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Abstract

Learning text representation is crucial for text classification
and other language related tasks. There are a diverse set of text
representation networks in the literature, and how to find the
optimal one is a non-trivial problem. Recently, the emerging
Neural Architecture Search (NAS) techniques have demon-
strated good potential to solve the problem. Nevertheless, most
of the existing works of NAS focus on the search algorithms
and pay little attention to the search space. In this paper, we
argue that the search space is also an important human prior to
the success of NAS in different applications. Thus, we propose
a novel search space tailored for text representation. Through
automatic search, the discovered network architecture outper-
forms state-of-the-art models on various public datasets on
text classification and natural language inference tasks. Fur-
thermore, some of the design principles found in the automatic
network agree well with human intuition.

Introduction

Neural network models have demonstrated their superiority
in many natural language tasks such as text classification,
machine translation and reading comprehension. One of the
core problems of natural language processing is to design a
network architecture that effectively captures the syntax and
semantics incorporated in texts. Contrary to the computer
vision domain where CNN is predominant, the state-of-the-
art neural networks for text representation are much more
diverse, including CNN (Zhang, Zhao, and LeCun 2015),
RNN (Liu et al. 2015), hybrid model of CNN+RNN (Zhou et
al. 2015; Tang, Qin, and Liu 2015) and Transformer (Vaswani
et al. 2017), etc. Nevertheless, how to find the optimal text
representation network is still an unsettled problem in the
literature.

Recently, Neural Architecture Search (NAS) techniques
have opened up a new opportunity for customized architec-
ture design. Existing works of NAS mainly focus on the study
of search algorithms and put little emphasis on the search
space. However, there remain several challenges for applying
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NAS to different applications. First, it is prohibitive to search
for all kinds of possibilities thoroughly, even when advanced
search algorithms (for example, gradient-based, evolution,
reinforcement learning, etc.) are utilized; Second, when the
search space is extra-large, the NAS algorithm may select a
neural architecture that overfits to both training and validation
data. Thus, we argue that the search space is an indispensable
human prior which deserves more investigation in different
applications.

In this paper, we propose TextNAS, a novel search space
customized for text representation. The search space is de-
signed based on the following motivations and findings:

• It is beneficial to explore the customized solution of
layer mixture. It is well-known that different layers are
beneficial from different perspectives. CNN is good at
learning local feature combinations (analogies to n-grams),
RNN specializes in sequential modeling, and Transformer
(Vaswani et al. 2017) is able to capture long-distance de-
pendencies directly. There are some evidences demonstrat-
ing the potential of layer mixture, for instance, C-LSTM
(Zhou et al. 2015) utilizes CNN to extract a sequence of
higher-level phrase representation and then feeds the CNN
output to another RNN layer to produce the ultimate sen-
tence embedding vectors.

• The macro search space is a better choice for text rep-
resentation Most previous works of NAS prefer micro
search space (Zoph et al. 2017) as they work well on
image-related tasks. However, according to a preliminary
experiment (showed in Table 1), we demonstrate that the
macro search space is better than the micro one in the text
classification scenario. This shows the necessity of lever-
aging customized search spaces for different applications.

• The search space should support multi-path ensem-
bles. One limitation of existing macro search space is
that it only embodies single-path neural networks. How-
ever, multi-path ensemble is a common design principle in
manual networks, e.g., InceptionV4 (Szegedy et al. 2017).
Intuitively, different categories of layers act as distinct fea-
ture extractors, an ensemble of which provides potentially
better representation for the sentence.

The TextNAS search space consists of a mixture of con-
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Table 1: Comparison of micro and macro search spaces on
different tasks using ENAS (Pham et al. 2018) search algo-
rithm

Dataset Task Acc (micro) Acc (macro)

CIFAR10 Image Classification 97.11 95.67
SST Text Classification 47.00 51.55
YAHOO Text Classification 70.63 73.16
AMZ Text Classification 58.27 62.64

volutional, recurrent, pooling and self-attention layers. It is
based on a general DAG structure and supports the ensem-
ble of multiple paths. Given the search space, the TextNAS
pipeline can be conducted in three procedures.1 (1) The
ENAS (Pham et al. 2018) search algorithm is performed on
the search space by utilizing the evaluation accuracy on vali-
dation data as RL reward; (2) Grid search is conducted by the
optimal architecture to search for the best hyper-parameter
setting on the validation set. (3) The derived architecture is
trained from scratch with the best hyper-parameters on the
combination of training and validation data.

We ran experiments on the Stanford Sentiment Treebank
(SST) dataset (Socher et al. 2013) to evaluate the TextNAS
pipeline. The experimental results showed that the automati-
cally generated neural architectures achieved superior perfor-
mances compared to manually designed networks. We look
into the automatic architecture and find that some of the de-
sign principles agree well with human experiences. Moreover,
since the neural architecture search procedure is time- and
resource-consuming, we are interested in the transferability
of the derived network architectures to other text-related tasks.
Impressively, the transferred architectures outperformed cur-
rent state-of-the-art methods (Zhang, Zhao, and LeCun 2015;
Yang et al. 2016; Conneau et al. 2016) on various text classi-
fication and natural language inference datasets.

Related Work

Neural Architecture Search

Neural Architecture Search (NAS) has become an impor-
tant research topic in AutoML domain, the goal of which
is to find the optimal network structure in a given search
space which achieves excellent performance on a specific
task. Existing studies in this direction can be summarized
in two aspects. One line of research focuses on evolution
algorithms, which offer flexible approaches for generating
neural networks by simultaneously evolving along network
structures and hyper-parameters (Real et al. 2018). Another
line of research concentrates on reinforcement learning, for
example, NAS (Neural Architecture Search) (Zoph and Le
2016) leverages a recurrent neural network as controller to
generate child networks, while the controller is trained with
reinforcement learning. Despite of impressive performance,
the original NAS framework is computationally expensive.

There are various attempts to improve the search efficiency
of NAS. (Zoph et al. 2017) reduces the search space to two

1The open source code is available at:
https://github.com/yujwang/TextNAS

micro cells: the normal cell and the reduction cell, while the
cells can be stacked to construct deep neural networks; PNAS
(Liu et al. 2017) adopts a sequential model-based optimiza-
tion strategy and constructs the network layer by layer while
simultaneously learns a surrogate model to guide the search
routine; (Baker et al. 2017) accelerates the search procedure
through predicting the final performance by partially trained
model configurations; ENAS (Pham et al. 2018) accelerates
the reinforcement learning procedure by sharing parameters
among child trials; DARTS (Liu, Simonyan, and Yang 2018)
formulates the task of neural architecture search in a differ-
entiable manner and does not require reinforcement learning
controllers; SMASH (Brock et al. 2017) proposes one-shot
model architecture search by designing a hyper-network to
generate the parameter values for each model; (Bender et al.
2018) demonstrates the possibility of leveraging one-shot ar-
chitecture search to identify promising architectures without
hyper-networks or reinforcement learning; (Li and Talwalkar
2019) shows that random search with early-stop is a compet-
itive NAS baseline and random search with weight-sharing
achieves further improvement.

Text Classification

RNN is specialized for long sequential modeling and has
the capability of processing variable-length inputs, mak-
ing it a natural choice for text classification. For example,
(Tai, Socher, and Manning 2015) introduces a tree-structured
LSTM network to capture sentence meanings with emphasis
on the syntactic structure. At the same time, there is an-
other branch of methods using CNN for text classification
(dos Santos and Gatti 2014; Zhang, Zhao, and LeCun 2015;
Conneau et al. 2016). Benefit from the advantages of both
RNN and CNN, there is a growing interest in assembling
them, including C-LSTM (Zhou et al. 2015), RCNN (Kalch-
brenner and Blunsom 2013) and GatedNN (Tang, Qin, and
Liu 2015). These models utilize CNN to extract a sequence
of higher-level phrase representation and feed the CNN out-
put to additional RNN layers to produce the ultimate text
representation vectors. Moreover, attention mechanism (Lu-
ong, Pham, and Manning 2015) has been widely adopted in
NLP applications, which enables neural networks to focus
on specific parts in the text sequence. As an example, (Yang
et al. 2016) proposes a hierarchical attention network where
two attention layers are applied at word and sentence level
respectively. In addition, Transformer (Vaswani et al. 2017)
invents multi-head self-attention in the text encoder to relate
different positions of a single word sequence.

Natural Language Inference

Natural Language Inference (NLI) is another fundamental
NLP task that determines the inferential relationship among
sentences. There are two major categories of neural network
models for NLI, namely sentence vector-based models and
joint models. The former represents each sentence as a fixed-
length vector before inferring the relationship between them;
while the latter utilizes cross-sentence layers explicitly in the
neural network for relation prediction. In this paper, the goal
is to evaluate the capability of text representation, so we adopt
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(a) (b)

Figure 1: (a) The general DAG search space of four layers (b)
A neural network instance sampled from the general search
space.

the sentence-vector based framework. Conneau et al. (Con-
neau et al. 2017) compared 7 different network architectures
and showed that a single BiLSTM layer with max pooling can
act as the universal sentence encoding model. Based on this
work, (Nie and Bansal 2017) designed a stacked BiLSTM
layer with shortcut connections and (Talman, Yli-Jyrä, and
Tiedemann 2018) devised a hierarchical BiLSTM max pool-
ing (HBMP) model. Besides, (Chen, Ling, and Zhu 2018)
proposed a new vector-based multi-head attention pooling
layer to enhance the sentence representation; (Im and Cho
2017) utilized the self-attention network that considered local
dependencies of different words to generate distance-based
sentence embedding vectors; (Yoon, Lee, and Lee 2018) com-
bined the self-attention mechanism with modified dynamic
routing borrowed from the capsule network.

TextNAS

In this section, we introduce our method in details. First, we
propose the novel search space tailored for text representa-
tion. Second, we introduce the search algorithms adopted in
TextNAS. Finally, we describe the frameworks of two tasks,
i.e., text classification and natural language inference.

Search Space

The macro search space of neural network can be depicted
by a general DAG. As shown in Figure 1a, every node in the
DAG represents a layer, and every edge from node i to node
j denotes that layer i is served as an input or skip-connection
to layer j. Without loss of generality, we define a topological
order for the layers, where layer 0 stands for the original
input layer and an edge <i, j> exists when i < j. Based on
the DAG search space, a network instance can be sampled
by traversing the layers according to the topological order.
For each layer i, we first choose a unique input layer from
one of the previous layers {0, 1, ..., i − 1}; then we make
multiple choices from previous layers as skip connections,
which are summed with the output of layer i. An example
of the network instance is shown in Figure 1b, which can

(a) (b)

Figure 2: Duplicated network exmaples constructed by dif-
ferent orders

be generated in the following steps: (1) layer 2 and 3 both
choose layer 1 as input; (2) layer 3 chooses layer 1 and 2 as
additional skip connections (shown in dotted lines); (3) layer
4 chooses layer 3 as input and layer 2 as an additional skip
connection.

We notice that different construction orders sometimes
lead to the same network architecture, as illustrated in Figure
2. We put a constraint on the search space to mitigate this
kind of duplication and accelerate the search procedure. Con-
cretely, layer i must select its input from previous k layers,
where k is set to be a small value. In this way, we favor the
BFS-style construction manner in Figure 2a instead of Figure
2b. For example, if we set k = 2, the case in Figure 2b can be
skipped because layer 4 cannot take layer 1 as input directly.
In our experiments, we set k = 5 as a trade-off between
expressiveness and search efficiency.

The tensor shape of the input word sequence is
<batch size, emb dim, max len>, where batch size is
the pre-defined size of mini-batch; emb dim is the embed-
ding dimension of word vectors and max len denotes the
max length of the word sequence. In our implementation,
we adopt a fixed-length representation, i.e., additional pad
symbols are added to the tail if the input length is smaller
than max len; and the remaining text is discarded if the in-
put length is larger than max len. In all the layers, we keep
the tensor shape as <batch size, dim, max len>, where
dim is the dimension of hidden units. Note that dim may not
equal to emb dim, so an additional 1-D convolution layer is
applied after the input layer.

After the network structure is built, the next step is to de-
termine the options for each layer. In the search space, we
incorporate four categories of candidate layers which are com-
monly used for text representation, namely Convolutional
Layers, Recurrent Layers, Pooling Layers, and Multi-Head
Self-Attention Layers. Each layer does not change the shape
of input tensor, so one can freely stack more layers as long
as the input shape is not modified.

Convolutional Layers. We define four kinds of 1-D con-
volution layers as candidate options with filter size 1, 3, 5,
and 7 respectively. To keep the shape of output the same
as input, we utilize the convolution of stride = 1 with
SAME padding; and the number of output filters is equal
to the input dimension. Note that the 1-D convolution with
filter size = 1 and stride = 1 is analogue to a feed-
forward layer. We apply Relu-Conv-BatchNorm once a con-
volutional layer is added.
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Recurrent Layers. There are multiple kinds of recurrent
layers, e.g., the vanilla RNN (Horne and Giles 1995), LSTM
(Hochreiter and Schmidhuber 1997) and GRU (Bahdanau,
Cho, and Bengio 2014). LSTM and GRU are known to be
more advantageous than the vanilla RNN for capturing long-
term dependencies in a text sequence; while GRU is usually
several times faster than LSTM without loss of precision
(Chung et al. 2014). Therefore, we leverage GRU layer as
our RNN implementation. Specifically, we implement a bi-
directional GRU that sums the output vectors of two opposite
directions. One can also make LSTM and GRU as two candi-
date layers and let the search algorithm to make the decision.

Pooling Layers. The pooling layers calculate the maxi-
mum or average value within a filter window. We use pooling
operations with SAME padding and stride = 1 so that the
dimension of tensor does not change after pooling. For sim-
plicity, we fix the filter size as 3 and only search between
maximum or average pooling options. One can also enlarge
the search space by allowing multiple choices of the filter
size.

Multi-Head Self-Attention Layers. Multi-head self-
attention layer is a major component in the neural network of
Transformer (Vaswani et al. 2017). A Transformer block is
constructed by one multi-head self-attention layer followed
by one or more feed-forward layers. In our search space, we
already have analogous to feed-forward layers, so we lever-
age the automatic search algorithm to decide how to combine
them. The number of attention heads is set as 8 in all the ex-
periments. We do not use positional embedding for the input
of multi-head self-attention layers because it will destroy the
translation invariance of succeeding pooling and CNN layers.

Search Algorithm

We leverage the ENAS (Efficient Neural Architecture Search)
search algorithm (Pham et al. 2018) because it is one of most
effective and efficient among all state-of-the-art search algo-
rithms. ENAS searches for the best network architecture via
reinforcement learning with weight sharing. In each step, the
controller is responsible for sampling several child networks
from the general search space. Then the child architectures
are trained on the training set and evaluated on the validation
set. The child networks share the same set of parameters with
the global super-graph to accelerate the evaluation procedure.
After the performance of each child network is evaluated,
the accuracy is fed back to the controller and the parameters
are updated through policy gradients based on REINFORCE
(Williams 1992).

We reuse the open source code2 of ENAS and implement
the our novel search space accordingly. Concretely, the con-
troller is implemented by a single LSTM layer, which gen-
erates the choice of each layer sequentially according to its
topological order. For layer i, it first samples an input layer
ID among [max(0, i − k), i − 1] via softmax probabilities.
Then it generates i binary outputs by sigmoid to identify if
layer 0, 1, ..., i − 1 have skip connections with layer i. At
last, an operator is selected for each layer. There are totally
8 options from 4 categories, i.e., 1-D convolution with filter

2https://github.com/melodyguan/enas

Figure 3: The sentence vector-based framework for natural
language inference task

size 1, 3, 5, 7; max pooling; average pooling; Gated Recur-
rent Units (GRU) and multi-head self-attention. The selection
probabilities of these options are calculated by softmax.

Tasks

We evaluate on two tasks to verify the feasibility and general-
ity of our approach.

Text Classification is the task of assigning tags or cat-
egories to text according to its content. All layers in the
text representation network are linearly combined (Peters et
al. 2018) and followed by a max pooling layer and a fully
connected layer with softmax activation to output the classifi-
cation result.

Natural Language Inference is the task of determining
whether a hypothesis sentence is entailment, contradiction
or neutral given a premise sentence. We adopt the sentence
vector-based framework (Bowman et al. 2015) for this task
since our goal is to compare different text representation ar-
chitectures. The framework is illustrated in Figure 3. The
two sentences (i.e., hypothesis and premise) share the same
text representation network, while the multi-head attention
pooling layer (Chen, Ling, and Zhu 2018) is applied on top to
generate the sentence embedding vector u and v. After that,
we concatenate u, v, absolute element-wise distance |u− v|
and element-wise product u · v to construct the feature vector.
We then feed the feature vector to three fully connected lay-
ers with ReLU activation before calculating 3-way softmax
output.

Experiments

We first conduct neural architecture search and evaluate the
performance on SST, a medium size dataset of text classifi-
cation which has been extensively studied by human experts.
Then we transfer the derived architectures to other text clas-
sification and natural language inference tasks.

Neural Architecture Search

SST is short for Stanford Sentiment Treebank (Socher et
al. 2013) which is a commonly used dataset for sentiment
classification. There are about 12 thousand reviews in SST
and each review is labeled to one of the five sentiment classes.
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Figure 4: Visualization of TextNAS network: Rectangles represent layers, circles represent summations, one-way arrows
represent inputs, and dotted one-way arrows represent skip connections.

Table 2: Statistics of text classification datasets

DATASET #CLASS #TRAIN #VALID #TEST

SST 5 8,544 1,101 2,210
SST-B 2 6,920 872 1,821
AG 4 120,000 - 7,600
SOGOU 5 450,000 - 60,000
DBP 14 560,000 - 70,000
YELP-B 2 560,000 - 38,000
YELP 5 650,000 - 50,000
YAHOO 10 1,400,000 - 60,000
AMZ 5 3,000,000 - 650,000
AMZ-B 2 3,600,000 - 400,000

There is another version of the dataset, SST-Binary, which
has only two classes representing positive/negative while the
neutral samples are discarded.

In our experiments, we perform 24-layers neural architec-
ture search on SST dataset and evaluate the derived architec-
tures on both SST and SST-Binary datasets. We follow the
pre-defined train/validation/test split of the original datasets3.
The word embedding vectors are initialized by pre-trained
GloVe (glove.840B.300d4) (Pennington, Socher, and Man-
ning 2014) and fine-tuned during training. We set the batch
size as 128, max input length as 64, hidden unit dimension for
each layer as 32, dropout ratio as 0.5 and L2 regularization
as 2 × 10−6. We utilize Adam optimizer and learning rate
decay with cosine annealing:

λ = λmin + 0.5 · (λmax − λmin)(1 + cos(πTcur/T )) (1)

where λmax and λmin define the range of the learning rate,
Tcur is the current epoch number and T is the cosine cycle.
In our experiments, we set λmax = 0.005, λmin = 0.0001
and T = 10. After each epoch, ten candidate architectures
are generated by the controller and evaluated on a batch of
randomly selected validation samples. After training for 150
epochs, the architecture with the highest evaluation accuracy
is chosen as the text representation network.

3https://nlp.stanford.edu/sentiment/code.html
4https://nlp.stanford.edu/projects/glove/

The whole process can be finished within 24 hours on a
single Tesla P100 GPU. As visualized in Figure 4, the auto-
matically discovered architecture is assembled by multiple
paths and different categories of layers, including 13 convo-
lution layers, 4 max-pooling layers, 2 average-pooling layers,
2 bi-directional GRU layers and 3 self-attention layers. Al-
though it is much more complex than manual architectures,
we still find that there are some design principles in line with
human common-sense:

• The avg/max pooling layers and CNN/GRU/self-attention
layers are alternatively stacked. The pooling layers help for
extracting rotational/positional invariant features as inputs
to other layers.

• There are convolution layers before and after each GRU
and multi-head self-attention layers, which is similar to
C-LSTM (Zhou et al. 2015) and Transformer (Vaswani et
al. 2017). Intuitively, convolution operations generate local
feature combinations (similar to n-grams) as complemen-
tary to GRU/self-attention layers which mainly capture
long-term dependencies.

• The design principles look similar to Incep-
tionV4 (Szegedy et al. 2017), which performs avg/max
pooling and different convolution operations in parallel
before aggregating them as final representation.

Result on SST

We evaluate the optimal result architecture by training it
from scratch and searching for the best hyper-parameters. We
set batch size as 128, max input length as 64, hidden unit
dimension for each layer as 256. Other hyper-parameters are
optimized by grid search on the validation data (showed in
the appendix). We compare our architecture with state-of-the-
art networks designed by human experts, including 24-layers
Transformer which is the text representation architecture
leveraged in BERT (Devlin et al. 2018). We also compare
to the original search spaces defined in ENAS (Pham et al.
2018):

• ENAS-MACRO is a macro search space over the convo-
lutional and pooling layers, which is originally designed
for image classification tasks. There are 6 operations in
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Table 3: Results on SST dataset. For each dataset, we conduct
significance test against the best reproducible model, and *
means that the improvement is significant at 0.05 significance
level.

MODEL SST SST-B

LAI ET AL., 2015 47.21 -
ZHOU ET AL., 2015 49.20 87.80
LIU ET AL., 2016 49.60 87.90
TAI ET AL., 2016 51.00 88.00
KUMAR ET AL., 2016 52.10 88.60
24-LAYERS TRANSFORMER 49.37 86.66

ENAS-MACRO 51.55 88.90
ENAS-MICRO 47.00 87.52
DARTS 51.65 87.12
SMASH 46.65 85.94
ONE-SHOT 50.37 87.08
RANDOM SEARCH 49.20 87.15

TEXTNAS 52.51 90.33∗

the search space: convolutions with filter sizes 3× 3 and
5× 5, depthwise-separable convolutions with filter sizes
3× 3 and 5× 5 (Chollet 2017), max pooling and average
pooling of kernel size 3×3. In our experiments, we search
for a macro neural network consisting of 24 layers.

• ENAS-MICRO is a micro search space over normal and
reduction cells. There are two kinds of cells, i.e., normal
cells and reduction cells. In each cell, there are B = 10
nodes, where node 1 and node 2 are treated as the inputs
of current cell. For each of the remaining B − 2 nodes,
the RNN controller makes two decisions: 1) selecting two
previous nodes as inputs to the current node and 2) se-
lecting two operations to apply on the input nodes. There
are 5 available operations: identity, separable convolution
with kernel size 3× 3 and 5× 5, average pooling and max
pooling with kernel size 3 × 3. In our experiments, we
stack the cells for 6 times. The normal cells and reduction
cells are stacked alternatively.

We also compare to other search algorithms which have
similar time complexities as ENAS, including DARTS (Liu,
Simonyan, and Yang 2018), SMASH (Brock et al. 2017),
One-Shot (Bender et al. 2018) and Random Search with
Weight Sharing (Li and Talwalkar 2019). Unless specified,
we utilize the default settings of their open-source codes with-
out tuning the hyper-parameters or modifying the proposed
search spaces except for replacing all 2-D convolutions with
1-D (detailed settings can be found in the appendix).

The evaluation results are shown in Table 3. We can see
that the neural architecture discovered by TextNAS achieves
competitive performances compared with state-of-the-art
manual architectures, including the 24-layers Transformer
adopted by BERT. At the same time, it outperforms other
network architectures discovered automatically by other
search spaces and algorithms. Specifically, the accuracy is im-
proved by 11.7% from ENAS-MICRO and 1.9% from ENAS-
MACRO on the SST dataset respectively, which shows the

superiority of our novel search space for text representation.
It should be noticed that there are other publications that have
reported higher accuracies. However, they are not directly
comparable to our scenario since they incorporate various
kinds of external knowledge, e.g., BERT (Devlin et al. 2018)
pre-trains on a large external corpus and (Yu et al. 2017)
exploits syntax information in the Tree-LSTM model.

Result on Architecture Transfer

Text Classification We transfer the derived architecture
as text representation networks to other eight text classi-
fication datasets5 (Zhang, Zhao, and LeCun 2015). These
datasets are from various domains including sentiment anal-
ysis, Wikipedia article categorization, news categorization
and topic classification. The counts of samples are widely
spread from hundreds of thousands to several millions as
summarized in Table 2.

We follow the train/test split of the original datasets in
all our experiments. For those datasets without validation
set, we randomly select 5% samples from the training set as
validation data. For all datasets, we use pre-trained GloVe
embedding to initialize word vectors and fine-tune them
during training. To simplify the learning rate fine-tuning
procedure for different datasets, we adopt an auto-decay
strategy instead of cosine annealing. Given an initial learn-
ing rate, we use a small learning rate (0.1 × init rate)
to warm up the training procedure for 5 epochs; then we
start from init rate and decay it with a factor of 0.2 when
the average validation accuracy of 7 recent epochs on the
validation data drops. Finally, after 4 times of decay, we
update the model for another 6 epochs on the full train-
ing set (training + validation). As a result, only one hyper-
parameter, i.e., init rate, is required for each dataset. For
critical hyper-parameters, we employ grid search on the vali-
dation data. Specifically, we search in {0.08, 0.05, 0.02} for
learning rate, {64, 128} for batch size, {64, 256, 512} for
max input length, {2×10−9, 2×10−7, 1×10−6, 2×10−6}
for L2 regularization, {0.0, 0.2, 0.5} for drop-out ratio, and
{32, 64, 128, 256} for hidden units dimension respectively.
We observe that the Adam optimizer is not stable in several
settings, so we adopt stochastic gradient descent with mo-
mentum 0.9 for training on all the datasets. More detailed
settings are described in the appendix.

The test accuracies on all datasets are shown in Table 4.
The results demonstrate that the TextNAS model outperforms
state-of-the-art methods on all text classification datasets ex-
cept Sogou. One potential reason is that Sogou is a dataset
in Chinese language, while the Glove embedding vectors
are trained by English corpus. One can improve the per-
formance by adding Chinese-language embeddings or char-
embeddings, but we do not add them to keep the solution neat.
In addition, we can pay a specific attention to the comparison
of TextNAS with 29-layers CNN (Conneau ET AL., 2016)
and 24-layers Transformer (VASWANI ET AL., 2017). As
shown in the table, the TextNAS network improves two base-
lines by a large margin, indicating the advantage for mixture
of different layers.

5The datasets are available at http://xzh.me/
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Table 4: Test accuracy on the text classification datasets. For each dataset, we conduct significance test against the best
reproducible model, and * means that the improvement is significant at 0.05 significance level.

MODEL AG SOGOU DBP YELP-B YELP YAHOO AMZ AMZ-B

ZHANG ET AL., 2015 92.36 97.19 98.69 95.64 62.05 71.20 59.57 95.07
JOULIN ET AL., 2016 92.50 96.80 98.60 95.70 63.90 72.30 60.20 94.60
CONNEAU ET AL., 2016 91.33 96.82 98.71 95.72 64.72 73.43 63.00 95.72
24-LAYERS TRANSFORMER 92.17 94.65 98.77 94.07 61.22 72.67 62.65 95.59

ENAS-MACRO 92.39 96.79 99.01 96.07 64.60 73.16 62.64 95.80
ENAS-MICRO 92.27 97.24 99.00 96.01 64.72 70.63 58.27 94.89
DARTS 92.24 97.18 98.90 95.84 65.12 73.12 62.06 95.48
SMASH 90.88 96.72 98.86 95.62 65.26 73.63 62.72 95.58
ONE-SHOT 92.06 96.92 98.89 95.78 64.78 73.20 61.30 95.20
RANDOM SEARCH 92.54 97.13 98.98 96.00 65.23 72.47 60.91 94.87

TEXTNAS 93.14 96.76 99.01 96.41∗ 66.56∗ 73.97∗ 63.14∗ 95.94∗

Natural Language Inference We carry out experiments
on two Natural Language Inference (NLI) datasets by leverag-
ing the network architecture of TextNAS as sentence encoder.
The SNLI dataset6 (Bowman et al. 2015) consists of 549,367
samples for training, 9,842 samples for validation and 9,824
samples for testing. The MultiNLI dataset7 (Williams, Nan-
gia, and Bowman 2018) contains 392,702 pairs for training.
It has two separate sets for evaluation: MNLI-M (matched
set) has 9,815 pairs for validation and 9,796 pairs for testing;
MNLI-MM (mismatched set) contains 9,832 pairs for valida-
tion and 9,847 pairs for testing. Each sample is labeled with
one of three labels: entailment, contradiction and neutral.

We initialize the word embedding layer by the concatena-
tion of pre-trained GloVe embeddings and charNgram embed-
dings (Hashimoto et al. 2016). The word embedding vectors
are fine-tuned during training. The outputs of all layers in
the sentence encoder are linearly combined to produce the
vector-based representation. We set the dimension of hidden
units as 512 for all layers in the sentence encoder and 2400
for the fully connected layers before softmax output. Dropout
is adopted on the output of each word-embedding, GRU and
fully connected layer. Adam optimizer with learning rate de-
cay strategy of cosine annealing is utilized to train the model.
Detailed settings are optimized by grid search and presented
in the appendix.

The evaluation results are illustrated in Table 5. To get a
fair comparison, we only compare with state-of-the-art sen-
tence vector-based models that perform classification on the
sole basis of a pair of fixed-size sentence representations.
As shown in the table, TextNAS achieves competitive test
accuracy on both SNLI and MNLI datasets consistently. In
addition, it performs much better than the 24-layer Trans-
former, which verifies the effectiveness of our search space
and methodology.

To conclude, TextNAS generates novel and transferable
network architecture for text classification and natural lan-
guage inference tasks. By searching neural architectures on a

6https://nlp.stanford.edu/projects/snli/
7https://www.nyu.edu/projects/bowman/multinli/

Table 5: Results on NLI datasets. For each dataset, we con-
duct significance test against the best reproducible model,
and * means that the improvement is significant at 0.05 sig-
nificance level.

MODEL SNLI MNLI-M/MM

NIE AND BANSAL, 2017 86.0 74.6 / 73.6
IM AND CHO, 2017 86.3 74.1 / 72.9
TALMAN ET AL., 2018 86.6 73.7 / 73.0
CHEN ET AL., 2018 86.6 73.8 / 74.0
KIELA ET AL., 2018 86.7 -
24-LAYERS TRANSFORMER 85.2 70.4 / 70.2

TEXTNAS 87.4∗ 74.9 / 74.2

relatively small dataset and then transferring it to larger ones,
the network design procedure can be performed efficiently
and effectively.

Conclusion & Future Work

In this paper, we propose a novel architecture search space
specialized for text representation by leveraging multi-path
ensemble and a mixture of convolutional, recurrent, pooling,
and self-attention layers. We demonstrate that by applying
an efficient search algorithm, the TextNAS neural network
architecture achieves state-of-the-art performance in vari-
ous text-related applications. In addition, the architecture
is explainable and transferable to other tasks. Future work
mainly falls into three aspects: (1) uniting neural architec-
ture search with state-of-the-art transfer learning frameworks,
e.g., BERT; (2) exploring search acceleration techniques and
conduct neural architecture search on larger datasets; (3) ap-
plying the TextNAS framework to other text-related tasks,
such as Q&A, machine translation and search relevance.
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