
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Generating Diverse Translation by Manipulating Multi-Head Attention

Zewei Sun, Shujian Huang, Hao-Ran Wei, Xin-yu Dai, Jiajun Chen
State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 210023, China
sunzw@smail.nju.edu.cn, whr94621@foxmail.com

{huangsj, daixinyu, chenjj}@nju.edu.cn

Abstract

Transformer model (Vaswani et al. 2017) has been widely
used in machine translation tasks and obtained state-of-the-
art results. In this paper, we report an interesting phenomenon
in its encoder-decoder multi-head attention: different atten-
tion heads of the final decoder layer align to different word
translation candidates. We empirically verify this discovery
and propose a method to generate diverse translations by ma-
nipulating heads. Furthermore, we make use of these diverse
translations with the back-translation technique for better
data augmentation. Experiment results show that our method
generates diverse translations without a severe drop in trans-
lation quality. Experiments also show that back-translation
with these diverse translations could bring a significant im-
provement in performance on translation tasks. An auxiliary
experiment of conversation response generation task proves
the effect of diversity as well.

Introduction
In recent years, neural machine translation (NMT) has
shown its ability to produce precise and fluent translations
(Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2015; Luong, Pham, and Manning 2015). More and
more novel network structures has been proposed (Barone
et al. 2017; Gehring et al. 2017; Vaswani et al. 2017),
among which Transformer (Vaswani et al. 2017) achieves
the best results. The main differences between Transformer
and other translation models are: i) self-attention architec-
ture, ii) multi-head attention mechanism. We focus on the
second one in this paper.

Intuitively, the attention mechanism in traditional
attention-based sequence-to-sequence models plays the role
of choosing the next source word to be translated, which
could be seen as an alignment between source and target
words (Bahdanau, Cho, and Bengio 2015; Luong, Pham, and
Manning 2015). However, how multi-head attention works
seems unclear.

In this paper, we report an interesting phenomenon in
Transformer: in the final layer of its decoder, each individual
encoder-decoder attention head dispersedly aligns to a spe-
cific source word which is highly likely to be translated next.
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In other words, multi-head attention actually learns multiple
alignment choices. Further, by means of picking different at-
tention heads, we can precisely control the following word
generation. We verify this characteristic by a series of statis-
tic study afterwards.

Straightway, we consider taking advantage of this in-
trinsic characteristic to generate diverse translations due to
the multiple generation candidates. Natural language can
be diversely translated through different syntax structures
or word orders. However, it has been well recognized that
NMT system severely lacks translation diversity, distin-
guished from human beings (He, Haffari, and Norouzi 2018;
Ott et al. 2018; Edunov et al. 2018). We try to tackle this is-
sue with a new method based on our observation.

There have been a few works attempting to generate
more diverse translation, which can be roughly divided
into two categories. The first category tries to encourage
diversity during beam search by adding some regulariza-
tion items (Li, Monroe, and Jurafsky 2016; Vijayakumar
et al. 2018). However, these methods actually fail to pro-
duce satisfied diversity in our re-implementation experi-
ments. The other category tends to augment diversity by in-
troducing latent variables (He, Haffari, and Norouzi 2018;
Shen et al. 2019). However, they heavily increase training
barrier and lack interpretability.

Different from them, we make use of the diverse fac-
tors we observe inside the model structure, which is more
lightweight and interpretable. Since multi-head attention has
the potential to identify different translation candidates, we
propose a method to manipulate it to generate diverse trans-
lations. Our method works simply but more effectively than
previous works, bringing in no extra parameter or regular-
ization item. Furthermore, we propose to combine diverse
translations with the back-translation technique for better
data augmentation.

Experiment results show that the proposed method could
generate diverse translations without a severe drop in
translation performance. Besides, improvements could be
achieved by employing our more diverse back-translation
results for machine translation. An auxiliary experiment of
conversation response generation proves the effect of diver-
sity as well.
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Figure 1: Multi-Head Attention consists of several attention
heads running in parallel.

Background

Transformer (Vaswani et al. 2017) architecture adopts the
encoder-decoder structure, utilizing self-attention instead
of recurrent or convolutional networks. The encoder itera-
tively processes its hidden representation through 6 layers of
self-attention and feed-forward network, coupled with layer
normalization and residual connection. Afterwards, the de-
coder takes a similar circuit with injected by an encoder-
decoder attention layer between self-attention and feed-
forward components. An important difference from previous
models is that Transformer turns all the attention mechanism
into a multi-head version.

Instead of performing a single attention function with d-
dimensional keys, values and queries, multi-head attention
projects them into H different sub-components. After cal-
culating attention for every sub-component, each yielding a
d/H-dimensional output context, these context vectors are
concatenated and projected, resulting in the final context, as
depicted in Figure 1. Specifically:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
o (1)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (2)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

To complete the decoding part, the model uses learned
linear transformation and softmax function to convert the de-
coder output to next-token probabilities. The embedding and
final transformation parameters are shared mutually.

Analysis of Multi-Head Attention

Each Head Indicates an Alignment

Previous works show that multi-head attention plays a key
role in the significant improvement of translation perfor-
mance (Vaswani et al. 2017; Chen et al. 2018). However, not
much observation was made on its inside pattern. We visu-
alize the multi-head attention to see whether different heads
play different roles. After observing plenty of examples, we
find that at every decoding step, all the source words that are
identified by heads are highly likely to be translated next. In
other words, each head aligns to a source word candidate.

NLL
Rank 1 0.59
Rank 3 4.12
Rank 5 5.19
Head-Average 5.27
Rank 6 5.53
Rank 10 6.40
Rank 100 9.47
Rank 1000 11.54
Random 13.57

NLL
Head 0 5.05
Head 1 5.40
Head 2 4.69
Head 3 5.04
Head 4 5.33
Head 5 5.72
Head 6 5.68
Head 7 5.32
Head-Average 5.27

Table 1: Negative log-likelihood of attention heads and
words ranked Rth on average.

We do the statistic study to verify this observation on
NIST MT03 dataset (see Datasets in Experiment). At each
timestep, we pick H referred source words (may overlap)
that H heads correspond to. “Referred source word” means
the source word with max attention for each head. Then we
translate these referred source words into target language
with baseline model and name these translations “referred
target words”. We count the number of times these “referred
target words” appear at different rankings of the softmax
probability and plot them in Figure 2. We can see that the
vast majority of heads align to the most possible words.

Also, we collect the negative log-likelihood (NLL) of
these referred target words to see whether they really have
high generation probability. To make a comparison, we list
the average NLL of words ranked Rth as well. The results in
Table 1 verify our assumption. The chosen words are ranked
around 5th on average, which implies they are indeed quite
possible to be selected at each decoding step.

Each Head Determines a Generation Word

Furthermore, we can control the next word generation by
choosing the corresponding source word by choosing dif-
ferent heads. As presented in Table 2, a Zh2En model has
translated “he said :” and waits for the following context. At
this step, different heads refer to several source words. From
Figure 3, we can see that head 4,5,6 refer to YiLai (since),
XiaJiang (decline), ChuKou (exports), respectively. We con-

Figure 2: “Referred target words” ranking counts of top 100.
The vast majority of heads align to the most possible words.
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Figure 3: Different heads have different attention, referring to different words. For example, head 4,5,6 refer to YiLai (since),
XiaJiang (decline), ChuKou (exports), respectively.

Source Ta Shuo , QuNian JiuYue YiLai ,
ChuKou XiaJiang DaoZhi YinDu JingJi
EHua .

Reference he said : the drop in exports has caused
india ’s economy deterioration since
september last year .

Translated he said :
YiLai
(since)

he said : since september last year , the
decline in exports has led to a deteriora-
tion in india ’s economy .

XiaJiang
(decline)

he said : the decline in exports has led to
a deterioration in india ’s economy since
september last year .

Chukou
(exports)

he said : exports have declined since
september last year , causing india ’s
economy to deteriorate .

Table 2: A Zh2En model has translated “he said :” and waits
for the following context. Different heads (refered to differ-
ent candidates) determine different following generation.

trol the model to generate the specific word by selecting the
corresponding head and copying its attention weights to the
other H − 1 heads. In this way, we indeed obtain different
translation results with expected translation candidates (see
three translation outputs in Table 2).

Intuitively, we can utilize these characteristics to gener-
ate diverse translations by picking different candidates to
change the word choices or the sentence structure. More im-
portantly, the diversity is from an interpretable mechanism
rather than an abstract latent variable like previous works.

Diversity-Encouraged Generation

Since we have confirmed multiple head alignments can be
utilized, it is natural for us to sample different heads at every
timestep, so that diverse word candidates can be generated.
However, we found that it will badly harm the translation
quality if sampling everywhere. So we propose a sample pol-
icy to balance quality and diversity.

As stated in Algorithm 1, at every decoding step t, we de-
note atthit as the attention of headh from target side hidden
state st to source side word srci. The most possible candi-

Algorithm 1 Sample Policy

Input: The source sentence length T , a hyper parameters K, the
head number H , a counting array [n0, ..., ni, ..., nT−1]
Output: Adjusted attention

1: for t in decoding timesteps do
2: for i in range(T ) do
3: ni = 0
4: end for
5: calculate atthit, i ∈ [0, T ), h ∈ [0, H)
6: for h in range(H) do
7: candidateht = argmaxi att

h
it

8: ncandidateht
+ = 1

9: end for
10: if max(n) ≤ K then
11: head = sample[0, H)
12: for all h do
13: atthit = atthead

it

14: end for
15: end if
16: end for

date for headh next step is :

candidateht = argmax
i

atthit (4)

We denote an array of [n0, ..., ni, ..., nT−1] as the number of
times that wordi is chosen from equation 4, where T is the
length of source sentence. Obviously:

T−1∑

i=0

ni = H (5)

where H is the number of heads. Diverse translations are
generated when multiple candidates are offered. In other
words, not all heads focus on the same source word. There-
fore, we define a confusing condition when:

max(ni) ≤ K (6)

where K is a hyper-parameter. Confusing condition means
“referred words” are disperse and multiple candidates can
be accepted. Under confusing condition, we sample one of
the heads as attention and force other heads to be the same.
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Otherwise, the decoding step remains unchanged. If K = 0,
the model is the same as the original version. If K = H ,
the model samples at every step. For the sake of balance of
quality and diversity, we may choose different K in differ-
ent conditions. We do the whole decoding for M times and
pick the most possible output in the beam every time. In this
paper, we let M = 5.

Our another contribution is adopting the method with
back-translation technique as data augmentation. Back-
translation has been proved helpful for neural machine trans-
lation (Sennrich, Haddow, and Birch 2016a; Poncelas et
al. 2018). However, the lack of diversity restricts its effect
(Edunov et al. 2018). We provide a new scheme for back-
translation with diverse corpus generated by our method and
gain improvement.

Experiment
Our translation experiments include two parts: diverse trans-
lation and diverse back-translation. In addition, a conver-
sation response generation experiment is also performed as
auxiliary evidence.

Setup

Datasets We choose five datasets as our experiment corpus.
• NIST Chinese-to-English (NIST Zh-En). The training

data consists of 1.34 million sentence pairs extracted
from LDC corpus. We use MT03 as the development set,
MT04, MT05, MT06 as the test sets.

• WMT14 English-to-German (WMT En-De). The training
data consists of 4.5 million sentence pairs from WMT14
news translation task. We use newstest2013 as the devel-
opment set and newstest2014 as the test set.

• WMT16 English-to-Romanian (WMT En-Ro). The train-
ing data consists of 0.6 million sentence pairs from
WMT16 news translation task. We use newstest2015 as
the development set and newstest2016 as the test set.

• Monolingual English corpus (for back-translation) from
IWSLT17 Chinese-to-English (IWSLT Zh-En). The train-
ing data consists of 0.2 million sentences from IWSlT17
spoken language translation task. We used dev2010 and
tst2010 as the development set and tst2011 as the test set.

• Short Text Conversation (STC) (Shang, Lu, and Li 2015).
The corpus contains about 4.4 million Chinese post-
response sentence pairs crawled from Weibo, built for sin-
gle turn conversation tasks. We remove sentence pairs that
are exactly the same between two sides. For the test set,
we extract 3000 post sentences that have 10 responses
in the corpus, forming 10 references. The develop set is
made up similarly.
For NIST Zh-En, we use BPE (Sennrich, Haddow, and

Birch 2016b) with 30K merge operations on both sides. For
En-De and En-Ro, we also apply BPE to segment sentences
and limit the vocabulary size to 32K. We filter out sentence
pairs whose source or target side contains more than 100
words for Zh-En and En-Ro sets. For STC corpus, we also
apply BPE and keep a vocabulary size to 36K. All the out-of-
vocabulary words are mapped to a distinct token <UNK>.

Experiment Settings Without extra statement, we follow
the Transformer base v1 settings1, with 6 layers in encoder
and 2 layers in decoder2, 512 hidden units, 8 heads in multi-
head attention and 2048 hidden units in feed-forward layers.
Parameters are optimized using Adam optimizer (Kingma
and Ba 2015), with β1 = 0.9, β2 = 0.98, and ε = 10−9. The
learning rate is scheduled according to the method proposed
in Vaswani et al. (2017), with warmup steps = 8000. La-
bel smoothing (Szegedy et al. 2016) of value = 0.1 is
also adopted. For K, we do not observe diversity enhance-
ment when K is too small like K = 1, 2. And conditions
of K = 6, 7 are very similar to K = 8. Hence we use
K = 3, 4, 5, 8 as comparisons.

Diverse Translation

Comparing Objects We compare our models with origi-
nal beam search (as Baseline) and sampling from the prob-
ability distribution (as Multinomial Sampling). Besides, we
compare our methods with a few previous works:

• Li, Monroe, and Jurafsky (2016) propose a decoding trick
to penalize hypotheses that are siblings (expansions of
the same parent node) in the beam search to increase the
translation diversity.

• Vijayakumar et al. (2018) add a regularization item in
beam search to penalize the same word generation.

• Shen et al. (2019) and He, Haffari, and Norouzi (2018)
use multiple decoders as mixture of experts to increase di-
versity by manipulating latent variables. Considering their
similarity, we choose Shen et al. (2019) since they report
better results. We re-implement the model with Trans-
former architecture and choose the hMup (online-shared)
version since the authors recommend it.

Metrics We evaluate our method from both diversity and
quality. For diversity, we adopt average pair-wise BLEU of
outputs (denoted as pwb) to measure the difference among
translations like previous work. For quality, we use BLEU
with the references (denoted as rfb). Lower pwb and higher
rfb mean better results. In this paper, the reference BLEU
of Baseline is the highest score in the beam while the other
groups take the average reference BLEU of M outputs. And
to synthetically evaluate the performance, we propose an
overall index: Diversity Enhancement per Quality (denoted
as DEQ). Specifically:

DEQ =
pwb∗ − pwb

rfb∗ − rfb
(7)

where pwb and pwb* refer to pair-wise BLEU of the eval-
uated system and baseline respectively, rfb and rfb* refer to

1https://github.com/tensorflow/tensor2tensor/blob/v1.3.0/
tensor2tensor/models/transformer.py

2We check different decoder layer numbers settings and find
less-decoder-layers Transformer shows comparable performance
with original six-layers-decoder Transformer while it is much eas-
ier to manipulate and faster to decode. The diversity enhancement
is also more significant.
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MT03 (dev) MT04 MT05 MT06 Average
Model rfb↑ pwb↓ rfb↑ pwb↓ rfb↑ pwb↓ rfb↑ pwb↓ rfb↑ pwb↓ DEQ↑
Baseline 45.64 84.63 47.25 84.62 43.45 84.78 42.26 82.46 44.32 83.95 -
Multinomial Sampling 21.75 11.29 22.19 11.42 20.54 11.08 19.12 9.67 20.62 10.72 3.09
(Li, Monroe, and Jurafsky 2016) 44.63 80.92 45.81 81.33 42.86 81.28 40.87 78.11 43.18 80.24 3.25
(Vijayakumar et al. 2018) 40.38 59.55 41.99 60.11 39.46 59.56 37.28 54.54 39.58 58.07 5.46
(Shen et al. 2019) 40.59 62.24 41.55 62.68 38.51 61.37 35.57 58.04 38.54 60.70 4.02
Sample K = 3 43.73 66.48 45.38 67.82 42.43 65.80 40.18 64.93 42.66 66.18 10.70
Sample K = 4 40.88 51.26 42.50 53.63 39.18 51.07 37.73 50.28 39.80 51.66 7.14
Sample K = 5 38.60 43.64 40.21 45.69 37.05 43.14 35.45 42.38 37.57 43.74 5.96
Sample K = 8 36.68 38.29 38.03 40.02 34.65 37.30 32.93 36.15 35.20 37.82 5.06

Table 3: Pair-wise BLEU and Reference BLEU in Zh2En experiments.

Model rfb↑ pwb↓ DEQ↑
Baseline 26.31 80.41 -
Multinomial Sampling 11.99 12.84 4.72
(Li, Monroe, and Jurafsky 2016) 25.27 78.57 1.77
(Vijayakumar et al. 2018) 23.27 66.13 4.70
(Shen et al. 2019) 23.22 68.03 4.01
Sample K = 3 25.62 78.96 2.10
Sample K = 4 24.26 62.04 8.96
Sample K = 5 22.62 50.14 8.20
Sample K = 8 19.76 38.36 6.42

Table 4: Pair-wise BLEU and Reference BLEU in En2De
experiments.

Model rfb↑ pwb↓ DEQ↑
Baseline 31.76 81.29 -
Multinomial Sampling 18.85 20.82 4.68
(Li, Monroe, and Jurafsky 2016) 31.02 78.42 3.88
(Vijayakumar et al. 2018) 28.91 69.67 4.08
(Shen et al. 2019) 31.07 85.71 -6.04
Sample K = 3 31.33 82.41 -2.60
Sample K = 4 30.06 71.12 5.98
Sample K = 5 27.89 59.42 5.65
Sample K = 8 26.43 50.56 5.77

Table 5: Pair-wise BLEU and Reference BLEU in En2Ro
experiments.

reference BLEU of the evaluated system and baseline re-
spectively. It measures how much diversity can be produced
per quality drop.

Results From Table 3, in Zh2En experiment, we can see
that traditional beam search translations severely lack di-
versity while multinomial sampling extremely harms trans-
lation quality. Li, Monroe, and Jurafsky (2016) bring very
limited enhancement in diversity, failing to achieve the goal.
Vijayakumar et al. (2018) and Shen et al. (2019) show the
ability to produce diversity, but our method (K = 4) attains
more significant diversity as well as better quality comparing
with them. And K = 3 achieve the highest DEQ, gaining
the most satisfactory result. Also, unlike Shen et al. (2019),
our work needs no extra training or extra parameters. Fur-
thermore, the diversity can be well interpreted and does not

Figure 4: Pair-wise BLEU with reference BLEU in Zh2En
Experiments (MT04). The bottom right corner means the
best result. All previous work including noisy sets lie on the
top left of the curve of K.

rely on an abstract latent variable. See Table 6 for a case.
We can reach the similar conclusion in En2De and En2Ro
experiments from Table 4, 5.

Besides, to exclude the possibility that randomly interfer-
ing causes the effect, we compare with the sets with noise.
We add noise to the translations of baseline model to gen-
erate different outputs. Specifically, for each sentence, we
replace one of its words with ‘<UNK>’ with probability p
and randomly swap two words with probability p as well.
And we make multiple experiment sets by controlling p. See
Figure 4, at the same level of pair-wise BLEU, our method
maintains much higher reference BLEU, which means our
method improves diversity through seeking diverse transla-
tions rather than just generating randomly.

For K (see Figure 4 again), as expected, as K grows
(sample more), the diversity increases (pair-wise BLEU de-
creases) while the quality decreases (reference BLEU de-
creases). And previous works all lie on the top left of the
curve of K. What’s more, we can choose different K to di-
versely balance the diversity and the quality depending on
our needs. We make the trade-off more continuous.

Some may not be satisfied with the sacrifice of the ref-
erence BLEU. But considering the calculation of BLEU is
based on n-gram rather than semantic similarity, we regard
it as a normal phenomenon. After all, if we want to obtain
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Input Liang Ge ZhuJue – ChaoXian He MeiGuo Dou MeiYou BiaoXian Chu RangBu , ShuangFang De JiBen LiChang Ye Dou MeiYou SongDong .
Beam 1. the two leading characters – the dprk and the united states – did not make any concessions , and the basic positions of both sides were not relaxed .

2. the two leading characters – the dprk and the united states – did not make any concessions , and the basic positions of both sides were not loosened .
3. the two leading characters – the dprk and the united states – did not make any concessions , and both sides did not relax their basic positions .
4. the two leading characters – the dprk and the united states – did not make any concessions . both sides did not relax their basic positions .
5. the two leading characters – the dprk and the united states – did not make any concessions , and both sides ’ basic positions were not relaxed .

K=4 1. the two leading characters – the dprk and the united states – did not make any concessions . both sides ’ basic positions were not relaxed .
2. neither the dprk nor the united states has made any concessions . both sides have not relaxed their basic positions .
3. the two leading roles – the dprk and the united states – have made no concessions , and neither have they relaxed their basic positions .
4. neither the dprk nor the united states – the two leading characters – did make any concessions , and the basic positions of both sides were not relaxed .
5. neither the democratic people ’s republic of korea and the united states have made any concessions , and the basic positions of both sides have not been relaxed .

Table 6: One Zh2En case. Our method shows obviously more diversity compared with beam search.

sentences with different grammar structure or word order,
the overlap of n-gram will inevitably decrease to some extent
even the meaning remains the same. Meanwhile, we empir-
ically prove our method maintains a relatively high quality
comparing to noisy sets as well as previous works.

We also investigate the effect of sentence length. Theoret-
ically, longer sentences shall have more diversity due to their
broader searching space. However, beam search with MAP
prefers to abandon different but slightly less possible candi-
dates, making hypotheses lack diversity and are all close to
specific translations. Conversely, our method increases di-
versity as the sentences getting longer (see figure 5), which
conforms to the statistical law.

Diverse Back-Translation

Back-translation has been proved helpful for neural machine
translation (Sennrich, Haddow, and Birch 2016a; Poncelas
et al. 2018). However, the lack of diversity restricts its ef-
fect (Edunov et al. 2018). We try to utilize our methods
to enhance the translation performance by improving back-
translation. According to Edunov et al. (2018), unrestricted
sampling from the model distribution yields the best perfor-
mance. Therefore, we compare with 1) baseline without uti-
lizing back-translation, denoted as Baseline, 2) beam search
as back-translation, denoted as Beam-5, 3) unrestricted sam-
pling as back-translation, denoted as Sampling.

We do experiments under conditions with and without ad-
ditional monolingual data.

Self Back-Translation Firstly, We focus on the condition
where original training data is repeatedly used by back-
translation. When translating language pair f to e, for each
target sentence e, we get M translations with a reverse trans-
lation model. We combine those translations with e as syn-
thetic sentence pairs and add them to the training data. As
previously stated, we let M = 5. Experiments are conducted
on Zh-En NIST dataset.

See Table 7 and 8, all of our experiment sets report better
results, among which, the best set of K = 3 in Zh2En exper-
iments yields 1.82 improvement and the best set of K = 4
in En2Zh experiments yields 0.82 improvement.

Utilizing Additional Monolingual Data Secondly, we
evaluate our method with additional monolingual data. We
select one side of parallel data from IWSLT17 as monolin-
gual data. We use the same method to generate synthetic
sentence pairs. Then we train our model on the mixture of
original NIST dataset and the synthetic dataset.

Figure 5: Our method increases diversity (pair-wise BLEU
decreases) as the sentences getting longer.

See Table 9, experiment results show that our algorithm
brings the most significant improvement for translation per-
formance as our work adds generation diversity and main-
tains the quality simultaneously.

Model MT03 MT04 MT05 MT06 Average
Baseline 45.64 47.25 43.45 42.26 44.32
Beam-5 46.31 47.26 44.87 43.43 45.19
Sampling 47.03 47.96 45.72 44.06 45.91
K = 3 47.24 48.24 45.70 44.48 46.14
K = 4 47.39 47.93 45.38 43.98 45.76
K = 5 47.31 48.31 45.34 43.95 45.87
K = 8 47.15 48.15 45.69 43.95 45.93

Table 7: Zh2En translation experiments with back-
translation of original training data.

Conversation Response Generation

Responses generated by neural conversational models tend
to lack informativeness and diversity (Li et al. 2016; Shao
et al. 2017; Baheti et al. 2018; Zhang et al. 2018). There-
fore, we try to ease this issue by utilizing our method on
Conversation Response Generation tasks. Still, we perform
decoding for M times and pick the N th output in the beam
for the N th group (N ∈ [1,M ]).

Metrics Since the responses of human conversation can
be pretty subjective, which is hard to evaluate automatically.
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Model MT03 MT04 MT05 MT06 Average
Baseline 22.75 22.33 20.35 21.35 21.34
Beam-5 23.73 21.69 20.61 22.33 21.54
Sampling 23.69 22.78 20.85 22.34 21.99
K = 3 24.21 22.23 20.65 22.52 21.80
K = 4 24.01 23.15 21.04 22.30 22.16
K = 5 23.76 21.93 20.57 22.50 21.67
K = 8 23.93 21.66 20.72 22.23 21.54

Table 8: En2Zh translation experiments with back-
translation of original training data.

Model Zh2En
Baseline 9.18
Beam-5 13.06
Sampling 13.38
K = 3 14.03
K = 4 13.76
K = 5 13.66
K = 8 13.76

Table 9: Zh2En translation experiments with back-
translation with additional monolingual data.

Hence, except for reference BLEU, we also measure the re-
sponse quality by human evaluation through three indexes:
relevance, fluency and informativeness. Relevance reveals
how much the responses match the expectation of the ques-
tion. Fluency means to what extent the translation is well-
formed grammatically. Both of them are scored from 1 to
5. Informativeness measures the degree of meaningfulness.
We classify responses into two groups, informative and un-
informative. Uninformative means the safe answer like “I
don’t know” or simply copying from the original post. We
then calculate the proportion of the informative groups. For
diversity, pair-wise BLEU maintains used.

Results In Table 10, we compare our method with basic
Seq2Seq model and Li et al. (2016), which use Maximum
Mutual Information (MMI) as the objective function (MMI-
antiLM version). On one hand, our method achieves signifi-
cant improvement in generation diversity. On the other hand,
the quality including relevance, fluency and informativeness
all rise to some degree. After looking into cases, we sup-
pose it is because original Seq2Seq model tends to generate
safe outputs like “I don’t know” or simply copying from the
source side. In contrast, our method brings in randomness,
reaching broader generation space.

BLEU ↑ Rel ↑ Flu ↑ Inf ↑ Div ↓
Baseline 13.06 2.45 4.72 0.604 52.94
MMI 13.39 2.58 4.45 0.639 45.42
K = 3 13.48 2.63 4.76 0.678 39.82
K = 8 12.73 2.53 4.67 0.652 27.73

Table 10: Conversation Response Generation experiment re-
sults on STC dataset.

Related Work

Lack of diversity has been a disturbing problem for neu-
ral machine translation. In recent years, a few works put
forward some related methods. Li, Monroe, and Jurafsky
(2016) proposes a decoding trick to penalize hypotheses that
are siblings (expansions of the same parent node) in the
beam search to increase the translation diversity. Vijayaku-
mar et al. (2018) adds a regularization item in beam search to
penalize the same word generation. He, Haffari, and Norouzi
(2018) and Shen et al. (2019) use multiple decoders as differ-
ent components, trying to control the generation by different
latent variables. Basically, there are two categories: either to
add diverse regularization in beam search or to utilize latent
variables. Our method achieves better results than both two
categories. And specifically, compared with the latter class,
our work needs no extra training or extra parameters. Be-
sides, it is hard to tell what the latent variables exactly rep-
resent and why they differ while our method shows a clear
explanation that heads align to word candidates.

Apart from machine translation, there are also other works
concerning generation diversity, including Visual Question
Generation (Jain, Zhang, and Schwing 2017), Conversa-
tional Response Generation (Li et al. 2016; Shao et al. 2017;
Baheti et al. 2018; Zhang et al. 2018), Paraphrase (Gupta
et al. 2018; Xu et al. 2018b), Summarization (Nema et
al. 2017) and Text Generation (Guu et al. 2018; Xu et al.
2018a).

As for multi-head attention, Strubell et al. (2018) employ
different heads to capture different linguistic features. Tu et
al. (2018) introduce disagreement regularization to encour-
age diversity among attention heads. Li et al. (2019) pro-
pose to aggregate information captured by different heads.
Yang et al. (2019) model the interactions among attention
heads. Raganato and Tiedemann (2018) do an analysis of
encoder representation and find there exists dependency re-
lations, syntactic and semantic connections across layers.

Conclusion

In this paper, we discover an internal characteristic of Trans-
former encoder-decoder multi-head attention that each head
aligns to a source word which is a possible candidate to be
translated. We take advantage of this phenomenon to gen-
erate diverse translations by manipulating heads in particu-
lar conditions. Experiments show that our algorithm outper-
forms previous work and obtain the most satisfactory result
of quality and diversity. Besides, the multiple trade-off set-
ting can be adopted diversely depending on different needs.
Finally, applications on back-translation as data augmen-
tation and conversation response significantly improve the
performance, proving our method effective.
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