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Abstract

Dominant sentence ordering models use a pointer network
decoder to generate ordering sequences in a left-to-right fash-
ion. However, such a decoder only exploits the noisy left-
side encoded context, which is insufficient to ensure cor-
rect sentence ordering. To address this deficiency, we pro-
pose to enhance the pointer network decoder by using two
pairwise ordering prediction modules: The FUTURE mod-
ule predicts the relative orientations of other unordered sen-
tences with respect to the candidate sentence, and the HIS-
TORY module measures the local coherence between several
(e.g., 2) previously ordered sentences and the candidate sen-
tence, without the influence of noisy left-side context. Us-
ing the pointer mechanism, we then incorporate this dynam-
ically generated information into the decoder as a supple-
ment to the left-side context for better predictions. On sev-
eral commonly-used datasets, our model significantly outper-
forms other baselines, achieving the state-of-the-art perfor-
mance. Further analyses verify that pairwise ordering predic-
tions indeed provide extra useful context as expected, lead-
ing to better sentence ordering. We also evaluate our sen-
tence ordering models on a downstream task, multi-document
summarization, and the summaries reordered by our model
achieve the best coherence scores. Our code is available at
https://github.com/DeepLearnXMU/Pairwise.git.

Introduction

Modeling text coherence is an essential problem in natural
language processing (NLP) as evidenced by its significance
on several downstream NLP tasks (Barzilay, Elhadad, and
McKeown 2002; Bollegala, Okazaki, and Ishizuka 2006;
Konstas and Lapata 2012; Galanis, Lampouras, and An-
droutsopoulos 2012; Nallapati, Zhai, and Zhou 2012; Nay-
eem and Chali 2017). As one subtask of coherence model-
ing, sentence ordering (Barzilay and Lapata 2008) aims to
learn such a coherence structure by reconstructing a coher-
ent paragraph from an unordered set of sentences. By learn-
ing to order sentences, the model is able to identify crucial
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Figure 1: The model with a pointer network decoder. s∗ de-
notes the semantic vector representation of sentence x∗, pro-
duced by the encoder.

properties that cause text coherence, which can be exploited
to generate coherent texts for other tasks.

Recently, inspired by the success of deep learning, neural
network based models have been proposed, where represen-
tative work includes Window network (Li and Hovy 2014),
pairwise models (Agrawal et al. 2016; Li and Jurafsky
2017), and pointer network (Vinyals, Fortunato, and Jaitly
2015) decoder based models (Gong et al. 2016; Logeswaran,
Lee, and Radev 2018; Cui et al. 2018; Wang and Wan 2019;
Yin et al. 2019). Particularly, the last kind of models at-
tracts much attention due to its state-of-the-art performance
(Wang and Wan 2019; Yin et al. 2019). As shown in Fig-
ure 1, the pointer network decoder is based on a simpli-
fied attention model, which first updates the current hid-
den state with the previously pointed sentence representa-
tion as the input, and then applies this state to produce the
attention distribution over the unordered input sentences. It
has been proven suitable for dealing with sorting the ele-
ments of a given set (Vinyals, Fortunato, and Jaitly 2015;
Vinyals, Bengio, and Kudlur 2015), and thus become a stan-
dard component in dominant sentence ordering models.

Despite its success, there still exists a serious drawback.
Due to its autoregressive structure that produces the ordering
sequence in a left-to-right fashion, it only exploits the noisy
left-side encoded context while ignoring other useful infor-
mation. Specifically, the ordering information between the
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unsorted sentences are completely not considered, although
it is intuitively beneficial to the current prediction. In addi-
tion, due to the negative effect of accumulated noisy con-
text, the conditional probability modeled by the decoder is
unable to accurately measure the local coherence between
previously ordered sentences and the one being considered.
Let us look at the example shown in Figure 1. When con-
sidering x3 as the current candidate, the decoder can only
leverage the left-side context x1 and x2, without consider-
ing relative orientations of x4, x5 with respect to x3. Mean-
while, if the ordering of x1 or x2 is incorrect, the hidden
state at the 3rd timestep is unable to accurately model the
local coherence between x2 and x3. Such local coherence
provides an important hint to determine whether x3 should
be placed or not. Therefore, we believe there is significant
room for improvement beyond the standard pointer network
decoder.

In this paper, we propose to enhance the pointer network
decoder using two pairwise ordering prediction modules.
The intuition behind is two-fold. First, any sentence order
can be equivalently considered as several pairwise orderings,
each of which is easier to model. Second, pairwise ordering
predictions are lightweight since they only depend on their
own semantic representations. Thus, they can be easily in-
corporated into a decoder, dynamically generating informa-
tion complementary to the encoded context.

To this end, we first introduce two pairwise modules
based on the learned sentence embeddings: the first one (FU-
TURE module) is employed to predict the relative orienta-
tions between the candidate sentence and other unordered
sentences, and the second one (HISTORY module) is used
to calculate the probabilities of two previously ordered sen-
tences occurring before the candidate sentence at differ-
ent relative distances, which measures their local coherence
without the negative impact of the accumulated noisy con-
text. Next, in each decoding step, all probability distribu-
tions and semantic features produced by these two mod-
ules are fused to generate a new vector representation for
each candidate. Finally, the decoder predicts the ordering
via the pointer mechanism. In this way, our decoder not
only exploits the relative orientation information between
unordered sentences but also examines the local coherence
between the candidate and previously ordered sentences, and
thus has the potential to produce better sentence ordering.

The main contributions of this paper can be summarized
as follows:

• We first point out the drawback of the pointer network
decoder for sentence ordering, and then propose a novel
pointer network decoder enhanced by two specially de-
signed pairwise ordering modules.

• Our model significantly outperforms competitive base-
lines and advances the state-of-the-art in this task.

• We conduct experiments on a downstream task, multi-
document summarization, and the summaries reordered
by our proposed model achieve the best coherence scores.
Moreover, the analysis indicates that our model can alle-
viate the adverse effect of the noisy context.

Related Work

Previous work on coherence modeling mainly focused on
the utilization of linguistic features and statistical models
(Lapata 2003; Barzilay and Lee 2004; Barzilay and Lapata
2005; Guinaudeau and Strube 2013). Recently, neural net-
work based models have shown powerful capability in sen-
tence ordering, where the work most relevant to ours can be
classified into two categories:

(1) Pairwise models. For example, Gong et al. (2016)
investigated the effectiveness of various neural models on
judging the order of each sentence pair. Agrawal et al. (2016)
implemented multiple neural network models based on in-
dividual and pairwise element-based predictions (and their
ensemble). Li and Jurafsky (2017) applied sequence-to-
sequence based generative models (Sutskever, Vinyals, and
Le 2014) to model pairwise coherence.

Our model is significantly different from the above. In
previous models, order predictions for pairwise sentences
are utilized to generate an ordered sentence sequence using
other algorithms. In contrast, these predictions are incorpo-
rated into our decoder as auxiliary information.

(2) Pointer network (Vinyals, Fortunato, and Jaitly
2015). In this aspect, although contrary to human intu-
ition, Logeswaran, Lee, and Radev (2018) used a hierar-
chical RNN based encoder to model the input sentences.
Furthermore, Cui et al. (2018) introduced a self-attention
mechanism (Vaswani et al. 2017) to refine encoder mod-
eling. Very recently, Wang and Wan (2019) proposed a
hierarchical attention based encoder and a masked self-
attention based decoder, and Yin et al. (2019) leveraged
a graph recurrent network (Zhang, Liu, and Song 2018;
Song et al. 2019) to model the co-occurrence between sen-
tences and entities.

Different from these work, we enhance the pointer net-
work decoder using pairwise ordering predictions which can
be an effective supplement to the left-side context. Partic-
ularly, we leverage pairwise orderings between unordered
sentences to guide our decoder, which is essentially consis-
tent with the future information modeling in other sequence
generation tasks (Bahdanau et al. 2017; Serdyuk et al. 2018;
Zheng et al. 2018). Experimental results demonstrate the su-
periority of our decoder over these models.

Our Model

Given an out-of-order set of N sentences x = [x1, . . . , xN ]
as input, our model aims to recover its correct order o =
[o1, . . . , oN ]. Essentially, our model is an extension of AT-
TOrderNet (Cui et al. 2018). As shown in Figure 2, our
model mainly consists of two components: 1) a paragraph
encoder based on the multi-head self-attention mechanism
(Vaswani et al. 2017) for encoding each sentence into a dis-
tributed representation; and 2) a pointer network decoder
(Vinyals, Fortunato, and Jaitly 2015) enhanced by two pair-
wise ordering prediction modules which generate a new vec-
tor representation for each candidate.
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Figure 2: The architecture of the proposed model. x1, x2 are previously ordered sentences, and x4, x3, x5 are unsorted. The
matrix M3 is a pack of three vectors m(x4), m(x3) and m(x5), each of which encodes the ordering information for its cor-
responding candidate at the 3rd timestep. The generation process of m(x3) is illustrated in detail and m(x4) and m(x5) are
generated in the same way.

Paragraph Encoder

To build our paragraph encoder, we first apply a sen-
tence encoder to learn semantic representations of sentences.
This encoder is a bidirectional Long Short-Term Memory
(Hochreiter and Schmidhuber 1997) (Bi-LSTM), which re-
currently produces context-aware semantic representations
of all words in sentence xi from both directions. For the j-
th word wi,j , its hidden states in two directions (

−→
h i,j and←−

h i,j) are updated as follows:

ei,j = one hot(wi,j)We, (1)
−→
h i,j = LSTM(

−→
h i,j−1, ei,j), (2)

←−
h i,j = LSTM(

←−
h i,j+1, ei,j), (3)

where We is the word embedding matrix. In this way, we can
obtain the sentence embedding si for xi by concatenating
the last states of the Bi-LSTM in two directions.

Then, we pack all learned sentence embeddings together
into a matrix S, and feed it into a self-attention module,
where these sentence representations can be updated into
paragraph-aware ones. This self-attention module contains
a stack of L identical layers, each of which consists of two
sub-layers: a multi-head self-attention layer (MultiHead)
and a fully-connected feed-forward network (FFN). For the
l-th layer, the output matrix S(l) are produced as follows:

A(l) = MultiHead(S(l−1), S(l−1), S(l−1)), (4)

S(l) = FFN(A(l)), (5)

where MultiHead(Q,K,V) is a multi-head self-attention
function with a query matrix Q, a key matrix K, and a
value matrix V as inputs, generating the temporary hid-
den state matrix A(l). Here, we omit the descriptions of
residual connection and layer normalization in each sub-
layer for simplicity. Please refer to (Vaswani et al. 2017;
Cui et al. 2018) for more details.

Finally, we obtain the global paragraph representation g
by averaging the output matrix from the last layer g =
1
N

∑N
i=1 S

(L)
i , where S(L)

i denotes the i-th row in S(L). This
vector g will then be used as the initial state of the decoder.

Decoder

As illustrated in Figure 2, our decoder is an LSTM-based
pointer network, enhanced by two modules for pairwise or-
dering predictions. Formally, using this decoder, we calcu-
late the conditional probability of a predicted order o′ of the
input out-of-order sentence set x as follows:

P (o′|x) =
N∏

i=1

P (o′i|o′
<i,x), (6)

P (o′i|o′
<i,x) = softmax(vT tanh(Whd

i + UMi)), (7)

hd
i = LSTM(hd

i−1, so′i−1
), (8)

where W , U and v are model parameters, so′i−1
is the em-

bedding of the previous sentence, hd
i is the hidden state of

the decoder, and Mi is a matrix indicating two kinds of infor-
mation for all unordered sentences: One is global orientation
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information of other unsorted sentences with respect to xu,
and the other is local coherence between previously ordered
sentences and xu, where xu is a candidate sentence. Next,
we will give detailed descriptions of the two new introduced
modules.
FUTURE Module. In this module, one probability distribu-
tion Pd(ori|xu, xu′), where ori ∈{before,after}, is modeled
to calculate the probability of xu appearing before/after an-
other unordered sentence xu′ 1:

p′u,u′ = ReLU(W ′
1su +W ′

2su′), (9)

v′u,u′ = ReLU(W ′
vp

′
u,u′), (10)

Pd(∗|xu, xu′) = softmax(W ′
sv

′
u,u′), (11)

where W ′
∗ are weight matrices, su and su′ are the vector

representations of xu and x′
u, respectively. In similar ways,

we consider all other unsorted sentences and then generate a
vector md(xu) as

md(xu) =
1

|Xu| (
∑

xu′∈Xu

[v′u,u′ ;Pd(∗|xu, xu′)]), (12)

where Xu denotes the set of unordered sentences except
xu. Via this distribution, our model is capable of exploit-
ing global relative orientation of other unsorted sentences to
xu.
HISTORY Module. We model two Bernoulli dis-
tributions Pl1(b|xu, xo′i−1

) and Pl2(b|xu, xo′i−2
), where

b ∈{true,false}. Pl1(true|xu, xo′i−1
) measures the probabil-

ity of previously predicted sentence xo′i−1
occurring before

xu with a relative distance 1. It is defined as follows:

pu,i−1 = ReLU(W1su +W2so′i−1
), (13)

vu,i−1 = ReLU(Wvpu,i−1), (14)
Pl1(∗|xu, xo′i−1

) = softmax(Wsvu,i−1), (15)

where W∗ are model parameters. The definition of
Pl2(∗|xu, xo′i−2

) is similar to that of Pl1(∗|xu, xo′i−1
), with

a different relative distance 2. To model this distribution, we
employ the same equations as Pl1(∗|xu, xo′i−1

), however,
with different parameters. Due to the space limitation, we
omit the specific equation descriptions of Pl2(∗|xu, xo′i−2

).
Then, ml1(xu) and ml2(xu) implying local coherence are
generated as

ml1(xu) = [vu,i−1;Pl1(∗|xu, xo′i−1
)], (16)

ml2(xu) = [vu,i−2;Pl2(∗|xu, xo′i−2
)]. (17)

By introducing these two distributions, we expect our model
is able to accurately measure the local coherence between
each candidate and its previously ordered sentences, without
the influence of noisy context.

Finally, we concatenate the above three vectors to form a
new vector m(xu) = [ml1(xu);ml2(xu);md(xu)], which
not only encodes relative orientations of other unsorted sen-
tence with respect to xu, but also measures local coherence

1In this paper, all bias terms in neural network functions are
omitted for readability.

between previously ordered sentence and xu. Please note
that we combine both the semantic vectors and the proba-
bility distributions for providing richer information for xu.
Likewise, we generate such vectors for all unordered sen-
tences, which are then packed into a matrix Mi.

Our decoder has two advantages over the standard pointer
network decoder. First, our decoder is capable of exploiting
pairwise relative orientations between unsorted sentences,
which is encoded by the distribution Pd(∗|xu, xu′). Es-
sentially, this information plays an important role to pro-
vide future hints for the current prediction. Second, with-
out the effect of the left-side encoded noisy context, our de-
coder reviews the local coherence between previously or-
dered sentences and each candidate Pl1(∗|xu, xo′i−1

) and
Pl2(∗|xu, xo′i−2

) to inspect the rationality of selecting the
candidate xu.

Training and Testing

Given a training corpus D = {(x,o)}, we train the proposed
model by minimizing the loss function:

L(θ) = − 1

|D|
∑

(x,o)∈D

{logP (o|x)

+ λ(Ll1 + Ll2 + Ld)},
(18)

where θ denotes the set of all trainable parameters, Ll1 and
Ll2, and Ld are cross-entropy loss functions of HISTORY
and FUTURE modules, respectively, and λ is a hyper-
parameter used to balance the preference between two terms.
During testing, we employ beam search to select sentences
sequentially.

To train the two distributions in the HISTORY module,
we need to sample negative instances to balance the numbers
of positive and negative instances. Take training the classi-
fier Pl1(∗) as an example. For a sentence in the input set,
we choose it and its previously ordered sentence at a rela-
tive distance 1 to form a positive sample, and pair it with
those at other relative distances as negative samples. This
inevitably causes imbalance between positive and negative
instances. Therefore, we sample the negative instances to
make the number of negative instances to that of positive
instances in a ratio of 1 to 2.

Experiments

Datasets

We carry out experiments on three benchmark datasets:
• SIND (Huang et al. 2016). It is a visual storytelling

dataset, which includes 40,155 training stories, 4,990 val-
idation stories and 5,055 testing stories. Here we use each
story text as a paragraph that is composed of 5 sentences.
• ROCStory (Mostafazadeh et al. 2016). This dataset is a

commonsense story one, which contains 98,162 stories
with 50 words per story on average. Each story is com-
posed of 5 sentences. Following (Wang and Wan 2019),
we make an 8:1:1 random split on the dataset to get the
training, validation and testing datasets of 78,529, 9,816
and 9,817 stories, respectively.
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Figure 3: Experiment results on the validation sets using different λs.

• arXiv Abstract (Chen, Qiu, and Huang 2016). This
dataset is collected from arXiv website. It consists of
884,912 training abstracts, 110,614 validation abstracts
and 110,615 testing abstracts, and thus is obviously larger
than the above two. Each abstract is composed of 2 to
20 sentences and the average word count per abstract is
around 135.

Baseline Models and Metrics

We have three most related baselines:

• Baseline. It is our re-implemented ATTOrderNet (Cui et
al. 2018).

• Baseline(MSA). It is a variant of our Baseline, of which
decoder is replaced by masked self-attention mechanism
based on (Wang and Wan 2019). Here, we compare our
model with this variant because such mechanism is analo-
gous to our HISTORY module, which enables the decoder
to capture semantic relation between sentences predicted.

• MTL. Another variant of our model, it uses multi-task
learning based on the shared encoder to jointly model
pointer network based sentence ordering and pairwise or-
dering predictions. Note that its decoder is not enhanced
by pairwise ordering predictions.

In addition, we compare with several commonly-used
contrast models:

• LSTM+Pairwise (Chen, Qiu, and Huang 2016). It is a
pairwise ranking model with an LSTM encoder.

• SkipThought+Pairwise (Agrawal et al. 2016). This is a
pairwise model which takes a pair of SkipThought sen-
tence embeddings as input.

• Seq2Seq+Pairwise (Li and Jurafsky 2017). This model
predicts the next sentence given the current sentence.
Please note that this model is also a pairwise one.

• LSTM+Ptr (Chen, Qiu, and Huang 2016). It is an end-to-
end approach based on pointer network. It treats the out-
of-order set of sentences as a sequential input for encoder
and predicts sentence orders recurrently.

• LSTM+Set2Seq (Logeswaran, Lee, and Radev 2018).
This model is based on set-to-sequence framework and
also adopts pointer network. The set encoder learns a con-
text representation by iteratively attending to input sen-
tence embeddings.

• ATTOrderNet (Cui et al. 2018). Self-attention mecha-
nism is first introduced into this task. Compared to previ-
ous models, it is less sensitive for the permutation of input
sentences.

• HAN (Wang and Wan 2019). Both encoder and decoder
of this model are equipped with self-attention mechanism.
Besides, the hierarchical attention network of its encoder
captures both word clues and dependencies between sen-
tences.

• SE-Graph (Yin et al. 2019). The encoder exploits both
semantic relevance between coherent sentences and co-
occurrence between sentences and entities to accurately
learn semantic representations of sentences.

Finally, we use Kendall’s τ and Perfect Match Ratio (PMR)
as metrics, both of which have been frequently used in pre-
vious work (Gong et al. 2016; Cui et al. 2018; Wang and
Wan 2019).

Setting

We use Adadelta (Zeiler 2012) as the optimizer with ε =
10−6, ρ = 0.95, where the initial learning rate is set as 1.0.
The used batch size is 64 and the beam size is 8. We use
pre-trained 100-dimensional GloVe word embeddings (Pen-
nington, Socher, and Manning 2014). The sizes of LSTM
hidden states in encoder and decoder are set to 512, and the
hidden size of self-attention layers is also 512. We employ
2 self-attention layers, each of which has 4 parallel attention
heads. The hidden size of pairwise modules is set to 256.
We apply dropout (Srivastava et al. 2014) to word embed-
ding layer and self-attention layers with the probability 0.1.

Effect of λ

As shown in Equation (18), the hyper-parameter λ is an im-
portant hyper-parameter, which directly reflects impacts of
pairwise prediction modules on our model. Following com-
mon practices to determine the optimal hyper-parameters on
each validation set (Cui et al. 2018; Wang and Wan 2019),
we investigate the performance of our model with different
λs. To this end, we gradually vary λ from 0.0 to 0.5 with
an increment of 0.1 in each step. From Figure 3, we observe
that our model achieves the best performance when λ=0.2,
0.5, 0.4 on SIND, ROCStory, and arXiv datasets. Therefore,
we set λ=0.2, 0.5, 0.4 in all experiments thereafter, respec-
tively.
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Model SIND ROCStory arXiv
τ PMR τ PMR τ PMR

LSTM+Pairwise (Chen, Qiu, and Huang 2016) † - - - - 65.94 33.43
SkipThought+Pairwise (Agrawal et al. 2016) † - - 46.40 - - -
Seq2Seq+Pairwise (Li and Jurafsky 2017) † 18.92 12.50 34.19 17.93 5.93 13.70

LSTM+Ptr (Gong et al. 2016) † 48.42 12.34 71.58 40.44 - -
LSTM+Set2Seq (Logeswaran, Lee, and Radev 2018) † 49.19 13.80 71.12 35.81 72.81 41.57
ATTOrderNet (Cui et al. 2018) † 49.00 14.01 - - 73.00 42.19
HAN (Wang and Wan 2019) † 50.21 15.01 73.22 39.62 75.36 44.55
SE-Graph (Yin et al. 2019) † 52.00 16.22 - - 75.00 44.33

Baseline 51.67 15.56 73.59 40.01 74.75 43.76
Baseline(MSA) 52.37 15.43 74.38 40.76 75.48 44.55
MTL 52.28 16.22 74.60 41.29 74.86 43.93
Ours 53.19* 17.37* 76.81* 46.00* 76.65* 46.58*

Table 1: Main results on the sentence ordering task. The marker † indicates previously reported scores, and * means significant
at p < 0.01 over the best one among all three baselines on each test set. Here we conduct 1,000 bootstrap tests (Efron and
Tibshirani 1994; Koehn 2004) to measure the significance in metric score differences.

Model SIND ROCStory arXiv
τ PMR τ PMR τ PMR

Ours 53.19 17.37 76.81 46.00 76.65 46.58
-Pd(∗) 52.50 15.73 74.14 40.92 75.13 44.23
-Pl1(∗) 52.79 16.44 76.24 44.66 76.06 45.53
-Pl2(∗) 52.93 17.10 76.43 45.74 76.46 46.22
Baseline 51.67 15.56 73.59 40.01 74.75 43.76

Table 2: Ablation studies on three datasets.

Main Results

Table 1 reports the overall experimental results. The pro-
posed model significantly outperforms both previous state-
of-the-art models and all three baselines, demonstrating the
effectiveness of our model. Moreover, we draw the follow-
ing conclusions:

(1) Ours exhibits much better performance than Base-
line, indicating that the exploration of pairwise ordering pre-
dictions are indeed complementary to the left-side encoded
context utilized by the standard pointer network decoder.

(2) On all datasets, Ours outperforms Baseline(MSA). The
underlying reason is that compared with the masked self-
attention mechanism that only captures the semantic relation
between predicted sentences, our model fully exploits global
orientation between and local coherence between other sen-
tences and each candidate, both of which play positive roles
in sentence ordering.

(3) MTL also performs sightly better than Baseline, in-
dicating that adding pairwise ordering prediction loss func-
tions is beneficial to the model training. Besides, the perfor-
mance of Ours is significantly better than MTL. This demon-
strates the effectiveness of incorporating the global orienta-
tion and local coherence generated from the pairwise order-
ing modules into the decoder as the complementary context.

Ablation Study

In this section, we conduct an ablation study to investigate
the impacts of different modules on our model. All the re-
sults are reported in Table 2. Here, we can draw some inter-
esting conclusions.

First, the variant of our model without the FUTURE mod-
ule is obviously inferior to our model. The result is intuitive
and indicates pairwise ordering prediction between unsorted
sentences is the most effective among all introduced distri-
butions.

Second, removing the HISTORY module leads to the
performance degradation of our model. Moreover, the im-
pact of removing Pl1(∗|xu, xo′i−1

) is greater than that of
Pl2(∗|xu, xo′i−2

). This is reasonable, since it is more difficult
to accurately model Pl2(∗|xu, xo′i−2

) than Pl1(∗|xu, xo′i−1
),

as reported in the following classification experiments.
We investigate the classification performance of the pair-

wise ordering prediction modules on the three test sets.
As implemented in classifier training, we employ the
same approach to extract test instances from the test sets
without sampling. The classifiers for Pl1(∗|xu, xo′i−1

) and
Pl2(∗|xu, xo′i−2

) achieve 60.27% and 55.72%, 67.13% and
63.56%, 62.82% and 59.51% accuracies on SIND, ROC-
Story, and arXiv datasets, respectively. Note that the per-
formances of the classifier predicting Pl2(∗|xu, xo′i−2

) on
SIND and arXiv seem unsatisfactory. The underlying reason
is that the classifiers are difficult to be trained sufficiently
due to the small corpus size of SIND and more diverse para-
graphs in arXiv dataset. This echoes the results reported in
Table 2 where the performance of our model drops slightly
when removing this distribution. Besides, the classifier for
Pd(ori|xu, x

′
u) achieves 75.98%, 85.45%, 83.18% accura-

cies on the three test sets, respectively.
Table 3 shows an example. In this example, among all

models, only Ours is able to produce the correct sequence
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Input Sentences

(1) He never really got tan just really
sunburnt.
(2) Rick had very pale skin.
(3) He did his best to always come in
when his skin felt hot.
(4) He fell asleep next to the pool one
morning.
(5) He was not only red but had blisters
all over from the burns.

Ground Truth (2) (1) (3) (4) (5)
Baseline (2) (3) (4) (5) (1)

Baseline(MSA) (2) (1) (4) (5) (3)
MTL (2) (3) (4) (5) (1)

Ours (2) (1) (3) (4) (5)

Table 3: Sentence ordering results produced by different
models. Texts highlighted in bold are incorrect ordering se-
quences.

Model arXiv SIND
head tail head tail

LSTM+Pairwise† 84.85 62.37 - -
LSTM+Ptr† 90.47 66.49 74.66 53.30
ATTOrderNet† 91.00 68.08 76.00 54.42

Baseline 92.05 69.05 77.45 56.50
Baseline(MSA) 92.29 70.42 77.53 57.07
MTL 92.25 69.45 77.57 56.87
Ours 92.76 71.49 78.08 57.32

Table 4: Ratios of correctly predicting the first and last sen-
tences on arXiv and SIND datasets. † indicates previously
reported scores.

of ordered sentences. Particularly, although both Ours and
Baseline(MSA) have the same correct previously ordered
sentences (2) (1), only Ours can make a correct prediction
at the 3rd timestep. This is because the FUTURE module
gives high probabilities of sentence (3) appearing before
sentences (4) and (5) (0.96 and 0.87). Meanwhile, the HIS-
TORY module provides supportive probabilities of sentence
(1) and (2) appearing before sentence (3) (0.83 and 0.65)
at relative distances 1 and 2, respectively. In contrast, Ours
gives low probabilities to another candidate sentence (4).

Prediction of the First and Last Sentences

As mentioned in previous work (Chen, Qiu, and Huang
2016; Gong et al. 2016; Cui et al. 2018), the first and the last
sentences of the text should be paid more attention. Thus,
we also conduct experiment to predict the first and last sen-
tences of a paragraph. As shown in Table 4, Ours also out-
performs all listed contrast models, reaching the best perfor-
mance on arXiv and SIND datasets.

Summary Coherence Evaluation

As discussed in previous studies on text coherence (Barzilay
and Lapata 2005; 2008), sentence ordering models can help

Model Coherence

LexRank 41.95
Baseline 45.92
Baseline(MSA) 46.35
MTL 46.45
Ours 48.67

Table 5: Coherence probabilities of reordered summaries.

generate a coherent text in downstream tasks such as multi-
document summarization (Bollegala, Okazaki, and Ishizuka
2006; Nayeem and Chali 2017). Here we apply our model
to extractive multi-document summarization and evaluate its
effect in this task.

Specifically, we use a large-scale summarization dataset
(Fabbri et al. 2019), where the average number of sen-
tences in each summary is 9.97. We first train various neu-
ral sentence reordering models using summaries in this
dataset. Then, following Nayeem and Chali (2017), we ap-
ply LexRank (Erkan and Radev 2004) on DUC 2004 (Task-
2) to extract summaries and utilize these models to reorder
the extracted summaries. Finally, since ROUGE scores fo-
cus on content similarity between system outputs and ref-
erences, and insensitive to summary coherence, we com-
pute the coherence probability (Lapata and Barzilay 2005;
Nayeem and Chali 2017) of the summary reordered by dif-
ferent models:

coherence(x) =
∑n−1

i=1 Sim(xi, xi+1)

n− 1
,

Sim(xi, xi+1) = λ ∗ NESim(xi, xi+1)

+ (1− λ) ∗ CosSim(xi, xi+1),

(19)

where n is the number of sentences in a summary,
NESim(xi, xi+1) calculates overlap of named entities in
adjacent sentences and CosSim(xi, xi+1) calculates cosine
similarity between the sentence vectors that is the weighted
sum of word embeddings. We choose λ = 0.8, giving more
preference to the named entities.

As shown in Table 5, compared with other baselines, the
better performance of our model verifies the benefit of pair-
wise ordering predictions to pointer network.

Conclusion and Future Work

In this paper, we have thoroughly analyzed the drawback of
the pointer network decoder for sentence ordering, and have
presented a method to enhance the decoder with pairwise or-
dering predictions. Experimental results and in-depth analy-
ses strongly demonstrate the effectiveness of our decoder.

In the future, we will investigate how to jointly leverage
training corpora of different domains. Besides, we plan to
introduce bidirectional decoding (Zhang et al. 2018; Su et
al. 2019) to refine sentence ordering.
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