
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Rare Words: A Major Problem for Contextualized
Embeddings and How to Fix it by Attentive Mimicking

Timo Schick
Sulzer GmbH

Munich, Germany
timo.schick@sulzer.de

Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
inquiries@cislmu.org

Abstract

Pretraining deep neural network architectures with a language
modeling objective has brought large improvements for many
natural language processing tasks. Exemplified by BERT, a
recently proposed such architecture, we demonstrate that de-
spite being trained on huge amounts of data, deep language
models still struggle to understand rare words. To fix this
problem, we adapt Attentive Mimicking, a method that was
designed to explicitly learn embeddings for rare words, to
deep language models. In order to make this possible, we in-
troduce one-token approximation, a procedure that enables us
to use Attentive Mimicking even when the underlying lan-
guage model uses subword-based tokenization, i.e., it does
not assign embeddings to all words. To evaluate our method,
we create a novel dataset that tests the ability of language
models to capture semantic properties of words without any
task-specific fine-tuning. Using this dataset, we show that
adding our adapted version of Attentive Mimicking to BERT
does substantially improve its understanding of rare words.

1 Introduction

Distributed representations of words are a key component
of natural language processing (NLP) systems. In particular,
deep contextualized representations learned using an unsu-
pervised language modeling objective (Peters et al. 2018)
have led to large performance gains for a variety of NLP
tasks. Recently, several authors have proposed to not only
use language modeling for feature extraction, but to fine-
tune entire language models for specific tasks (Radford et
al. 2018; Howard and Ruder 2018). Taking up this idea, De-
vlin et al. (2019) introduced BERT, a bidirectional language
model based on the Transformer (Vaswani et al. 2017) that
has achieved a new state-of-the-art for several NLP tasks.

As demonstrated by Radford et al. (2019), it is possible
for language models to solve a diverse set of tasks to some
extent without any form of task-specific fine-tuning. This
can be achieved by simply presenting the tasks in form of
natural language sentences that are to be completed by the
model. The very same idea can also be used to test how well
a language model understands a given word: we can “ask” it
for properties of that word using natural language. For exam-
ple, a language model that understands the concept of “guilt”

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Q: A lime is a . A: lime, lemon, fruit
Q: A bicycle is a . A: bicycle, motorcycle, bike

Q: A kumquat is a . A: noun, horse, dog
Q: A unicycle is a . A: structure, unit, chain

Table 1: Example queries and most probable outputs of
BERT for frequent (top) and rare words (bottom)

should be able to correctly complete the sentence “Guilt is
the opposite of .” with the word “innocence”.

The examples in Table 1 show that, according to this mea-
sure, BERT is indeed able to understand frequent words such
as “lime” and “bicycle”: it predicts, among others, that the
former is a fruit and the latter is the same as a bike. How-
ever, it fails terribly for both “kumquat” and “unicycle”, two
less frequent words from the same domains. This poor per-
formance raises the question whether deep language models
generally struggle to understand rare words and, if so, how
this weakness can be overcome.

To answer this question, we create a novel dataset con-
taining queries like the ones shown in Table 1. This dataset
consists of (i) natural language patterns such as

<W> is a .

where <W> is a placeholder for a word to be investigated,
and (ii) corresponding pairs of keywords (<W>) and targets
(fillers for) obtained using semantic relations extracted
from WordNet (Miller 1995).

Using this dataset, we show that BERT indeed fails to un-
derstand many rare words. To overcome this limitation, we
propose to apply Attentive Mimicking (Schick and Schütze
2019a), a method that allows us to explicitly learn high-
quality representations for rare words. A prerequisite for
using this method is to have high-quality embeddings for
as many words as possible, because it is trained to repro-
duce known word embeddings. However, many deep lan-
guage models including BERT make use of byte-pair encod-
ing (Sennrich, Haddow, and Birch 2015), WordPiece (Wu et
al. 2016) or similar subword tokenization algorithms. Thus,
many words are not represented by a single token but by a
sequence of subword tokens and do not have their own em-
beddings.

8766

To solve this problem, we introduce one-token approxi-
mation (OTA), a method that approximately infers what the
embedding of an arbitrary word would look like if it were
represented by a single token. While we apply this method
only to BERT, it can easily be adapted for other language
modeling architectures.

In summary, our contributions are as follows:

• We introduce WordNet Language Model Probing (WN-
LaMPro), a novel dataset for evaluating the ability of lan-
guage models to understand specific words.

• Using this dataset, we show that the ability of BERT to
understand words depends highly on their frequency.

• We present one-token approximation (OTA), a method
that obtains an embedding for a multi-token word that has
behavior similar to the sequence of its subword embed-
dings.

• We apply OTA and Attentive Mimicking (Schick and
Schütze 2019a) to BERT and show that this substantially
improves BERT’s understanding of rare words.
Our work is the first to successfully apply mimicking
techniques to contextualized word embeddings.

2 Related Work

Using language modeling as a task to obtain contextual-
ized representations of words was first proposed by Peters
et al. (2018), who train a bidirectional LSTM (Hochreiter
and Schmidhuber 1997) language model for this task and
then feed the so-obtained embeddings into task-specific ar-
chitectures. Several authors extend this idea by transfer-
ring not only word embeddings, but entire language mod-
eling architectures to specific tasks (Radford et al. 2018;
Howard and Ruder 2018; Devlin et al. 2019). Whereas the
GPT model proposed by Radford et al. (2018) is strictly uni-
directional (i.e., it looks only at the left context to predict the
next word) and the ULMFiT method of Howard and Ruder
(2018) uses a shallow concatenation of two unidirectional
models, Devlin et al. (2019) design BERT as a deep bidirec-
tional model using a Transformer architecture and a masked
language modeling task.

There are roughly two types of approaches for explicitly
learning high-quality embeddings of rare words: surface-
form-based approaches and context-based approaches. The
former use subword information to infer a word’s meaning;
this includes n-grams (Wieting et al. 2016; Bojanowski et
al. 2017; Salle and Villavicencio 2018), morphemes (Lazari-
dou et al. 2013; Luong, Socher, and Manning 2013) and
characters (Pinter, Guthrie, and Eisenstein 2017). On the
other hand, context-based approaches take a look at the
words surrounding a given rare word to obtain a repre-
sentation for it (e.g., Herbelot and Baroni 2017; Khodak
et al. 2018). Recently, Schick and Schütze (2019b) intro-
duced the form-context model, combining both approaches
by jointly using surface-form and context information. The
form-context model and its Attentive Mimicking variant
(Schick and Schütze 2019a) achieve a new state-of-the-art
for high-quality representations of rare words.

Presenting tasks in the form of natural language sentences
was recently proposed by McCann et al. (2018) as part of
their Natural Language Decathlon, for which they frame
ten different tasks as pairs of natural language questions
and answers. They train models on triples of questions, con-
texts and answers in a supervised fashion. An alternative,
completely unsupervised approach proposed by Radford et
al. (2019) is to train a language model on a large corpus,
present text specialized for a particular task and then let the
model complete this text. They achieve good performance
on tasks such as reading comprehension, machine transla-
tion and question answering – without any form of task-
specific fine-tuning. We use this paradigm for constructing
WNLaMPro.

Several existing datasets were designed to analyze the
ability of word embeddings to capture semantic relations be-
tween words. For example, Baroni and Lenci (2011) com-
pile the BLESS dataset that covers five different semantic
relations (e.g., hyponymy) from multiple sources. Weeds et
al. (2014) also create a dataset for semantic relations based
on hypernyms and hyponyms using WordNet (Miller 1995).
However, these datasets differ from WNLaMPro in two im-
portant respects. (i) They focus on frequent words by fil-
tering out infrequent ones whereas we explicitly want to
analyze rare words. (ii) They do not provide natural lan-
guage patterns: they either directly evaluate (uncontextual-
ized) word embeddings using a similarity measure such as
cosine distance or they frame the task of identifying the re-
lationship between two words as a supervised task.

3 Attentive Mimicking

3.1 Original Model

Attentive Mimicking (AM) (Schick and Schütze 2019a) is a
method that, given a set of d-dimensional high-quality em-
beddings for frequent words, can be used to infer embed-
dings for infrequent words that are appropriate for the given
embedding space. AM is an extension of the form-context
model (Schick and Schütze 2019b).

The key idea of the form-context model is to compute
two distinct embeddings per word, where the first one ex-
clusively uses the word’s surface-form and the other the
word’s contexts, i.e., sentences in which the word was ob-
served. Given a word w and a set of contexts C, the surface-
form embedding vform

(w,C) ∈ R
d is obtained by averaging over

learned embeddings of all n-grams in w; the context embed-
ding vcontext

(w,C) ∈ R
d is the average over the known embeddings

of all context words.
The final representation v(w,C) of w is then a weighted

sum of form embeddings and transformed context embed-
dings:

v(w,C) = α ·Avcontext
(w,C) + (1− α) · vform

(w,C)

where A is a d × d matrix and α is a function of both em-
beddings, allowing the model to decide when to rely on the
word’s surface form and when on its contexts (see Schick
and Schütze (2019b) for further details).

While the form-context model treats all contexts equally,
AM extends it with a self-attention mechanism that is ap-

8767

plied to all contexts, allowing the model to distinguish in-
formative from uninformative contexts. The attention weight
of each context is determined based on the idea that given a
word w, two informative contexts C1 and C2 (i.e., contexts
from which the meaning of w can be inferred) resemble each
other more than two randomly chosen contexts in which w
occurs. In other words, if many contexts for a word w are
similar to each other, then it is reasonable to assume that they
are more informative with respect to w than other contexts.
Schick and Schütze (2019a) define the similarity between
two contexts as

s(C1, C2) =
(MvC1

) · (MvC2
)�√

d

with M ∈ R
d×d a learnable parameter and vC denotes the

average of embeddings for all words in a context C. The
weight of a context is then defined as

ρ(C) ∝
∑
C′∈C

s(C,C ′) .

with
∑

C∈C ρ(C) = 1. This results in the final context em-
bedding

vcontext
(w,C) =

∑
C∈C

ρ(C) · vC

where again, vC denotes the average of the embeddings of
all words in a context C.

Similar to earlier models (e.g., Pinter, Guthrie, and Eisen-
stein 2017), the model is trained through mimicking. That is,
we randomly sample words w and corresponding contexts
C from a large corpus and, given w and C, ask the model
to mimic the original embedding of w, i.e., to minimize the
squared Euclidean distance between the original embedding
and v(w,C).

3.2 AM+CONTEXT

As we found in preliminary experiments that AM focuses
heavily on the word’s surface form – an observation that is
in line with results reported by Schick and Schütze (2019b)
–, in addition to the default AM configuration of Schick
and Schütze (2019a), we investigate another configuration
AM+CONTEXT, which pushes the model to put more em-
phasis on a word’s contexts. This is achieved by (i) increas-
ing the minimum number of sampled contexts for each train-
ing instance from 1 to 8 and (ii) introducing n-gram dropout:
during training, we randomly remove 10% of all surface-
form n-grams for each training instance.

4 One-Token Approximation

As AM is trained through mimicking, it must be given high-
quality embeddings of many words to learn how to make
appropriate use of form and context information. Unfortu-
nately, as many deep language models make use of subword-
based tokenization, they assign embeddings to comparably
few words. To overcome this limitation, we introduce one-
token approximation (OTA). OTA finds an embedding for a
multi-token word or phrase w that is similar to the embed-
ding that w would have received if it had been a single token.

This allows us to train AM in the usual way by simply mim-
icking the OTA-based embeddings of multi-token words.

Let Σ denote the set of all characters and T ⊂ Σ∗ the
set of all tokens used by the language model. Furthermore,
let t : Σ∗ → T ∗ be the tokenization function that splits each
word into a sequence of tokens and e : T → R

d the
model’s token embedding function, which we extend to se-
quences of tokens in the natural way as e([t1, . . . , tn]) =
[e(t1), . . . , e(tn)].

We assume that the language model internally consists of
lmax hidden layers and given a sequence of token embed-
dings e = [e1, . . . , en], we denote by hl

i(e) the contextual-
ized representation of the i-th input embedding ei at layer l.
Given two additional sequences of left and right embeddings
� and r, we define

h̃l
i(�, e, r) =

{
hl
i(�; e; r) if i ≤ |�|

hl
i+|e|(�; e; r) if i > |�|

where a; b denotes the concatenation of sequences a and b.
That is, we “cut out” the sequence e and h̃l

i(�, e, r) is then
the embedding of the i-th input at layer l, either from � (if
position i is before e) or from r (if position i is after e).

To obtain an OTA embedding for an arbitrary word w ∈
Σ∗, we require a set of left and right contexts C ⊂ T ∗ ×T ∗.
Given one such context c = (t�, tr), the key idea of OTA is
to search for the embedding v ∈ R

d whose influence on the
contextualized representations of t� and tr is as similar as
possible to the influence of w’s original, multi-token repre-
sentation on both sequences. That is, when we apply the lan-
guage model to the sequences s1 = [e(t�); e(t(w)); e(tr)]
and s2 = [e(t�); [v]; e(tr)], we want the contextualized rep-
resentations of t� and tr in s1 to be as similar as possible to
those in s2.

Formally, we define the one-token approximation of w as

OTA(w) =

arg min
v∈Rn

∑
(t�,tr)∈C

d(e(t(w)), [v] | e(t�), e(tr))

where

d(e, ẽ | �, r) =
lmax∑
l=1

|�|+|r|∑
i=1

dli(e, ẽ | �, r)

dli(e, ẽ | �, r) = ‖h̃l
i(�, e, r)− h̃l

i(�, ẽ, r))‖2 .

That is, given an input sequence [�; e; r], dli(e, ẽ | �, r) mea-
sures the influence of replacing e with ẽ on the contextual-
ized representation of the i-th word in the l-th layer.

As d(e, ẽ | �, r) is differentiable with respect to ẽ, we can
use gradient-based optimization to estimate OTA(w). This
idea resembles the approach of Le and Mikolov (2014) to
infer paragraph vectors for sequences of arbitrary length.

With regards to the choice of contexts C, we define two
variants, both of which do not require any additional in-
formation: STATIC and RANDOM. For the STATIC variant,
C consists of a single context

(t�, tr) = ([CLS], .[SEP])

8768

Key Rel. Targets

new ANT old
general ANT specific
local ANT global

book HYP product, publication, . . .
basketball HYP game, ball, sport, . . .
lingonberry HYP fruit, bush, berry, . . .

samosa COH+ pizza, sandwich, salad, . . .
harmonium COH+ brass, flute, sax, . . .
immorality COH+ crime, evil, sin, fraud, . . .

simluation COR simulation
chepmistry COR chemistry
pinacle COR pinnacle

Table 2: Example entries from WNLaMPro

with [CLS] and [SEP] being BERT’s classification and
separation token, respectively. We use this particular context
because in pretraining, BERT is exposed exclusively to se-
quences starting with [CLS] and ending with [SEP].

As the meaning of a word can often better be understood
by looking at its interaction with other words, we surmise
that OTA works better when we provide variable contexts
in which different words occur. For this reason, we also
investigate the RANDOM variant. In this variant, each pair
(t�, tr) ∈ C is of the form

(t�, tr) = ([CLS] t�, tr .[SEP])

where t� and tr are uniformly sampled tokens from T , under
the constraint that each of them represent an actual word.

5 WordNet Language Model Probing

In order to assess the ability of language models to un-
derstand words as a function of their frequency, we intro-
duce the WordNet Language Model Probing (WNLaMPro)
dataset.1 This dataset consists of two parts:
• a set of triples (k, r, T) where k is a keyword, r is a rela-

tion and T is a set of target words;
• a set of patterns P (r) for each relation r, where each pat-

tern is a sequence of tokens that contains exactly one key-
word placeholder <W> and one target placeholder .

The dataset contains four different kinds of relations:
ANTONYM (ANT), HYPERNYM (HYP), COHYPONYM+
(COH+) and CORRUPTION (COR). Examples of dataset en-
tries for all relations are shown in Table 2; the set of patterns
for each relation can be seen in Table 3.

We split the dataset into a development and a test set. For
each relation, we randomly select 10% of all entries to be
included in the development set; the remaining 90% form
the test set. We purposefully do not provide a training set
as WNLaMPro is meant to be used without task-specific
fine-tuning. We also define three subsets based on keyword

1The WNLaMPro dataset is publicly available at https://github.
com/timoschick/am-for-bert

ANTONYM HYPERNYM

<W> is the opposite of . <W> is a .
<W> is not . a <W> is a .
someone who is <W> is not . “<W>” refers to a .
something that is <W> is not . <W> is a kind of .
“<W>” is the opposite of “ ” . a <W> is a kind of .

CORRUPTION COHYPONYM+

“<W>” is a misspelling of “ ” . <W> and .
“<W>” . did you mean “ ” ? “<W>” and “ ” .

Table 3: Patterns for all relations of WNLaMPro. The indef-
inite article “a” used in the HYP patterns is replaced with
“an” as appropriate.

Subset Size Mean Targets

Rel. R M F R M F

ANT 41 59 266 1.0 1.0 1.0
HYP 1191 1785 4750 4.0 3.9 4.2
COH+ 1960 2740 6126 26.0 26.0 25.0
COR 2880 – – 1.0 – –

Table 4: The number of entries and mean number of target
words for the RARE (R), MEDIUM (M), and FREQUENT (F)
subsets of WNLaMPro

counts in WWC: WNLaMPro-RARE, containing all words
that occur less than 10 times, WNLaMPro-MEDIUM, con-
taining all words that occur 10 or more times, but less than
100 times, and WNLaMPro-FREQUENT, containing all re-
maining words. Statistics about the sizes of these subsets
and the mean number of target words per relation are listed
in Table 4.

For creating WNLaMPro, we use WordNet (Miller 1995)
to obtain triples (k, r, T). To this end, we denote by V the vo-
cabulary of all words that occur at least once in the Westbury
Wikipedia Corpus (WWC) (Shaoul and Westbury 2010) and
match the regular expression [a–z.-]*. The set of all
tokens in the BERT vocabulary is denoted by T . For all
triplets, we restrict the set of target words to single-token
words from T . This allows us to measure BERT’s perfor-
mance for each keyword k without the conflating influence
of rare or multi-subword words on the target side.

5.1 Antonyms

For each adjective w ∈ V , we collect all antonyms for its
most frequent WordNet sense in a set A and, if A ∩ T
= ∅,
add (w, ANTONYM, A ∩ T) to the dataset.

5.2 Hypernyms

For each noun w ∈ V , let H be the set of all hypernyms
for its two most frequent senses. As direct hypernyms are
sometimes highly specific (e.g., the hypernym of “dog” is
“canine”), we include all hypernyms whose path distance
to w is at most 3. To avoid the inclusion of very general
terms such as “object” or “unit”, we restrict H to hypernyms

8769

0 1 000 2 000 3 000 4 000 5 000
0

0.2

0.4

0.6

0.8

1

Iterations

A
ve

ra
ge

co
si

ne
di

st
an

ce
STATIC
RANDOM

Figure 1: Performance of OTA on 1000 randomly selected
one-token words

that have a minimum depth of 6 in the WordNet hierarchy.
If |H ∩ T | ≥ 3, we add (w, HYPERNYM, H ∩ T) to the
dataset. However, if |H ∩ T | > 20, we keep only the 20
most frequent target words.

5.3 Cohyponyms+

For each noun w ∈ V , we compute its set of hypernyms
H as described above (but with a maximum path distance
of 2), and denote by C the union of all hyponyms for each
hypernym in H with a maximum path distance of 4.2 Let
C ′ = (C \{w})∩T . If |C ′| ≥ 10, we add the corresponding
tuple (w, COHYPONYM+, C ′) to the dataset. If |C ′| > 50,
we keep only the 50 most frequent target words.

5.4 Corruptions

We include this relation to investigate a model’s ability to
deal with corruptions of the input that may, for example,
be the result of typing errors or errors in optical character
recognition. To obtain corrupted words, we take frequent
words from V ∩ T and randomly apply corruptions simi-
lar to the ones used by Hill, Cho, and Korhonen (2016) and
Lee, Mansimov, and Cho (2018), but we apply them on the
character level. Specifically, given a word w = c1 . . . cn, we
create a corrupted version w̃ by either (i) inserting a random
character c after a random position i ∈ [0, n], (ii) removing a
character at a random position i ∈ [1, n] or (iii) switching the
characters ci and ci+1 for a random position i ∈ [1, n − 1].
We then add (w̃, CORRUPTION, w) to the dataset.

6 Experiments

For our evaluation of BERT on WNLaMPro, we use the
Transformers library of Wolf et al. (2019). Our implemen-
tation of OTA is based on PyTorch (Paszke et al. 2017).3 For

2Cohyponyms are defined to have a common parent. Our more
general definition (having a common ancestor) gives us a test that
has more coverage than a restriction to cohyponyms in a strict sense
would have. We call our generalization “cohyponym+”.

3Our implementation of OTA is publicly available at https://
github.com/timoschick/one-token-approximation

all of our experiments involving AM, we use the original im-
plementation of Schick and Schütze (2019a). As WNLaM-
Pro is based on WordNet, all of our experiments are confined
to the English language.

6.1 One-Token Approximation

We first compare the STATIC and RANDOM context variants
of OTA and determine the optimal number of training itera-
tions. To this end, we form a development set by randomly
selecting 1000 one-token words from the BERT vocabulary.
For each word w in this set, we measure the quality of its
approximation OTA(w) by comparing it to its BERT em-
bedding e(w), using cosine distance. We initialize the OTA
vector of each word as a zero vector and optimize it using
Adam (Kingma and Ba 2015) with an initial learning rate
of 10−3. For both context variants, we search for the ideal
number of iterations in the range {100 · i | 1 ≤ i ≤ 50}.

Results can be seen in Figure 1. While for both variants,
the average cosine distance between BERT’s embeddings
and their OTA equivalents is relatively high in the beginning
– which is simply due to the fact that all OTA embeddings
are initialized randomly – after only a few iterations RAN-
DOM consistently outperforms STATIC.4 For the RANDOM
variant, the average cosine distance reaches its minimum at
4000 iterations. We therefore use RANDOM contexts with
4000 iterations in our following experiments.

6.2 Evaluation on WNLaMPro

To measure the performance of a language model on WN-
LaMPro, we proceed as follows. Let x = (k, r, T) be a
dataset entry, w ∈ T a target word, p ∈ P (r) a pattern and
p[k] the same pattern where the keyword placeholder <W> is
replaced by k. Furthermore, let (a1, . . . , an) be the model’s
responses (sorted in descending order by their probability)
when it is asked to predict a replacement word for the target
placeholder in p[k]. Then there is some j such that aj = w.
We denote with

rank(p[k], w) = j

precisioni(p[k], T) =
|{a1, . . . , ai} ∩ T |

i

the rank of w and precision at i when the model is queried
with p[k].5 We may then define:

rank(x) = min
p∈P (r)

min
w∈T

rank(p[k], w)

precisioni(x) = max
p∈P (r)

precisioni(p[k], T)

That is, for each triplet x, we compute the best rank and
precision that can be achieved using any pattern. We do so
because our interest is not in testing the model’s ability to
understand a given pattern, but its ability to understand a
given word: by letting the model choose the best pattern for

4The difference between the best results achieved using RAN-
DOM and STATIC is statistically significant in a two-sided binomial
test (p < 0.05).

5We only look at the first 100 system responses and set
rank(p[k], w) = ∞ if w /∈ {a1, . . . , a100}.

8770

RARE MEDIUM FREQ.
0

0.1

0.2

0.3

0.4

WNLaMPro Subset

M
R

R
BERTBASE

OTA
FIRST
LAST
AVG

Figure 2: Mean reciprocal rank on WNLaMPro dev+test for
BERTBASE, OTA and various baselines

each word, we minimize the probability that its response is
of poor quality simply because it did not understand a given
pattern.

We evaluate the uncased version of BERTBASE (Devlin
et al. 2019) on WNLaMPro to get an impression of (i) the
model’s general ability to understand the presented phrases
and (ii) the difference in performance for rare and frequent
words. To investigate how well OTA does at obtaining sin-
gle embeddings for multi-token words, we also try a variant
of BERT where all multi-token keywords are replaced with
their one-token approximations. Furthermore, we compare
OTA against the following baseline strategies for obtaining
single embeddings for multi-token words w = t1, . . . , tn:

• FIRST: We use the embedding of the first token, e(t1).

• LAST: We use the embedding of the last token, e(tn).

• AVG: We use the average over the embeddings of all to-
kens, 1

n

∑n
i=1 e(ti).

We choose these particular baselines because they are natu-
ral choices for obtaining a word embedding from a sequence
of subword embeddings without any advanced computation.

The mean reciprocal rank (MRR) over WNLaMPro can
be seen in Figure 2 for BERTBASE, OTA and all baselines.
We can see that for all models, the score depends heavily
on the word frequency. Notably, OTA performs much bet-
ter than all of the above baselines, regardless of word fre-
quency. Furthermore, the difference in performance between
OTA’s single embeddings and BERT’s original, multi-token
embeddings is only marginal, allowing us to conclude that
OTA is indeed able to infer single-token embeddings of de-
cent quality for multi-token words.

Of course, OTA by itself does not improve the embedding
quality compared to using BERT as is – and we never apply
OTA to words that have single-token BERT representations
in the following experiments. The purpose of OTA is to al-
low us to train our attentive mimicking model for BERT:
OTA provides us with the single-token embeddings that we
require to train AM.

20 22 24 26 28 210 212 ∞
1
2
4
8

16
32
64
128
256
512

∞

Word count

R
an

k

0.1

0.2

0.3

Figure 3: Performance of BERTBASE for the COHYPONYM+
subset of WNLaMPro. Each cell (i, j) of the heat map
is shaded based on the percentage of all dataset entries
with keyword counts (“Word count”) in the range (2j−1, 2j]
whose rank (“Rank”) is in the range (2i−1, 2i]. The values
in each column add up to one.

MRR

Model 5 Epochs 10 Epochs

AM 0.258 0.253
AM+CONTEXT 0.262 0.276

AM − OTA 0.219 0.220
AM − form 0.138 0.133
AM − context 0.227 0.225

Table 5: Results on WNLaMPro dev for various configura-
tions of AM trained on embeddings from and integrated into
BERTBASE

The general trend that the understanding of a word in-
creases with its frequency becomes even more obvious when
looking at Figure 3, where the distribution of ranks for the
COHYPONYM+ subset of WNLaMPro is shown as a func-
tion of WWC word counts. The distribution of ranks is com-
puted independently for each interval of word counts con-
sidered. That is, the values in each column are normalized
so that they add up to one. This was done to prevent the di-
agram from being distorted because certain word count in-
tervals contain more words than others. As can be seen, for
words that occur at most 256 (28) times in WWC, the most
probable rank interval is [64, 128). With more observations,
BERT’s understanding of words drastically improves: more
than 50% of all words with more than 256 (28) observations
achieve a rank of at most 16.

6.3 Attentive Mimicking

We train two variants of Attentive Mimicking: the de-
fault configuration of Schick and Schütze (2019a) and the
AM+CONTEXT configuration (§3.2) that puts more empha-
sis on contexts. To decide which method to apply and to

8771

RARE MEDIUM FREQUENT

Set Model MRR P@3 P@10 MRR P@3 P@10 MRR P@3 P@10

ANT

BERTBASE 0.149 0.065 0.025 0.089 0.044 0.021 0.390 0.170 0.061
BERTBASE + AM 0.449 0.167 0.075 0.511 0.176 0.064 0.482 0.195 0.074
BERTLARGE 0.234 0.083 0.044 0.218 0.088 0.036 0.541 0.209 0.081
BERTLARGE + AM 0.529 0.194 0.075 0.558 0.195 0.068 0.570 0.228 0.088

HYP

BERTBASE 0.276 0.122 0.066 0.327 0.151 0.077 0.416 0.204 0.109
BERTBASE + AM 0.300 0.135 0.074 0.343 0.158 0.081 0.377 0.181 0.096
BERTLARGE 0.284 0.128 0.065 0.350 0.169 0.086 0.462 0.226 0.117
BERTLARGE + AM 0.299 0.137 0.074 0.323 0.149 0.079 0.401 0.193 0.101

COH+

BERTBASE 0.147 0.065 0.054 0.177 0.089 0.070 0.294 0.150 0.116
BERTBASE + AM 0.213 0.106 0.082 0.213 0.110 0.090 0.262 0.136 0.108
BERTLARGE 0.174 0.085 0.067 0.210 0.109 0.091 0.337 0.183 0.143
BERTLARGE + AM 0.227 0.110 0.087 0.216 0.106 0.089 0.292 0.153 0.121

COR

BERTBASE 0.020 0.007 0.004 – – – – – –
BERTBASE + AM 0.254 0.095 0.038 – – – – – –
BERTLARGE 0.062 0.022 0.012 – – – – – –
BERTLARGE + AM 0.261 0.095 0.038 – – – – – –

Table 6: Performance of BERT with and without AM for WNLaMPro test, subdivided by relation and keyword count. Under-
lined numbers indicate a significant difference between BERT and BERT+AM in a two-sided binomial test (p < 0.05).

determine the optimal number of training epochs, we use
WNLaMPro dev. As evaluating AM on WNLaMPro is a
time-consuming operation, the only values we try are 5 and
10 epochs; furthermore, we perform hyperparameter opti-
mization only on BERTBASE. To understand the influence of
one-token approximation on the performance of AM, in ad-
dition to the two configurations described above – both of
which make use of OTA – we also try a variant without OTA,
where the training set contains only one-token words. To see
whether we actually need both form and context informa-
tion, we additionally investigate the influence of dropping
either the context or form parts of AM.

As proposed by Schick and Schütze (2019b), we train AM
on all words that occur at least 100 times in WWC; for each
word that is represented by multiple tokens in the BERT vo-
cabulary, we use its OTA as a target vector to be mimicked.
Importantly, we train AM on contexts from WWC (con-
taining slightly fewer than 109 words), whereas the original
BERT model was trained on the concatenation of BooksCor-
pus (Zhu et al. 2015) (containing 0.8·109 words) and a larger
version of Wikipedia (containing 2.5 · 109 words). Each oc-
currence of a word can contribute to obtaining a high-quality
representation, especially for rare words. Therefore, BERT
has a clear advantage over our proposed method due to its
larger training corpus.

Table 5 shows results for all model variants on WNLaM-
Pro dev. We can see that OTA is indeed helpful for training
the model, substantially improving its score. Results for the
model variants using only form or context are in line with
the findings of Schick and Schütze (2019b): it is essential
for good performance to use both form and context. Further-
more, AM+CONTEXT improves upon the default configu-
ration of AM and training it for 10 epochs performs bet-

ter than 5 epochs. Based on these findings, we only apply
AM+CONTEXT trained for 10 epochs using OTA on WN-
LaMPro test.

For both the base and large configurations of BERT, Ta-
ble 6 compares BERT’s performance with and without AM
on WNLaMPro; MRR as well as precision at 3 and 10 are
shown for each relation and frequency. AM substantially im-
proves the score for rare words, both for BERTBASE and for
BERTLARGE. The difference between BERT with and with-
out AM is significant according to a two-sided binomial test
(p < 0.05). This demonstrates that AM helps BERT get a
better understanding of rare words. The benefit of apply-
ing AM for medium frequency words depends largely on the
model being used: for BERTLARGE, using AM only brings a
consistent improvement for the ANTONYM relation, whereas
for BERTBASE, using AM is always helpful. The fact that
BERT performs better than AM for frequent words is not
surprising, considering that our model both has less capac-
ity and was trained on considerably less data. However, the
strong results for rare and – in some cases – medium fre-
quency words suggest that to obtain the best of both worlds,
one can simply replace BERT’s embeddings for rare words
using AM while keeping its original embeddings for fre-
quent words. As AM is trained using mimicking as an ob-
jective, embeddings induced by AM are well aligned with
the embedding space it was trained on. Thus, BERT’s origi-
nal embeddings and AM-based embeddings can seamlessly
be employed together.

To better understand for what kinds of words adding
AM to BERT is especially helpful, we finally analyze the
predictions of BERT with and without AM for a few se-
lected words (Table 7). As exemplified by these examples,
the inability of BERT to understand rare words is often

8772

Query: something that is una·cc·ess·ible is not .
BERT: possible, impossible, true, allowed
BERT+AM: accessible, allowed, possible, available

Query: un·ic·y·cle and .
BERT: bridge, body, base, chain
BERT+AM: bicycle, pedestrian, walking, pedestrians

Query: a sal·si·fy is a .
BERT: cocktail, toilet, noun, boat
BERT+AM: shrub, flower, plant, noun

Query: “ resign·tai·on ” is a misspelling of “ ” .
BERT: king, john, son, death
BERT+AM: resignation, resign, resigned, resigning

Table 7: Example queries from WNLaMPro and most prob-
able outputs of BERTBASE and BERT+AM. The tokenization
of keywords used by BERT is indicated by · characters.

due to the tokenization algorithm splitting words in a sub-
optimal way (“una·cc·ess·ible” and “un·ic·y·cle” instead of
“un·access·ible” and “uni·cycle”). As AM uses overlapping
n-grams to represent a word’s surface form and thus does not
need to choose a single tokenization, it does not suffer from
that problem. While BERT’s tokenization problem could
potentially also be addressed by replacing WordPiece with
a morphology-aware tokenization algorithm, other words
– such as “salsify” – simply cannot be decomposed into
smaller meaningful units. BERT also struggles with spelling
errors (e.g., “resigntaion”) and rare spellings (e.g., “bul-
ghur”, “kidnaper”).

7 Conclusion

We have introduced WNLaMPro, a new dataset that al-
lows us to explicitly investigate the ability of language mod-
els to understand rare words. Using this dataset, we have
shown that BERT struggles with words if they are too rare.
To address this problem, we proposed to apply Attentive
Mimicking (AM). For AM to work, we introduced one-
token approximation (OTA), an effective method to obtain
“single-token” embeddings for multi-token words. Using
this method, we showed that AM is able to substantially im-
prove BERT’s understanding of rare words.

Future work might investigate whether more complex ar-
chitectures than AM can bring further benefit to deep lan-
guage models; it would also be interesting to see whether
training AM on a larger corpus – such as the one used for
training BERT by Devlin et al. (2019) – is beneficial. Fur-
thermore, it would be interesting to see the impact of inte-
grating AM on downstream tasks.

Acknowledgments

This work was funded by the European Research Council
(ERC #740516). We would like to thank the anonymous re-
viewers for their helpful comments and their willingness to
engage with our author response.

References

Baroni, M., and Lenci, A. 2011. How we blessed distri-
butional semantic evaluation. In Proceedings of the GEMS
2011 Workshop on GEometrical Models of Natural Lan-
guage Semantics, 1–10. Association for Computational Lin-
guistics.
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics
5:135–146.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. Minneapo-
lis, Minnesota: Association for Computational Linguistics.
Herbelot, A., and Baroni, M. 2017. High-risk learning: ac-
quiring new word vectors from tiny data. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, 304–309. Association for Computational
Linguistics.
Hill, F.; Cho, K.; and Korhonen, A. 2016. Learning dis-
tributed representations of sentences from unlabelled data.
In Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, 1367–1377. San
Diego, California: Association for Computational Linguis-
tics.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.
Howard, J., and Ruder, S. 2018. Universal language model
fine-tuning for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), 328–339. Melbourne,
Australia: Association for Computational Linguistics.
Khodak, M.; Saunshi, N.; Liang, Y.; Ma, T.; Stewart, B.; and
Arora, S. 2018. A la carte embedding: Cheap but effective
induction of semantic feature vectors. In Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 12–22. Association
for Computational Linguistics.
Kingma, D., and Ba, J. 2015. Adam: A method for stochas-
tic optimization. The International Conference on Learning
Representations (ICLR).
Lazaridou, A.; Marelli, M.; Zamparelli, R.; and Baroni, M.
2013. Compositional-ly derived representations of morpho-
logically complex words in distributional semantics. In Pro-
ceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1517–
1526. Association for Computational Linguistics.
Le, Q., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In Proceedings of the 31st In-
ternational Conference on International Conference on Ma-
chine Learning - Volume 32, ICML’14, II–1188–II–1196.
JMLR.org.

8773

Lee, J.; Mansimov, E.; and Cho, K. 2018. Deterministic non-
autoregressive neural sequence modeling by iterative refine-
ment. In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, 1173–1182.
Brussels, Belgium: Association for Computational Linguis-
tics.
Luong, T.; Socher, R.; and Manning, C. 2013. Better word
representations with recursive neural networks for morphol-
ogy. In Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, 104–113.
McCann, B.; Keskar, N. S.; Xiong, C.; and Socher, R. 2018.
The natural language decathlon: Multitask learning as ques-
tion answering. arXiv abs/1806.08730.
Miller, G. A. 1995. Wordnet: a lexical database for english.
Communications of the ACM 38(11):39–41.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.
Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextual-
ized word representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), 2227–2237. New Orleans,
Louisiana: Association for Computational Linguistics.
Pinter, Y.; Guthrie, R.; and Eisenstein, J. 2017. Mimicking
word embeddings using subword RNNs. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, 102–112. Association for Computational
Linguistics.
Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever,
I. 2018. Improving language understanding by generative
pre-training.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised mul-
titask learners. Technical report.
Salle, A., and Villavicencio, A. 2018. Incorporating sub-
word information into matrix factorization word embed-
dings. In Proceedings of the Second Workshop on Sub-
word/Character LEvel Models, 66–71. Association for
Computational Linguistics.
Schick, T., and Schütze, H. 2019a. Attentive mimick-
ing: Better word embeddings by attending to informative
contexts. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), 489–494. Minneapolis, Min-
nesota: Association for Computational Linguistics.
Schick, T., and Schütze, H. 2019b. Learning semantic repre-
sentations for novel words: Leveraging both form and con-
text. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence.
Sennrich, R.; Haddow, B.; and Birch, A. 2015. Neural ma-
chine translation of rare words with subword units. CoRR
abs/1508.07909.

Shaoul, C., and Westbury, C. 2010. The westbury lab
wikipedia corpus.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in Neural Information
Processing Systems 30. Curran Associates, Inc. 5998–6008.
Weeds, J.; Clarke, D.; Reffin, J.; Weir, D.; and Keller, B.
2014. Learning to distinguish hypernyms and co-hyponyms.
In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Pa-
pers, 2249–2259. Dublin City University and Association
for Computational Linguistics.
Wieting, J.; Bansal, M.; Gimpel, K.; and Livescu, K. 2016.
Charagram: Embedding words and sentences via character
n-grams. CoRR abs/1607.02789.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; and
Brew, J. 2019. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv abs/1910.03771.
Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; Norouzi, M.;
Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.;
Klingner, J.; Shah, A.; Johnson, M.; Liu, X.; Łukasz Kaiser;
Gouws, S.; Kato, Y.; Kudo, T.; Kazawa, H.; Stevens, K.;
Kurian, G.; Patil, N.; Wang, W.; Young, C.; Smith, J.; Riesa,
J.; Rudnick, A.; Vinyals, O.; Corrado, G.; Hughes, M.; and
Dean, J. 2016. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv abs/1609.08144.
Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urtasun,
R.; Torralba, A.; and Fidler, S. 2015. Aligning books and
movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, 19–27.

8774

