-
geNet (Simonyan and Zisserman 2015).

3) HAN: Based on ATL, a hierarchical attention mech-
anism is added which first attends to the image patches to
get the intermediate vectors to represent images and then at-
tends to these vectors to get the visual context vector. And it
calculates the image salience according to the attention dis-
tributions over the intermediate vectors.

4) GR: It employs LexRank (Erkan and Radev 2004) with
guidance strategy where captions recommend the related
sentences. And it is an extractive method where the rankings
of sentences and captions are obtained by this graph-based

Metric r ρ τ MSE MAE

ROUGE-L .3488 .3554 .2669 - -
Msim .2541 .2339 .1773 - -
IP .5982 .5966 .5485 - -
MRmax .4745 .4559 .3523 - -

MMAE .6646 .6644 .5265 .2654 .4489
MMAE++ .6902 .6941 .5557 .2457 .4324

Table 2: Correlation results on test set for evaluation. MSE is
the mean square error and MAE is the mean absolute error.

method. The salience of an image depends on the ranking of
its caption.

5) MOF: It is our model using the multimodal objec-
tive function (Section 3.1). We incorporate the last hidden
states of the text encoder or the summary decoder into the
image discriminator and denote it as MOFenc and MOFdec

respectively. There are two kinds of images as the training
target: ROUGE-ranking (RR) and Order-ranking (OR) (Sec-
tion 3.2).

We evaluate different multimodal summarization models
with the standard ROUGE metric, reporting the F1 scores for
ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-L).
Besides, we use image precision (IP), Msim, MR, MMAE,
and MMAE++ to measure the performances of different
models. Note that when calculating IP and MR metrics, we
extend the dataset in the RR and OR manner, where the test
set and training set are ensured to be independent and iden-
tically distributed. The main results are shown in Table 3.

Compared with the baselines, MOF models achieve a
slightly higher ROUGE value. It demonstrates that the mul-
timodal objective function can improve the quality of gen-
erated text summary. From the IP metric, the multimodal
reference we construct can help select more salient images,
which indirectly leads to the improvement of image-text rel-
evance. From IPR and IPO, our model significantly outper-
forms the baselines, which indicates that our model can ef-
fectively improve the visual informativeness if a real large-
scale dataset with multimodal reference is available. No-
tice that, with the multimodal reference obtained by the two
strategies (RR or OR), the model (take MOFdec as an exam-
ple) is trained and applied to the human-labeled dataset, of
which the OR score (from 71.78 to 64.00) decreases more
obviously than the RR score (from 68.62 to 65.45). This
shows that the real distribution of images in the manual
annotation is closer to RR, which reveals that people pay
more attention to the semantic matching between images
and texts during annotation and often ignore the image or-
der. Although people always follow the characteristics of
sequence during reading, it is easy to find a salient image
quickly due to the intuitiveness of looking through images
and get rid of the sequence or space constraints. From the
MR metric, the multimodal objective function can still help
improve the quality of information integrity, both on the
human-labeled dataset (MR) and automatically constructed
test set (MRR and MRO). It further illustrates the effective-
ness of our model. Comparing MOFenc with MOFdec, we
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Model R-1 R-2 R-L Msim IP IPR IPO MR MRR MRO AE AE++
ATG 40.63 18.12 37.53 25.82 59.28 59.42 64.04 56.54 57.32 57.82 65.88 67.63

Base ATL 40.86 18.27 37.75 13.26 62.44 62.77 67.04 55.67 55.79 57.34 64.26 67.26
HAN 40.82 18.30 37.70 12.22 61.83 60.14 64.24 55.29 54.83 56.36 63.96 66.93
GR 37.13 15.03 30.21 26.60 61.70 60.45 65.54 55.81 56.60 58.33 63.94 65.90
MOFRR

enc 41.05 18.29 37.74 26.23 62.63 67.85 - 57.13 59.26 - 66.52 68.68

Ours MOFRR
dec 41.20 18.33 37.80 26.38 65.45 68.62 - 58.38 59.58 - 67.02 69.66

MOFOR
enc 41.16 18.35 37.85 26.15 63.55 - 68.76 57.66 - 59.55 66.69 69.04

MOFOR
dec 40.95 18.12 37.75 26.30 64.00 - 71.78 58.16 - 60.58 66.76 69.24

Table 3: Results of different metrics on the test set. MOFRR
enc means using the ROUGE-ranking (RR) images to train the network,

while Order-ranking (OR) in MOFOR
enc . We set λ to 1.0 and the image number K (the target when calculating the cross-entropy

loss) to 3 here. IPR (IPO) denotes the image precision in the RR (OR) manner, where the top-3 ranked images are considered
as the reference. MR is the MRmax metric (Section 5.2) calculated by our proposed joint multimodal representation model, and
MRR (MRO) is the MR score in the RR (OR) manner. AE (%) denotes MMAE score, and AE++ (%) denotes MMAE++ score.

find MOFdec performs better, which can be attributed to
the fact that the decoder contains the summary information
while the encoder contains information of the original text.

λ R-L Msim IP AE

0.5 37.36 26.58 64.48 66.76
1.0 37.80 26.38 65.45 67.02
1.5 37.77 26.33 64.35 66.83
2.0 37.68 26.46 63.44 66.67

Table 4: Results of MOMRR
dec model under different hyper-

parameters, where λ is the balance weight of NLL loss and
CE loss. The image number is set to 3 here.

Discussion on λ (See Table 4). To study the impact of λ,
we conduct an experiment on how the model performance
changes when λ varies from 0.5 to 2.0. When λ is 1.0, the
model achieves the best performance. When λ is small, the
image discriminator is not optimized enough, if otherwise,
it may lead to over-fitting.

K R-L Msim IP AE

1 37.56 26.44 63.32 66.61
2 37.48 26.35 62.92 66.50
3 37.80 26.38 65.45 67.02
4 37.44 26.23 63.55 66.57

Table 5: Results of MOMRR
dec under different hyperparame-

ters, where K is the image number. λ is set to 1.0.

Discussion on K (See Table 5). Table 5 depicts the ex-
perimental results of the model performance varying with K
(the image number at target). Since the IP is calculated based
on the top-3 images on the test set, the consistency between
training and test makes the model perform best when K is 3.

According to our analysis in Section 5.2, our MMAE++
can better evaluate multimodal summary, thus we report
the MMAE++ scores for our proposed models in Table 3.
Besides, we conduct a manual evaluation to further com-

Model HS Model HS

ATG 3.45 MOMRR
dec 3.67

ATL 3.39 MOMRR
enc 3.52

HAN 3.35 MOMOR
dec 3.62

GR 3.30 MOMOR
enc 3.56

Table 6: Results evaluated by human annotators. HS denotes
human judgment scores. Each summary is scored by two
persons, and we take the average value.

pare the performance of different models, as shown in Ta-
ble 6. Specifically, we select 200 multimodal summaries
(randomly shuffled) from each system output, where the in-
puts are the same, for manual evaluation the same as de-
scribed in Section 5.2. Our proposed MOF models all out-
perform the baselines in terms of manual evaluation or au-
tomatic evaluation, which further indicates the effectiveness
of our model. MOFRR

dec achieves both the highest MMAE++
score and the highest human judgment score, hence RR
strategy is better when multimodal reference is unavailable.

6 Conclusion

In this paper, we focus on improving multimodal summa-
rization by proposing a multimodal objective function which
considers both the negative log-likelihood loss of the text
summary generation and the cross-entropy loss of the im-
age selection. Experiments show that our model can improve
the quality of multimodal output on both real human-labeled
test set and automatically constructed test set. Besides, we
are the first to evaluate the multimodal summaries from the
aspect of the information integrity which learns the joint
multimodal representation for the model summary and the
reference summary. We find the evaluation metric contain-
ing information integrity correlates much better with human
judgments.
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