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Abstract

Neural dialog state trackers are generally limited due to the
lack of quantity and diversity of annotated training data. In
this paper, we address this difficulty by proposing a rein-
forcement learning (RL) based framework for data augmen-
tation that can generate high-quality data to improve the neu-
ral state tracker. Specifically, we introduce a novel contextual
bandit generator to learn fine-grained augmentation policies
that can generate new effective instances by choosing suitable
replacements for specific context. Moreover, by alternately
learning between the generator and the state tracker, we can
keep refining the generative policies to generate more high-
quality training data for neural state tracker. Experimental re-
sults on the WoZ and MultiWoZ (restaurant) datasets demon-
strate that the proposed framework significantly improves the
performance over the state-of-the-art models, especially with
limited training data.

Introduction

With the increasing popularity of intelligent assistants such
as Alexa, Siri and Google Duplex, the research on spoken
dialog systems has gained a great deal of attention in re-
cent years (Gao, Galley, and Li 2018). Dialog state tracking
(DST) (Williams et al. 2013) is an essential component of
most spoken dialog systems, aiming to track user’s goal at
each step in a dialog. Based on that, the dialog agent decides
how to converse with the user. In a slot-based dialog sys-
tem, the dialogue states are typically formulated as a set of
slot-value pairs and one concrete example is as follows:

User: Grandma wants Italian, any suggestions?
State: inform(food=Italian)

Agent: Would you prefer south or center?

User: It doesn’t matter. Whichever is less expensive.
State: inform(food=Italian,
price=cheap, area=don’t care)

The state-of-the-art models for DST are based on neural
network (Henderson, Thomson, and Young 2014; MrkSsi¢ et
al. 2017; Zhong, Xiong, and Socher 2018; Ren et al. 2018;
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Figure 1: An overview of our framework. Given a dataset,
we induce new instances using the RL-based Generator to
improve the DST Tracker. The Generator is trained with the
rewards from the Tracker. The learning process is performed
in an alternate manner.

Sharma, Choubey, and Huang 2019; Chao and Lane 2019;
Wu et al. 2019). They typically predict the probabilities of
the candidate slot-value pairs with the user utterance, previ-
ous system actions or other external information as inputs,
and then determine the final value of each slot based on the
probabilities. Although the neural network based methods
are promising with advanced deep learning techniques such
as gating and self-attention mechanisms (Lin et al. 2017;
Vaswani et al. 2017), the data-hungry nature makes them
difficult to generalize well to the scenarios with limited or
sparse training data.

To alleviate the data sparsity in DST, we propose a re-
inforced data augmentation (RDA) framework to increase
both the amount and diversity of the training data. The RDA
learns to generate high-quality labeled instances, which are
used to re-train the neural state trackers to achieve better per-
formances. As shown in Figure 1, the RDA consists of two
primary modules: Generator and Tracker. The two learnable
modules alternately learn from each other during the training
process. On one hand, the Generator module is responsible
for generating new instances based on a parameterized gen-



erative policy, which is trained with the rewards from the
Tracker module. The Tracker, on the other hand, is refined
via the newly generated instances from the Generator.

Data augmentation performs perturbation on the original
dataset without actually collecting new data, which has been
widely used in the field of computer vision (Krizhevsky,
Sutskever, and Hinton 2012) and speech recognition (Ko et
al. 2015), but relatively limited in natural language process-
ing (Kobayashi 2018). The reason is that, in contrast to im-
age augmentation (e.g., rotating or flipping images), it is sig-
nificantly more difficult to augment text because it requires
preserving the semantics and fluency of newly augmented
data. In this paper, to derive a more general and effective
policy for text data augmentation, we adopt a coarse-to-fine
strategy to model the generation process. Specifically, we
initially use some coarse-grained methods to get candidates
(such as cost effective, affordable and too expensive in Fig-
ure 1), some of which are inevitably noisy or unreliable for
the specific sentence context. We then adopt RL to learn
the policies for selecting high quality candidates to gener-
ate new instances, where the total rewards are obtained from
the Tracker. After learning the Generator, we use it to in-
duce more training data to re-train the Tracker. Accordingly,
the Tracker will further provide more reliable rewards to
the Generator. With alternate learning, we can progressively
improve the generative policies for data augmentation and
at the same time learn the better Tracker with the augmented
data.

To demonstrate the effectiveness of the proposed RDA
framework in DST, we conduct extensive experiments
with the WoZ (Wen et al. 2017) and MultiWoZ (restau-
rant) (Budzianowski et al. 2018) datasets. The results show
that our model consistently outperforms the strong baselines
and achieves new state-of-the-art results. In addition, the ef-
fects of the hyper-parameter choice on performance are ana-
lyzed and case studies on the policy network are performed.

The main contributions of this paper include:

e We propose a novel framework of data augmentation for
dialog state tracking, which can generate high-quality la-
beled data to improve neural state trackers.

e We use RL for the Generator to produce effective text aug-
mentation.

e We demonstrate the effectiveness of the proposed frame-
work on two datasets, showing that the RDA can con-
sistently boost the state-tracking performance and obtain
new state-of-the-art results.

Reinforced Data Augmentation
We elaborate on our framework in three parts: the Tracker
module, the Generator module, and the alternate learning al-
gorithm.

Tracker Module

The dialog state tracker aims to track the user’s goal during
the dialog process. At each turn, given the user utterance and
the system action/response!, the trackers first estimate the

'If the system actions do not exist in the dataset, we use the
system response as the input.
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Figure 2: The Tracker module. (1) System action or re-
sponse, and user utterance as input; (2) The tracker predicts
the probabilities of all possible slot-value pairs; (3) The pre-
diction and state of previous turn are used to update the state
of the current turn.

probabilities of the candidate slot-value pairs”, and then the
pair with the maximum probability for each slot is chosen as
the final prediction. To obtain the dialog state of the current
turn, trackers typically use the newly predicted slot-values to
update the corresponding values in the state of previous turn.
One concrete example of the Tracker module is illustrated in
Figure 2.

Our RDA framework is generic and can be applied to dif-
ferent types of tracker models. To demonstrate its effective-
ness, we experiment with two different trackers: the state-
of-the-art GLAD (Attentive Dialogue State Tracker) model
and the classical NBT-CNN (Neural Belief Tracking - Con-
volutional Neural Networks) model (Mrksi¢ et al. 2017). We
use the Tracker to refer to GLAD and NBT-CNN in the fol-
lowing sections.

Generator Module

We formulate data augmentation as an optimal text span re-
placement problem in a labeled sentence. Specifically, given
the tuple of a sentence X, its label y, and the text span p of
the sentence, the Generator aims to generate a new training
instance (x’,y’) by substituting p in x with an optimal can-
didate p’ from a set of candidates for p, which we denote as
C,.

In the span-based data augmentation, we can replace the
text span with its paraphrases derived either from existing
paraphrase databases or neural paraphrase generation mod-
els e.g. (Zhao et al. 2009; Li et al. 2018). However, directly
applying the coarse-grained approach can introduce ineffec-
tive or noisy instances for training, and eventually hurt the
performance of trackers. Therefore, we train the Generator

For each slot, none value is added as one candidate slot-value
pair.



to learn fine-grained generation policies to further improve
the quality of the augmented data.

Generation Process. The problem of high quality data gen-
eration is modeled as a contextual bandit (or one-step rein-
forcement learning) (Dudik et al. 2011). Formally, at each
trial of a contextual bandit, the context including the sen-
tence = and its text span p, is sampled and shown to the
agent, then the agent selects a candidate p’ from C,, to gen-
erate a new instance x’ by replacing p with p’.

Policy Learning. The policy 7y (s, p’) represents a proba-
bility distribution over the valid actions at the current trial,
where the state vector s is extracted from the sentence X,
the text span p and the candidate p’. C, forms the action
space of the agent given the state s, and the reward R is a
scalar value function. The policy is learned to maximize the
expected rewards:

J(0) = Ex,[R],

where the expectation is taken over state s and action p’.
The policy 7y (s, p) decides which p’ € C,, to take based
on the state s, which is formulated as:

ey

S = [pa p/emb7 p/emb — Pemb; p/emb © pemb]7 )

where p is the contextual representation of p, which is de-
rived from the hidden states in the encoder of the Tracker,
Pems and pl, ., are the word embeddings of p and p’ re-
spectively. For multi-word phrases, we use the average rep-
resentations of words as the phrase representation. We use a
two-layer fully connected network and sigmoid to compute
the score function f(s, p’) of p being replaced by p’. As each
p has multiple choices of replacement C,,, we normalize the
scores and obtain the final probabilities for the alternative

phrases:
f(s,p)
mo(s,p) = =——"——.
o(&:7) Zﬁecp f(s.p)
The sampling-based policy gradient is used to approx-
imate the gradient of the expected reward. To obtain
more feedback and make the policy learning more sta-
ble, as illustrated in Figure 3, we propose to use a two-
step sampling method: at first, sample a bag of sentences
B = {(xi,v:,pi) hi<i<r, then iteratively sample a can-
didate p'; ; for each instance in B according to the cur-
rent policy, obtaining a new bag of instances B’;
{(x'i,9.j>P'i ;) hi<i<T. After running the bag-level sam-
pling M times, the gradient of objective function can be es-
timated as:

VIO) ~ 4 S0 Sy Valogma(sij,pls ;) Rigr ()

where s; ; and p’; ; denote the state and action of the i-th
instance-level sampling from the j-th bag-level sampling,
respectively. R; ; is the corresponding reward.

Reward Design. One key problem is assigning suitable re-
wards to various actions p’ ;,; given state s; ;. We design

two kinds of rewards: bag-level reward R? and instance-

level reward R! . in reinforcement learning. The bag-level
reward (Feng et al. 2018; Qin, Weiran, and Wang 2018)
indicates whether the new sampled bag is helpful to im-
prove the Tracker and the instances in the same bag receive

3

9476

the same reward value. While the instance-level reward as-
signs different reward values to the instances in the same
sampled bags by checking whether the instance can cause
the Tracker to make incorrect prediction (Kang et al. 2018;
Ribeiro, Singh, and Guestrin 2018). We sum two kinds of
rewards as the final reward: R; ; = R? + Rg,j, for more
reliable policy learning.

Bag-level reward RZ: we re-train the Tracker with each
sampled bag and use their performance (e.g., joint goal ac-
curacy (Henderson, Thomson, and Williams 2014)) on the
validation set to indicate their rewards. Suppose the perfor-
mance of the j-th bag B’; is denoted as U’;, the bag-level
rewards are formulated as:

B 2(U'; — min({U’;-}))

' max(U75)) — min( U7 ))
where {U’;+} refers to the set {U’;«}1<;-<nm. Here we
scale the value to be bounded in the range of [-1, 1] to al-
leviate the instability in RL training?.

Instance-level reward Rﬁ’ ;+ we evaluate each generated
instance (x; ;, y; ;) in the bag and denote the instance which
causes the Tracker to make wrong prediction, as large-loss
instance (LI) (Han et al. 2018). Compared to the non-LlIs,
the LIs are more informative and can induce larger loss for
training the Tracker. Thus, in the design of instance-level
rewards, the LI is encouraged more when its corresponding
bag reward is positive, and punished more when its bag re-
ward is negative. Specifically, we define the instance-level
reward as follow:

(&)

c, RE > 0ATL(x] 95 ;) =1

R = {92 0 =0 )
0] —c, Rj <0 /\HLI(X;jvyg,j) =1
—c/2, R? <0 /\HLI(X;vag,j) =0,

where Ip;(x] ;,¥; ;) is an indicator function of being a LI
We obtain the Iiy(x] ;,y; ;) value by checking if the pre-
trained Tracker can correctly predict the label on the gener-
ated example. c is a hyper-parameter, which is set to 0.5 by
running a grid search over the validation set.

Alternate Learning

In the framework of RDA, the learning of Generator and
Tracker is conducted in an alternate manner, which is de-
tailed in Algorithm 1 and Figure 3.

The text span p to be replaced has different distribution in
the training set. To make learning more efficient, we first
sample one text span p, then sample one sentence (X,y)
from the sentences containing p. This process is made itera-
tively to obtain a bag B. To learn the Generator, we generate
M bags of instances by running the policy, compute their
rewards and update the policy network via the policy gra-
dient method. To learn the Tracker, we augment the training
data by the updated policy. Particularly for each (x, y, p), we

3In this work, the original text span p is also used as one candi-
date in C,, which actually acts as an implicit Baseline (Sutton and
Barto 2018) in RL training.
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Figure 3: The algorithm flow of the reinforced data augmentation framework. The left is the Generator learning and the right is

the Tracker learning. The two learning processes are performed in

Algorithm 1 The Reinforced Data Augmentation

Input: Pre-trained Tracker with parameters 6,.; the ran-
domly initialized Generator with parameters 6 ;
Output: Re-trained Tracker
: Store 0,

1

2: for/=1— Ldo

3 Re-initialize the Generator with 0

4 forn=1— Ndo

5: Re-initialize the Tracker with 6,.

6: Sample a bag B

7 forj=1— Mdo

8: Sample a new bag B

9: end for
10: Compute bag reward with Eq. 5
11: Compute instance reward with Eq. 6
12: Update 6, by the gradients in Eq.4
13: end for

14: Obtain new data D’ by the Generator

15: Re-train the Tracker on D + D’, update 0,

16: end for

17: Save the Tracker with 6, which performs best on the
validation set among the L epochs

generate a new instance (x’,y’, p’) by sampling based on the
learned policies. To further reduce the effect of noisy aug-
mented instances, we remove the new instance if its p’ has
minimum probability among C,,. We randomly initialize the
policy at each epoch to make the generator learn adaptively
which policy is best for the current Tracker. The alternate
learning is performed multiple rounds and the Tracker with
the best performances on the validation set is saved.

Experiment

In this section, we show the experimental results to demon-
strate the effectiveness of our framework.
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an alternate manner.

Dataset and Evaluation

We use WoZ (Wen et al. 2017) and Multi-
WoZ (Budzianowski et al. 2018) to evaluate the proposed
framework on the task of dialog state tracking*. Follow-
ing the work (Budzianowski et al. 2018), we extract the
restaurant domain of the MultiWoZ as the evaluation
dataset, denoted as MultiWoZ (restaurant). Both WoZ
and MultiWoZ (restaurant) are in the restaurant domain.
In the experiment, we use the widely used joint goal
accuracy (Henderson, Thomson, and Williams 2014) as the
evaluation metric, which measures whether all slot values
of the updated dialog state exactly match the ground truth
values at every turn.

Implementation Details

We implement the proposed model using PyTorch®. All
hyper-parameters of our model are tuned based on the vali-
dation set. To demonstrate the robustness of our model, we
use the similar hyper-parameter settings for both datasets.
Following the previous work (Ren et al. 2018; Zhong,
Xiong, and Socher 2018), we concatenate the pre-trained
GloVe embeddings (Pennington, Socher, and Manning
2014) and the character embeddings (Hashimoto et al. 2017)
as the final word embeddings and keep them fixed when
training. The epoch number of the alternate learning L, the
epoch number of the generator learning /V and the sampling
times M for each bag are set to 5, 200 and 2 respectively.
We set the dimensions of all hidden states to 200 in both the
Tracker and the Generator, and set the head number of multi-
head Self-Attention to 4 in the Tracker. All learnable param-
eters are optimized by the ADAM optimizer with a learning
rate of le-3. The batch size is set to 16 in the Tracker learn-
ing, and the bag size in the Generator learning is set to 25.

‘DSTC2 (Mrksi¢ et al. 2017) dataset is not used because its
clean version (http://mi.eng.cam.ac.uk/~nm480/dstc2-clean.zip) is
no longer available.

Shttps://pytorch.org/



Model \ WoZ \ Multi
Delexicalised Model 70.8 71.2
NBT-DNN 84.4 80.3
NBTKS 85.5 80.9
StateNet 88.9 82.4
GCE 88.5 83.5
NBT-CNN 84.0 +£0.6 | 79.8 +1.0
+BT 82.7 +0.6 | 75.6 £0.9
+DA 84.2 +0.5 | 79.7 £0.7
+ RDA 87.9F+0.3 | 83.47+0.6
GLAD 88.3 +0.3 | 83.6 £0.9
+BT 86.6 +£0.3 | 79.0 £1.0
+DA 88.0 +0.5 | 82.7 £0.7
+RDA 90.7+0.2 | 86.774+0.5

Table 1: Comparison of our model and other baselines. BT is
the back-translation based the data augmentation, DA refers
the coarse-grained data augmentation without the reinforced
framework, and Multi refers the dataset MultiWoZ (restau-
rant). t-test is conducted in our proposed models and original
trackers (NBT-CNN and GLAD) are used as the comparison
baselines. T and I: significant over the baseline trackers at
0.05/0.01. The mean and the standard deviation are also re-
ported.

To avoid over-fitting, we apply dropout to the layer of
word embeddings with a rate of 0.2. We also assign rewards
based on subsampled validation set with a ratio of 0.3 to
avoid over-fitting the policy network on the validation set.

In our experiments, the newly augmented dataset is n
times the size of the original training data (n = 5 for the
Woz and n = 3 for MultiWoz). At each iteration, we ran-
domly sample a subset of the augmented data to train the
Tracker. The sampling ratios are 0.4 for Woz and 0.3 for
MutiWoz.

For the coarse-grained data augmentation method, we
have tried the current neural paraphrase generation model.
The preliminary experiment indicates that almost all gener-
ated sentences are not helpful for the task of DST. The rea-
son is that most of the neural paraphrase generation models
require additional labeled paraphrase corpus which may not
be always available (Ray, Shen, and Jin 2018). In this work,
we extract unigrams, bigrams and trigrams in the training
data as the text spans in the generation process. After that,
we retrieve the paraphrases for each text span from the
PPDB® database as the candidates. We also use the golden
slot value in the sentence as the text spans, the other val-
ues of the same slot as the candidates and the label will be
changed accordingly.

Baseline Methods

We compare our model with some baselines. Delexicalised
Model uses generic tags to replace the slot values and em-
ploys a CNN for turn-level feature extraction and a Jordan
RNN for state updates (Henderson, Thomson, and Young

Shttp://paraphrase.org/
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Dataset | Model | 10% 20% 50%
WoZ GLAD | 50.1 725 81.7
+RDA | 66.8 81.5 86.9
Multi GLAD | 60.0 726 77.6
+RDA | 71.5 81.2 85.2

Table 2: The results with different sub-sampling ratios on
WoZ and MultiWoZ (restaurant).

Setting | WoZ | Multi
RDA 90.7 | 86.7
- Bag Reward 89.1 | 8423
- Instance Reward | 89.8 | 85.4
DA | 88.0 | 82.7

Table 3: Ablation study of performances on the test set of
WoZ and MultiWoZ.

2014; Wen et al. 2017). NBT-DNN and NBT-CNN respec-
tively use the summation and convolution filters to learn the
representations for the user utterance, candidate slot-value
pair and the system actions (Mrksic¢ et al. 2017). Then, they
fuse these representations by a gating mechanism for the fi-
nal prediction. NBTKS has a similar structure to NBT-DNN
and NBT-CNN, but with a more complicated gating mecha-
nism (Ramadan, Budzianowski, and Gasic 2018). StateNet
learns a representation from the dialog history, and then
compares the distances between the learned representation
and the vectors of the candidate slot-value pairs for the final
prediction (Ren et al. 2018). GLAD is a global-locally self-
attentive state tracker, which learns representations of the
user utterance and previous system actions with global-local
modules (Zhong, Xiong, and Socher 2018). GCE is devel-
oped based on GLAD by using global recurrent networks
rather than the global-local modules (Nouri and Hosseini-
Asl 2018).

We use the coarse-grained data augmentation (DA) with-
out the reinforced framework, which is described at the
implementation section, as the baseline. The paraphrasing
method is widely used for the data augmentation in the pre-
vious work (Ray, Shen, and Jin 2018; Hou et al. 2018), thus
we also use back-translation (BT) based paraphrasing as the
baseline. Both the DA and BT use the same amount of aug-
mented instances with the proposed reinforced data augmen-
tation (RDA) to ensure a fair comparison.

Results and Analyses

We compare our model with baselines and the joint goal
accuracy is used as the evaluation metric. The results are
shown in Table 1.

From the table, we observe that the proposed GLAD
achieves comparable performances (88.3% and 83.6%) with
other state-of-the-art models on both datasets. The frame-
work RDA can further boost the performances of the com-
petitive GLAD by the margin of 2.4% and 3.1% on two
datasets respectively, achieving new state-of-the-art results
(90.7% and 86.7%). Compared with the GLAD, the classical



NBT-CNN with the RDA framework obtains more improve-
ments: 3.9% and 3.6%. We also conduct significance test (t-
test), and the results show that the proposed RDA achieves
significant improvements over baseline models (p < 0.01
and p < 0.05 respectively for WoZ and MultiWoZ (restau-
rant)).

For the back-translation based augmentation (BT), it
consistently decreases the performances of NBT-CNN and
GLAD in both datasets. The reason is that the some aug-
mented instances generated by the end-to-end method are
noisy and the semantic of original text is shifted. The noisy
instances are fed into the neural networks and hurt their per-
formances.

The table also shows that directly using coarse-grained
data augmentation methods without the RDA is less effec-
tive, and can even degrade the performances, as it may gen-
erate noisy instances. The results show that: using the RDA,
the GLAD achieves improvements of (88.0%—90.7%) and
(82.7%—86.7%) respectively on the WoZ and MultiWoZ.
The NBT-CNN obtains improvements of (84.2%—87.9%)
and (79.7%—83.4%) respectively. Overall, the results indi-
cate that the RDA framework offers an effective mechanism
to improve the quality of augmented data.

To further verify the effectiveness of the RDA when the
training data is scarce, we conduct sub-sampling experi-
ments with the GLAD tracker trained on different ratios
[10%, 20%, 50%] of the training set. The results on both
datasets are shown in Table 2. We find that our proposed
RDA methods consistently improve the original tracker per-
formance. Notably, we obtain ~10% improvements with
[10%, 20%] ratios of training set on both WoZ and Multi-
WoZ (restaurant), which indicates that the RDA framework
is particularly useful when the training data is limited.

To evaluate the performance of different level rewards, we
perform ablation study with GLAD on both the WoZ and
MultiWoz datasets. The results are shown in Table 3. From
the table we can see that both rewards can provide the im-
provements of 1% to 2% in the datasets and the bag-level
reward achieves larger gains than the instance-level reward.
Compared with DA setting, RDA obtains the improvements
of 3% to 4% on the datasets by combining the both rewards,
which indicates that the summation reward is more reliable
for policy learning than individual ones.

Effects of Hyper-parameters

In this subsection, we investigate the effects of the number
of newly augmented data in the Tracker learning, the epoch
number of the alternate learning L and the epoch number
of the Generator learning N on performance. We conduct
experiments with the GLAD tracker which is evaluated on
the validation set of WoZ and the joint goal accuracy is used
as the evaluation metric.

Number of newly augmented data: we use 0 to 5 times
the size of original data in the Tracker learning. The perfor-
mance is shown in Figure 4 (top). The model continues to
improve when the number of newly added examples is less
than 2 times the original data. When we add more than twice
the amount of original data, the improvement is not signifi-
cant.
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Figure 4: Results of different hyper-parameters. Top: differ-
ent times the size of original data; Middle: different epochs
of alternate learning; Bottom: different epochs of the Gener-
ator learning. The solid circles of L = 0 and N = 0 in the
figure refer to the model of coarse-grained data augmenta-

tion (DA).

Epoch number of the alternate learning: we vary L from
0 to 10 and the performance is shown in Figure 4 (middle).
We can see that, with alternate learning, the model contin-
ues to improve when L. < 5, and becomes stable with no
improvement after L > 5.

Epoch number of the Generator learning: we vary N
from 0 to 350, and the performance is shown in Figure 4
(bottom). We find that the performance increases dramat-
ically when N < 200, and shows no improvement after
N > 200. It shows that the Generator needs a large N to
ensure a good policy.

Case Study for Policy Network

We sample four sentences from WoZ to demonstrate the ef-
fectiveness of the Generator policy in the case study. Due to
limited space, we present the candidate phrases with max-
imum and minimum probabilities derived from the policy
network and the details are shown in Table 4.

We observe that both high-quality and low-quality re-
placements exist in the candidate set. The high-quality re-
placements will generate reliable instances, which can po-
tentially improve the generalization ability of the Tracker.
The low-quality ones will induce noisy instances and can
reduce the performance of the Tracker. From the results of
the policy network, we find that our Generator can automat-
ically infer the quality of candidate replacements, assigning
higher probabilities to the high-quality candidates and lower



probabilities to the low-quality candidates.

Sentence x and text span p | Candidates C,

i was wonder if you could provide
are you able to

Thanks , [could you give] me the
phone number for the restaurant?

‘What restaurants are on the east
side that are not [overpriced] ?

too expensive
cheap enough

south end
southern countries

What is a affordable restaurant in
the [south side part] of town?

do n’t worry

I want Cuban food and i [do n’t
do n’t give a danm

care] about the price range.

Table 4: Case study for the Generator policy. The phrases
with maximum policy values are listed at the first line in each
cell of Candidates C,, and the ones with minimum values are
listed at the second line.

Related Work

Dialog State Tracking. DST is studied extensively in the
literature (Williams, Raux, and Henderson 2016). The meth-
ods can be classified into three categories: rue-based, gen-
erative (DeVault and Stone 2007; Williams 2008), and dis-
criminative (Metallinou, Bohus, and Williams 2013) meth-
ods. The discriminative methods (Metallinou, Bohus, and
Williams 2013) study dialog state tracking as a classification
problem, designing a large number of features and optimiz-
ing the model parameters by the annotated data. Recently,
neural networks based models with different architectures
have been applied in DST (Henderson, Thomson, and Young
2014; Zhong, Xiong, and Socher 2018). These models ini-
tially employ CNN (Wen et al. 2017), RNN (Ramadan,
Budzianowski, and Gasic 2018), self-attention (Nouri and
Hosseini-Asl 2018) to learn the representations for the user
utterance and the system actions/response, then various gat-
ing mechanisms (Ramadan, Budzianowski, and Gasic 2018)
are used to fuse the learned representations for prediction.
Another difference among these neural models is the way
of parameter sharing, most of which use one shared global
encoder for representation learning, while the work (Zhong,
Xiong, and Socher 2018) pairs each slot with a local en-
coder in addition to one shared global encoder. Although
these neural network based trackers obtain state-of-the-art
results, they are still limited by insufficient amount and di-
versity of annotated data. To address this difficulty, we pro-
pose a method of data augmentation to improve neural state
trackers by adding high-quality generated instances as new
training data.

Data Augmentation. Data augmentation aims to gener-
ate new training data by conducting transformations (e.g.
rotating or flipping images, audio perturbation, etc.) on
existing data. It has been widely used in computer vi-
sion (Krizhevsky, Sutskever, and Hinton 2012) and speech
recognition (Ko et al. 2015). In contrast to image or speech
transformations, it is difficult to obtain effective transforma-
tion rules for text which can preserve the fluency and coher-
ence of newly generated text and be useful for specific tasks.
There is prior work on data augmentation in NLP (Hou et al.
2018; Ray, Shen, and Jin 2018). These approaches do not
specially design some mechanisms to filter out low-quality
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generated instances. In contrast, we propose a coarse-to-fine
strategy for data augmentation, where the fine-grained gen-
erative polices learned by RL are used to automatically re-
duce the noisy instances and retain the effective ones.
Reinforcement Learning in NLP. RL is a general pur-
pose framework for decision making and has been applied
in many NLP tasks such as relational reasoning (Xiong,
Hoang, and Wang 2017), sequence learning (Ranzato et al.
2015; Li et al. 2018; Celikyilmaz et al. 2018), summariza-
tion (Paulus, Xiong, and Socher 2017; Dong et al. 2018),
text classification (Wu, Li, and Wang 2018; Feng et al. 2018)
and dialog (Singh et al. 2000; Li et al. 2016). Previous works
by (Feng et al. 2018) designs RL algorithm to learn how to
filter out noisy ones. Our work is significantly different from
these works, especially in the problem settings and model
frameworks. The previous work assume there are many dis-
tant sentences. However, in our work we only know possi-
ble replacements, and our RL algorithm should learn how to
choose optimal replacements to “generate’ new high-quality
sentences. Moreover, the action space and reward design are
different.

Conclusion and Future Work

We have proposed a reinforced data augmentation (RDA)
method for dialogue state tracking in order to improve its
performance by generating high-quality training data. The
Generator and the Tracker are learned in an alternate man-
ner, i.e. the Generator is learned based on rewards from the
Tracker while the Tracker is re-trained and boosted with the
new high-quality data augmented by the Generator. We con-
ducted extensive experiments on the datasets of WoZ and
MultiWoZ (restaurant); the results demonstrate the effective-
ness of our framework. In future work, we would conduct
experiments on more NLP tasks and introduce neural net-
work based paraphrasing method in the RDA framework.
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