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Abstract

Neural semantic parsing has achieved impressive results in
recent years, yet its success relies on the availability of large
amounts of supervised data. Our goal is to learn a neural
semantic parser when only prior knowledge about a limited
number of simple rules is available, without access to ei-
ther annotated programs or execution results. Our approach
is initialized by rules, and improved in a back-translation
paradigm using generated question-program pairs from the
semantic parser and the question generator. A phrase table
with frequent mapping patterns is automatically derived, also
updated as training progresses, to measure the quality of gen-
erated instances. We train the model with model-agnostic
meta-learning to guarantee the accuracy and stability on ex-
amples covered by rules, and meanwhile acquire the versa-
tility to generalize well on examples uncovered by rules. Re-
sults on three benchmark datasets with different domains and
programs show that our approach incrementally improves the
accuracy. On WikiSQL, our best model is comparable to the
state-of-the-art system learned from denotations.

Introduction

Semantic parsing aims to map natural language questions to
the logical forms of their underlying meanings, which can
be regarded as programs and executed to yield answers, aka
denotations (Berant et al. 2013). In the past few years, neu-
ral network based semantic parsers have achieved promising
performances (Liang et al. 2017), however, their success is
limited to the setting with rich supervision, which is costly to
obtain. There have been recent attempts at low-resource se-
mantic parsing, including data augmentation methods which
are learned from a small number of annotated examples
(Guo et al. 2018), and methods for adapting to unseen do-
mains while only being trained on annotated examples in
other domains.

This work investigates neural semantic parsing in a low-
resource setting, in which case we only have our prior
knowledge about a limited number of simple mapping rules,
including a small amount of domain-independent word-level
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matching tables if necessary, but have no access to either an-
notated programs or execution results. Our key idea is to use
these rules to collect modest question-programs pairs as the
starting point, and then leverage automatically generated ex-
amples to improve the accuracy and generality of the model.
This presents three challenges including how to generate ex-
amples in an efficient way, how to measure the quality of
generated examples which might contain errors and noise,
and how to train a semantic parser that makes robust predic-
tions for examples covered by rules and generalizes well to
uncovered examples.

We address the aforementioned challenges with a frame-
work consisting of three key components. The first compo-
nent is a data generator. It includes a neural semantic pars-
ing model, which maps a natural language question to a pro-
gram, and a neural question generation model, which maps a
program to a natural language question. We learn these two
models in a back-translation paradigm using pseudo parallel
examples, inspired by its big success on unsupervised neu-
ral machine translation (Sennrich, Haddow, and Birch 2016;
Lample et al. 2018). The second component is a quality
controller, which is used for filtering out noise and errors
contained in the pseudo data. We construct a phrase table
with frequent mapping patterns, therefore noise and errors
with low frequency can be filtered out. A similar idea has
been worked as posterior regularization in neural machine
translation (Zhang et al. 2017; Ren et al. 2019). The third
component is a meta learner. Instead of transferring a model
pretrained with examples covered by rules to the generated
examples, we leverage model-agnostic meta-learning (Finn,
Abbeel, and Levine 2017), an elegant meta-learning algo-
rithm which has been successfully applied to a wide range
of tasks including few-shot learning and adaptive control.
We regard different data sources as different tasks, and use
outputs of the quality controller for stable training.

We test our approach on three tasks with different pro-
grams, including SQL (and SQL-like) queries for both
single-turn and multi-turn questions over web tables (Zhong,
Xiong, and Socher 2017; Iyyer, Yih, and Chang 2017),
and subject-predicate pairs over a large-scale knowledge
graph (Bordes et al. 2015). The program for SQL queries
for single-turn questions and subject-predicate pairs over



Algorithm 1 Low-Resource Neural Semantic Parsing with Back-Translation and MAML

Require: @Q: a set of natural language questions. LF": a collection of sampled logical forms.
Require: r: arule, if satisfied, maps ¢ to [ f. a, 3: step size hyperparameters.

1: Apply r to @, obtain training data Dy
2: Use Dy to initialize 64y and 05,
3: while not done do

4t Apply fgir t0 Q, apply fif—qto LF
5: Use fq-i1¢(Q) and fis_,4(LF') to update the phrase table of the quality controller gc
6:  Update 0;;_,, using Dy and gc(fq—17(Q))
7. forTask 7; € {r =T,r = F'} do
8: Sample D; from { Dy, qc(fq—i£(Q)), qc(fip—q(LF))} for task T;
9: Compute gradients using D; and £, update learner 6; = 6 — aVoL(fp)
10 Sample D} from { Dy, qc(fq—1£(Q)). gc(fif—q(LF))} for the meta-update
11: Compute gradients using D, and £, update meta-learner § = 0 — SV L( fy,)
12:  end for
13:  Update ngfff and ngff ; with 6 as initialization, respectively

14: end while

knowledge graph is simple while the program for SQL
queries for multi-turn questions have top-tier complexity
among currently proposed tasks. Results show that our
approach yields large improvements over rule-based sys-
tems, and incorporating different strategies incrementally
improves the overall performance. On WikiSQL, our best
performing system achieves execution accuracy of 72.7%,
comparable to a strong system learned from denotations
(Agarwal et al. 2019) with an accuracy of 74.8%.

Problem Statement

We focus on the task of executive semantic parsing. The goal
is to map a natural language question/utterance q to a logical
form/program [ f, which can be executed over a world Wlid
to obtain the correct answer a.

We consider three tasks. The first task is single-turn table-
based semantic parsing, in which case ¢ is a self-contained
question, [f is a SQL query in the form of “SELECT agg
coly WHERE cols = vals AND ...”, and Wld is a web ta-
ble consisting of multiple rows and columns. We use Wik-
iSQL (Zhong, Xiong, and Socher 2017) as the testbed for
this task. The second task is multi-turn table-based seman-
tic parsing. Compared to the first task, ¢ could be a follow-
up question, the meaning of which depends on the con-
versation history. Accordingly, [ f in this task supports ad-
ditional operations that copy previous turn [f to the cur-
rent turn. We use SequentialQA (Iyyer, Yih, and Chang
2017) for evaluation. In the third task, we change Wid to
a large-scale knowledge-graph (i.e. Freebase) and consider
knowledge-based question answering for single-turn ques-
tions. We use SimpleQuestions (Bordes et al. 2015) as the
testbed, where the [ f is in the form of a simple A-calculus
like Az.predicate(subject, x), and the generation of [ f is
equivalent to the prediction of the predicate and the subject
entity.

We study the problem in a low-resource setting. In the
training process, we don’t have annotated logical forms [ f
or execution results a. Instead, we have a collection of nat-
ural language questions for the task, a limited number of
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simple mapping rules based on our prior knowledge about
the task, and may also have a small amount of domain-
independent word-level matching tables if necessary. These
rules are not perfect, with low coverage, and can even be in-
correct for some situations. For instance, when predicting a
SQL command in the first task, we have a prior knowledge
that (1) WHERE values potentially have co-occurring words
with table cells; (2) the words “more” and “greater” tend to
be mapped to WHERE operator “>"; (3) within a WHERE
clause, header and cell should be in the same column; and
(4) the word “average” tends to be mapped to aggregator
“avg”. Similarly, when predicting a A-calculus in the third
task, the entity name might be present in the question, and
among all the predicates connected to the entity, the predi-
cate with maximum number of co-occurred words might be
correct. We would like to study to what extent our model can
achieve if we use rules as the starting point.

Learning Algorithm

We describe our approach for low-resource neural semantic
parsing in this section.

We propose to train a neural semantic parser using back-
translation and meta-learning. The learning process is sum-
marized in Algorithm 1. We describe the three components
in this section, namely back-translation, quality control, and
meta-learning.

Back-Translation

Following the back-translation paradigm (Sennrich, Had-
dow, and Birch 2016; Lample et al. 2018), we have a se-
mantic parser, which maps a natural language question q to
a logical form [ f, and a question generator, which maps [ f
to ¢. The semantic parser works for the primary task, and the
question generator mainly works for generating pseudo data-
points. We start the training process by applying the rule r to
a set of natural language questions (). The resulting dataset
is considered as the training data to initialize both the se-
mantic parser and the question generator. Afterwards, both
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Figure 1: An illustration of the difference between (a) data combination which learns a monolithic, one-size-fits-all model, (b)
self-training which learns from predictions which the model produce and (c) meta-learning that reuse the acquired ability to

learn.

models are improved following the back-translation proto-
col that target sequences should follow the real data distri-
bution, yet source sequences can be generated with noises.
This is based on the consideration that in an encoder-decoder
model, the decoder is more sensitive to the data distribution
than the encoder. We use datapoints from both models to
train the semantic parser because a logical form is structural
which follows a grammar, whose distribution is similar to
the ground truth.

Quality Controller

Directly using generated datapoints as supervised training
data is not desirable because those generated datapoints con-
tain noises or errors. To address this, we follow the applica-
tion of posterior regularization in neural machine translation
(Zhang et al. 2017), and implement a dictionary-based dis-
criminator which is used to measure the quality of a pseudo
data. The basic idea is that although these generated data-
points are not perfect, the frequent patterns of the mapping
between a phrase in ¢ to a token in [ f are helpful in filtering
out noise in the generated data with low frequency (Ren et
al. 2019). There are multiple ways to collect the phrase ta-
ble information, such as using statistical phrase-level align-
ment algorithms like Giza++ or directly counting the co-
occurrence of any question word and logical form token. We
use the latter one in this work.

Meta-Learning

A simple way to update the semantic parser is to merge the
datapoints in hand and train a one-size-fits-all model (Guo
et al. 2018). However, this will hurt model’s stability on
examples covered by rules, and examples of the same task
may vary widely (Huang et al. 2018). Dealing with differ-
ent types of examples requires the model to possess different
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abilities. For example, tackling examples uncovered by rules
in WikiSQL requires the model to have the additional abil-
ity to map a column name to a totally different utterance,
such as “country” to “nation”. Another simple solution is
self-training (McClosky, Charniak, and Johnson 2006). One
can train a model with examples covered by rules, and use
the model as a teacher to make predictions on examples un-
covered by rules and update the model on these predictions.
However, self-training is somewhat tautological because the
model is learned to make predictions which it already can
produce.

We learn the semantic parser with meta-learning, regard-
ing learning from examples covered by rules or uncovered
by rules as two (pseudo) tasks. Compared to the aforemen-
tioned strategies, the advantage of exploring meta-learning
here is two-fold. First, we learn a specific model for each
task, which provides guarantees about its stability on ex-
amples covered by rules. In the test phase, we can use the
rule to detect which task an example belongs to, and use
the corresponding task-specific model to make predictions.
When dealing with examples covered by rules, we can ei-
ther directly use rules to make predictions or use the updated
model, depending on the accuracy of the learned model on
the examples covered by rules on development set. Second,
latent patterns of examples may vary widely in terms of
whether or not they are covered by rules. Meta-learning is
more desirable in this situation because it learns the model’s
ability to learn, improving model’s versatility rather than
mapping the latent patterns learned from datapoints in one
distribution to datapoints in another distribution by force.
Figure 1 is an illustration of data combination, self-training,
and meta-learning.

Meta-learning includes two optimizations: the learner
that learns new tasks, and the meta-learner that trains the



Methods Supervision | Rule Covered Rule Uncovered Overall
Dong and Lapata (2018) logical form - - 78.5%
Shi et al. (2018) logical form - - 87.1%
Liang et al. (2018) denotation - - 72.4%
Agarwal et al. (2019) denotation - - 74.8%
Base (full supervision) logical form 85.0% 71.7% 82.3%
Rule rule 77.6% 0.0% 61.8%
Base (trained on rule-covered data) rule 75.9% 48.4% 70.3%
Base + Self Training rule 75.6% 49.3% 70.3%
Base + Question Generation rule 77.7% 51.9% 72.5%
Base + BT rule 77.6% 51.6% 72.3%
Base + BT + QC rule 77.8% 52.1% 72.6%
Base + BT + QC + MAML rule 77.9% 52.1% 72.7%

Table 1: Results on WikiSQL testset. BT stands for back-translation. QC stands for quality control.

learner. In this work, the meta-learner is optimized by find-
ing a good initialization that is highly adaptable. Specifi-
cally, we use model-agnostic meta-learning, MAML (Finn,
Abbeel, and Levine 2017), a powerful meta-learning algo-
rithm with desirable properties including introducing no ad-
ditional parameters and making no assumptions of the form
of the model. In MAML, task-specific parameter 6; is ini-
tialized by 6, and updated using gradient decent based on
the loss function £; of task 7;. In this work, the loss func-
tions of two tasks are the same. The updated parameter 6; is
then used to calculate the model’s performance across tasks
to update the parameter 6. In this work, following the prac-
tical suggestions given by Antoniou, Edwards, and Storkey
(2019), we update 0 in the inner-loop and regard the outputs
of the quality controller as the input of both tasks.

If we only have examples covered by rules, such as those
used in the initialization phase, meta-learning learns to learn
a good initial parameter that is evaluated by its usefulness
on the examples from the same distribution. In the training
phase, datapoints from both tasks are generated, and meta-
learning learns to learn an initialization parameter which can
be quickly and efficiently adapted to examples from both
tasks.

Experiment

We conduct experiments on three tasks to test our approach,
including generating SQL (or SQL-like) queries for both
single-turn and multi-turn questions over web tables (Zhong,
Xiong, and Socher 2017; Iyyer, Yih, and Chang 2017), and
predicting subject-predicate pairs over a knowledge graph
(Bordes et al. 2015). We describe task definition, base mod-
els, experiments settings and empirical results for each task,
respectively.

Table-Based Semantic Parsing

Task and Dataset Given a natural language ¢ and a ta-
ble ¢t with n columns and m rows as the input, the task is
to output a SQL query y, which could be executed on table
t to yield the correct answer of ¢g. We conduct experiments
on WikiSQL (Zhong, Xiong, and Socher 2017), which pro-
vides 87,726 annotated question-SQL pairs over 26,375 web
tables. In this work, we do not use either SQL queries or
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answers in the training process. We use execution accuracy
as the evaluation metric, which measures the percentage of
generated SQL queries that result in the correct answer.

SQL Token | NL Word
sum sum
count how many, total number
mazx maximum
min minimum
avg average
> more, greater, higher, taller,
longer, older, larger, after
< less, smaller, lower, fewer, nearer,
shorter, before

Table 2: Token-level dictionary for aggregators (upper
group) and operators (lower group) in WikiSQL.

Rules We describe our rules for WikiSQL here. We first
detect WHERE values, which exactly match to table cells.
After that, if a cell appears at more than one column,
we choose the column name with more overlapped words
with the question, with a constraint that the number of co-
occurred words is larger than 1. By default, a WHERE op-
erator is =, except for the case that surrounding words of
a value contain keywords for > and <. Then, we deal with
the SELECT column, which has the largest number of co-
occurred words and cannot be same with any WHERE col-
umn. By default, the SELECT AGG is NONE, except for
matching to any keywords in Table 2. The coverage of our
rule on training set is 78.4%, with execution accuracy of
77.9%.

Base Model We implement a neural network modular ap-
proach as the base model, which includes different mod-
ules to predict different SQL constituents. This approach is
based on the understanding of the SQL grammar in Wik-
iSQL, namely “SELECT $agg $column WHERE $column
$op $value (AND $column $op $value)*’, where tokens
starting with “$” are the slots to be predicted (Xu, Liu,



Methods Supervision
Petrochuk and Zettlemoyer (2018) | logical form
Base (full supervision) logical form
Rule rule
Base (trained on rule-covered data) rule
Base + Self Training rule
Base + Question Generation rule
Base + BT rule
Base + BT + QC rule
Base + BT + QC + MAML rule

Rule Covered Rule Uncovered Overall
- - 78.1%
81.8% 67.6% 72.4%
76.5% 0.0% 25.7%
74.2% 34.8% 48.0%
74.4% 46.5% 55.9%
73.9% 42.1% 52.8%
75.5% 47.7% 57.1%
75.3% 48.6% 57.6%
76.8% 48.6% 58.1%

Table 3: Results on SimpleQuestions testset. BT stands for back-translation. QC stands for quality control.

and Song 2017). In practice, modular approaches typically
achieve higher accuracy than end-to-end learning approach.
Specifically, at the first step we implement a sequential la-
beling module to detect WHERE values and link them to
table cells. Advantages of starting from WHERE values in-
clude that WHERE values are less ambiguous compared to
other slots, and that the number of WHERE clauses can be
naturally detected. After that, for each WHERE value, we
use the preceding and following contexts in the question
to predict its WHERE column and the WHERE operator
through two unidirectional LSTM. Column attention (Xu,
Liu, and Song 2017) is used for predicting a particular col-
umn. Similar LSTM-based classifiers are used to predict SE-
LECT column and SELECT aggregator.

085 [

06p * /
L
0 02 04 06 08 1 12 14 16

Step -10*

T e et |
0 02 04 06 08 1 12 14 16
Step 10

(a) Rule-covered (b) Rule-uncovered

Figure 2: Learning curve of the WHERE column prediction
model on WikiSQL devset.

Settings According to whether the training data can be
processed by our rules, we divide it into two parts: rule cov-
ered part and rule uncovered part. For the rule covered part
we could get rule covered training data using our rules. For
the rule uncovered part we could also get training data us-
ing the trained Base model we have, we refer to these data
as self-inference training data. Furthermore, we could get
more training data by back translation, we refer to these data
as question-generation training data. For all the settings, the
Base Model is initialized with rule covered training data. In
Base + Self Training Method, we finetune the Base model
with self-inference training data. In Base + Question Gen-
eration Method, we use question-generation training data
to finetune our model. In Base + BT Method, we use both
self-inference and question-generation data to finetune our
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model. In Base + BT + QC, we add our quality controller. In
Base + BT + QC + MAML, we further add meta-learning.

Results and Analysis Results are given in Table 1. We
can see that back-translation, quality control and MAML
incrementally improves the accuracy. Question generation
is better than self-training here because the logical form in
WikiSQL is relatively simple, so the distribution of the sam-
pled logical forms is similar to the original one. In the back-
translation setting, generated examples come from both self-
training and the question generation model. The model per-
forms better than rules on rule-covered examples, and im-
proves the accuracy on uncovered examples. Figure 2 shows
the learning curves of the COLUMN prediction model with
or without using MAML. The model using MAML has a
better starting point during training, which reflects the effec-
tiveness of the pre-trained parameter.

Knowledge-Based Question Answering

We test our approach on question answering over an-
other genre of environment: knowledge graph consisting of
subject-relation-object triples.

Task and Dataset Given a natural language question and
a knowledge graph, the task aims to correctly answer the
question with evidences from the knowledge graph. We do
our study on SimpleQuestions (Bordes et al. 2015), which
includes 108,442 simple questions, each of which is accom-
panied by a subject-relation-object triple. Questions are con-
structed in a way that subject and relation are mentioned in
the question, and that object is the answer. The task requires
predicting the entityld and the relation involved in the ques-
tion.

Rulse Our rule for KBQA is simple without using a cu-
rated mapping dictionary. First, we detect an entity from the
question using strict string matching, with the constraint that
only one entity from the KB has the same surface string and
that the question contains only one entity. After that, we get
the connected relations of the detected entity, and assign the
relation as the one with maximum number of co-occurred
words. The coverage of our rule on training set is 16.0%,
with an accuracy of 97.3% for relation prediction.



Methods Supervision | Rule Covered | Rule Uncovered | Overall
Pasupat and Liang (2015) denotation - - 33.2%
Neelakantan et al. (2016) denotation - - 40.2%
Iyyer, Yih, and Chang (2017) denotation - - 44.7%
Misra et al. (2018) denotation - - 49.7%
Base (full supervision) denotation 50.6% 33.5% 45.9%
Rule rule 51.2% 0.0% 37.2%
Base (trained on rule-covered data) rule 43.7% 9.3% 34.3%
Base + Self Training rule 42.3% 10.7% 33.7%
Base + Question Generation rule 34.7% 9.1% 27.7%
Base + BT rule 39.2% 10.1% 31.3%
Base + BT + QC rule 41.0% 10.1% 32.6%
Base + BT + QC + MAML rule 41.2% 9.7% 32.7%
Base + BT (w/o QG) + MAML rule 43.7% 11.3% 34.6%

Table 4: Results on Sequential QA testset. BT stands for back-translation. QC stands for quality control.

Base Model We follow Petrochuk and Zettlemoyer
(2018), and implement a KBQA pipeline consisting of three
modules in this work. At the first step, we use a sequence
labeling model, i.e. LSTM-CREF, to detect entity mention
words in the question. After that, we use an entity linking
model with BM25 built on Elasticsearch. Top-K ranked sim-
ilar entities are retrieved as candidate list. Then, we get all
the relations connected to entities in the candidate list as can-
didate relations, and use a relation prediction model, which
is based on Match-LSTM (Wang and Jiang 2016), to pre-
dict the relation. Finally, from all the entities connected to
the predicted relation, we choose the one with highest BM25
score as the predicted entity. We use FB2M as the KB, which
includes about 2 million triples.

Settings The settings are the same as those described in
table-based semantic parsing.

SQL Token | NL Word
> no less than, greater or equal, at
least
< no more than, less or equal, at
most
followup | of those, which ones, which one
NEG do not, does not, did not, have not,
has not, had not, was not, were
not, is not, are not, not have, not
has

Table 5: Token-level dictionary used for additional actions
in Sequential QA.

Results and Analysis Results are given in Table 3, which
are consistent with the numbers in WikiSQL. Using back-
translation, quality control and MAML incrementally im-
proves the accuracy, and our approach generalizes well to
rule-uncovered examples.
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Conversational Table-Based Semantic Parsing

We consider the task of conversational table-based seman-
tic parsing in this part. Compared to single-turn table-based
semantic parsing as described in subsection , the meaning
of a natural language may also depends on questions of past
turns, which is the common ellipsis and co-reference phe-
nomena in conversational agents.

Task and Dataset Given a natural language question at
the current turn, a web table, and previous turn questions in
a conversation as the input, the task aims to generate a pro-
gram (i.e. logical form), which can be executed on the table
to obtain the correct answer of the current turn question.

We conduct experiments on SequentialQA (Iyyer, Yih,
and Chang 2017) which is derived from the WikiTableQues-
tions dataset(Pasupat and Liang 2015). It contains 6,066
question sequences covering 17,553 question-answer pairs.
Each sequence includes 2.9 natural language questions on
average. Different from WikiSQL which provides the cor-
rect logical form for each question, Sequential QA only an-
notates the correct answer. This dataset is also harder than
the previous two, since it requires complex, highly compo-
sitional logical forms to get the answer. Existing approaches
are evaluated by question answering accuracy, which mea-
sures whether the predicted answer is correct or not.

Rules The pipeline of rules in SequentialQA is similar to
that of WikiSQL. Compared to the grammar of WikiSQL,
the grammar of Sequential QA has additional actions includ-
ing copying the previous-turn logical form, no greater than,
no more than, and negation. Table 5 shows the additional
word-level mapping table used in SequentialQA. The cover-
age of our rule on training set is 75.5%, with an accuracy of
38.5%.

Base Model We implement a modular approach on top of
a grammar of derivation rules (actions) as the base model.
Similar to Iyyer, Yih, and Chang (2017), our grammar con-
sists of predefined actions used for predicting SELECT
column, WHERE column, WHERE operator, WHERE



value, and determining whether it is required to copy the
entire action sequence of the previous turn questions. After
encoding a question and previous turn questions into vec-
tors, we first use a controller module to predict an action
sequence consisting of slots, and then use specific modules
to predict the argument of each slot. Similar to Iyyer, Yih,
and Chang (2017), we use a recurrent structure as the back-
bone of each module and use the softmax layer for making
prediction.

Settings The settings are the same as those described in
table-based semantic parsing.

Results and Analysis From Table 4, we can see that ques-
tion generation does not work well on this task. This is be-
cause the difficulty in generating sequential questions and
complex target logical forms. Applying MAML to exam-
ples not coming from question generation performs best. We
leave contextual question generation as a future work.

Related Work

Semantic Parsing Semantic parsing aims to transform a
natural language utterance to a program/logical form, which
is executable on an environment, or a world, to obtain the re-
sult. There are a variety of semantic parsing tasks with dif-
ferent types of environments (including large-scale knowl-
edge base (Berant et al. 2013), web table (Pasupat and
Liang 2015), image, 3D environment, etc.), and different
types of programs (such as A-calculus, dependency-based
compositional semantics, SQL query (Zhong, Xiong, and
Socher 2017), Bash command, source code, etc.). The ma-
jority of existing works study the problem in a supervised or
weak-supervised setting, in which case either annotated pro-
grams or execution results are available during training. Ear-
lier works on unsupervised semantic parsing do not ground
to an environment such a KB or a web table (Poon and
Domingos 2009). Goldwasser et al. (2011) align words to
predicates, then do compositions and self training by iter-
atively adding self-annotated examples. Krishnamurthy and
Mitchell (2012) identify relation instances from KB and pro-
duce parses that syntactically agree with the dependency
parses. Reddy, Lapata, and Steedman (2014) parse sentences
with CCG, and map results to ungrounded and grounded
graph by regarding semantic parsing as graph matching.
There are recent attempts at combining a limited number
of supervised datapoints and artificially generated programs
(Guo et al. 2018) with generative models.

More recently, Cheng, Reddy, and Lapata (2018) share the
same motivation with this work that learns semantic parser
from templates. We differ from them in two aspects. First,
we only need domain-general rules but they also require
domain-specific lexicon containing mapping from natural
language expressions to database predicates/entities. Sec-
ond, our method innovates the coupling of back-translation
and model-agnostic meta-learning.

Meta-Learning Meta-learning, also known as learning to
learn, is one of the potential techniques for enabling an ar-
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tificial agent to mimic a human’s ability in using past expe-
rience to quickly adapt to unseen situations. With the rapid
progress of deep neural network models (Yin et al. 2018;
Feng, Qin, and Liu 2018), existing approaches largely fall
into two categories. In the first category, neural network
models are trained to learn from datapoints that are passed
in. Different neural architectures including LSTM, convo-
lution, or memory-augmented ones have been explored.
Methods in this category either use additional datapoints as
a part of the input to predict the label for the new example, or
optimizes the meta-learning based on the performance of the
updated parameter of the learner (Finn, Abbeel, and Levine
2017). The second category aims to learn a metric space,
where examples with the same class are close with each
other. Notable works include Matching Networks and Proto-
typical Networks, both of which are tested on low-resource
image classification. Matching networks use attention mech-
anisms to use the similarity between datapoints to predict
the label of a test example. Prototypical Networks approach
considers the representation of each class, which is obtained
by averaging representation of examples belonging to that
class. We use MAML (Finn, Abbeel, and Levine 2017),
which has been recently used in low-resource multilingual
neural machine translation and sequence-to-SQL generation
(Huang et al. 2018) in supervised settings.

Back-Translation Back-translation is introduced for im-
proving neural machine translation (NMT) by injecting
monolingual data (Sennrich, Haddow, and Birch 2016), and
is the key contributor to drive the recent success on unsu-
pervised NMT (Lample et al. 2018). The training process
involves a generative source-to-target translator f,_.; and
a generative target-to-source translator f; . Because gen-
erative models are sensitive to the target distribution while
tolerant to the noises from input, target sequences typi-
cally come from the real distribution during NMT training.
Namely, examples generated by f,_,; are used to train f;_,,
and examples generated by f; s are used to train fs_;. In
semantic parsing, we do not regard sampled programs as
noisy because they follow a certain grammar which can be
guaranteed to be correctly executed.

Conclusion and Future Directions

We present an approach to learn neural semantic parser from
simple domain-independent rules, instead of annotated log-
ical forms or denotations. Our approach starts from exam-
ples covered by rules, which are used to initialize a se-
mantic parser and a question generator in a back-translation
paradigm. Generated examples are measured and filtered
based on statistic analysis, and then used with model-
agnostic meta-learning, which guarantees model’s accu-
racy and stability on rule-covered examples, and acquires
the versatility to generalize well on rule-uncovered exam-
ples. We conduct experiments on three datasets for table-
based and knowledge-based question answering tasks. Re-
sults show that incorporating different strategies incremen-
tally improves the performance. Our best model on Wik-
iSQL achieves comparable accuracy to the system learned



from denotation. In the future, we plan to focus on more
complex logical forms.
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