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Abstract

Generating multiple categories of texts is a challenging task
and draws more and more attention. Since generative adver-
sarial nets (GANs) have shown competitive results on gen-
eral text generation, they are extended for category text gen-
eration in some previous works. However, the complicated
model structures and learning strategies limit their perfor-
mance and exacerbate the training instability. This paper pro-
poses a category-aware GAN (CatGAN) which consists of an
efficient category-aware model for category text generation
and a hierarchical evolutionary learning algorithm for train-
ing our model. The category-aware model directly measures
the gap between real samples and generated samples on each
category, then reducing this gap will guide the model to gen-
erate high-quality category samples. The Gumbel-Softmax
relaxation further frees our model from complicated learning
strategies for updating CatGAN on discrete data. Moreover,
only focusing on the sample quality normally leads the mode
collapse problem, thus a hierarchical evolutionary learning al-
gorithm is introduced to stabilize the training procedure and
obtain the trade-off between quality and diversity while train-
ing CatGAN. Experimental results demonstrate that CatGAN
outperforms most of the existing state-of-the-art methods.

Introduction

Nowadays, category text generation has received more and
more attention. Generating coherent and meaningful text
with different categories will bring great benefits to many
natural language processing applications, such as sentiment
analysis (Li et al. 2018) and dialogue generation (Li et al.
2017). Recently, generative adversarial net (GAN) (Good-
fellow et al. 2014), which adopts the discriminator to guide
the generator, is combined with the reinforcement learning
(RL) algorithms (Williams 1992) to generate discrete text
data for general text generation, and some competitive re-
sults have been reported in the previous works (Yu et al.
2017; Guo et al. 2018; Caccia et al. 2018). Compared with
general text generation which only focuses on obtaining
high-quality text, category text generation aims at automat-
ically generating a variety of controllable category text to
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fit the task-specific applications. However, the category in-
formation of sentences can not be easily controlled, and it
is also difficult to design an appropriate training objective
for different categories. Thus, category text generation is a
more challenging task. There are a few works (Wang and
Wan 2018; Li et al. 2018) which try to extend the general text
generation models for category text generation. They mostly
employ a long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) as the generator and combine the auxil-
iary components (e.g., classifiers) with the RL algorithms on
GANs to generate category text. The auxiliary components
can help the model to focus on the category information.

The existing category text generation models have shown
some positive results, but RL algorithms and auxiliary com-
ponents complicate the learning strategy and the model, re-
spectively, which may exacerbate some fundamental prob-
lems of GANs, including training instability and mode col-
lapse. Firstly, most of the existing models (Wang and Wan
2018; Li et al. 2018) heavily rely on RL algorithms, and
some strategies, such as Monte Carlo search, are adopted to
guide the discriminator for providing reward signals. These
complicated strategies further increase the training difficulty
of GANs. The auxiliary components may carry more bur-
den to the adversarial training, which also makes the training
procedure more unstable. Secondly, the mode collapse prob-
lem is serious in the existing models. Because the LSTM
based generator (Li et al. 2018) may lack enough expressive
power, and category text generation, as a sequential decision
process, also easily leads the generator to focus on some lim-
ited samples in the target distribution. For generating diver-
sified samples, the temperature variable (Caccia et al. 2018;
Guo et al. 2018) is employed to make GANs focus on either
the quality or the diversity, but an improvement of diversity
always leads to significant degradation of quality.

In this paper, a new category text generation framework,
category-aware GAN (CatGAN), is proposed to deal with
the above problems. CatGAN provides a category-aware
model for category text generation and a hierarchical evo-
lutionary learning algorithm for training the model and ob-
taining the balance between the sample quality and diversity.
Firstly, a novel category-aware model is proposed, which
includes the category-wise relativistic objective to estimate
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the gap between the specific category generated samples
and the corresponding real samples. The generator wants
to make the generated samples as realistic as the real sam-
ples, while the discriminator is eager to enlarging this gap.
The relativistic relation can guide our model to update more
easily than strict ground-truth labels. A relational memory
core (RMC) (Santoro et al. 2018) based generator, which
promises a larger memory capacity and a better ability for
catching the long-term dependencies, is adopted to replace
LSTM. Further, instead of RL algorithms, CatGAN employs
the Gumbel-Softmax relaxation (Jang, Gu, and Poole 2017;
Maddison, Mnih, and Teh 2017) to generate the continuous
approximation of the discrete generated samples. The con-
tinuous data allow the generator and the discriminator to be
optimized directly during the adversarial procedure. Without
any auxiliary components, the architecture of CatGAN is as
concise as the classical GAN framework and only consists of
one generator and one discriminator. Secondly, a hierarchi-
cal evolutionary learning algorithm is developed to train the
category-aware model. The adversarial training can be seen
as an evolutionary problem, and the discriminator provides
the environment for a population of generators to evolve. For
adapting the category text generation task, the evolution pro-
cedure is designed with two stages. In the first temperature-
oriented stage, the temperature is subtly controlled to main-
tain the category text quality during the improvement of di-
versity. In the second objective-oriented stage, various train-
ing objectives are adopted to narrow the distances between
the generated data and the real data from different perspec-
tives on each category. Only the well-performing generator
is preserved, and the generated samples will retain diversi-
fied and high-quality. Finally, although the evaluation met-
ric of quality has been designed well (Guo et al. 2018), the
evaluation metric of diversity is not explored well. This pa-
per proposes a new evaluation metric of diversity based on
the repeatability of the generated samples.

In summary, our contributions are as follows:

• A category-aware model is proposed for generating
category text, which accurately takes the gap be-
tween real samples and generated samples on each
category as an efficient learning signal.

• A hierarchical evolutionary learning algorithm is de-
signed to train the category-aware model, and it spe-
cializes in text generation for making the generated
samples more diversified and high-quality.

• An effective metric is presented to evaluate the sam-
ple diversity. Experimental results on synthetic and
real data demonstrate that our model achieves a new
state-of-the-art performance on both category text
generation and general text generation.

Related Work

Traditional recurrent neural network (RNN) based text gen-
eration models (Graves 2013) always suffer from the expo-
sure bias problem (Huszár 2015; Bengio et al. 2015). Dif-
ferent from these RNN based models which are trained by
maximum likelihood estimation (MLE), GAN introduces a
minimax game between the generator and the discrimina-

tor. However, GAN is designed to output differentiable data,
which has a conflict with the discrete text generation.

The same RL algorithm is adopted in SeqGAN (Yu et al.
2017) and LeakGAN (Guo et al. 2018) to solve the above
problem, and the discriminator can guide the generator by
the reward signal. However, LeakGAN shows that the re-
ward signal is not sufficiently informative. MaskGAN (Fe-
dus, Goodfellow, and Dai 2018) adopts the actor-critic algo-
rithm for filling in missing text conditioned on the surround-
ing context. RankGAN (Lin et al. 2017) replaces the original
binary classifier with a ranking model as the discriminator.
Approximating methods are another way to handle the non-
differentiable problem of discrete data. TextGAN (Zhang
et al. 2017) and FM-GAN (Chen et al. 2018) apply an an-
nealed softmax to approximate the argmax operation. Gu et
al. (2018) and RelGAN (Nie, Narodytska, and Patel 2019)
adopt the Gumbel-Softmax relaxation to approximate the
categorical distribution, and this relaxation method helps to
train GANs and improve the generation quality.

The above methods focus on general text generation, and
category text generation is drawing more attention. CS-
GAN (Li et al. 2018) proposes a descriptor which consists
of a discriminator and an auxiliary classifier, where the clas-
sifier distinguishes the sentence category to guide the gen-
erator. The adversarial procedure of CSGAN is similar to
SeqGAN, and the less-informative reward signal limits the
model performance. SentiGAN (Wang and Wan 2018) con-
tains multiple generators, and each generator aims at gen-
erating the samples of a specific sentiment label. However,
as the category number grows up, the multiple generators
will significantly raise the number of trainable parameters,
which may reduce the efficiency and amplify the training in-
stability. Experiments will show that the proposed CatGAN
is more effective than the previous methods using auxiliary
components.

Recently, the evolutionary learning algorithm is firstly in-
troduced to optimize the adversarial model for image gener-
ation (Wang et al. 2019). For generating better category text,
both the quality and diversity should be focused. CatGAN
makes the first attempt to solve category text generation with
the evolutionary learning algorithm. Our hierarchical evolu-
tionary learning algorithm is designed with two stages, the
temperature-oriented stage and the objective-oriented stage,
to explore the possible solutions of the generator for improv-
ing the performance on the sample quality and diversity.

Methodology

The category text generation task is denoted as follows.
Given a dataset with k categories, supposing we want to
generate a sentence with the specific category c, then a θ-
parameterized generator Gθ is trained to generate the sen-
tence Y c

θ = (y1, . . . , yt, . . . , yT ), yt ∈ V , where V is the
vocabulary of candidate tokens. In order to guide the gener-
atorGθ effectively, a φ-parameterized discriminatorDφ also
need to be trained to provide a learning signalD(Y c

θ ) forGθ

to update when the whole sentence Y c
θ has been generated.
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Figure 1: (a) The overall framework of CatGAN. A population of generators {Gθ} evolves in a dynamic environment denoted
by the discriminator Dφ. In each round of evolution, the individuals {Gθ1 , Gθ2 , · · · } after the variation process undergo two
stages of evaluation and selection to hierarchically form a new population, where i = |T| and j = |O|. The individuals, mutated
according to the same training objective under different temperatures, are denoted with the same color. (b) Category-aware
model. The red dotted line represents the training process of the discriminator, while the black full line represents the training
process of the generator. The MHA denotes the multi-head dot product attention.

Overall Framework

The overall framework of CatGAN is shown in Fig. 1 (a).
CatGAN consists of two core parts, the category-aware
model and the hierarchical evolutionary learning algorithm.

With the help of the category-wise relativistic objective,
the proposed category-aware model employs a RMC based
generator to generate texts with a specific category c to fool
the discriminator, while the discriminator is trained to dis-
criminate between the real samples and the generated sam-
ples for each category. In our model, the Gumbel-Softmax
relaxation enables the gradients to pass back to the gener-
ator from the discriminator directly. For training the model
and boosting the performance, this paper proposes the hi-
erarchical evolutionary learning algorithm, which evolves a
population of generators {Gθ} via combining various muta-
tion strategies in a given environment Dφ. At the end of the
evolutionary learning algorithm, the best-performing gener-
ator is preserved to generate the realistic sentences with the
given category.

Category-aware Model

The category-aware model is shown in Fig. 1 (b), which is
guided by a novel category-wise relativistic objective to gen-
erate category samples. It includes a generator Gθ and a ba-
sic CNN based discriminator Dφ (Kim 2014).

Category-wise Relativistic Objective. In the standard
GAN (Goodfellow et al. 2014), the discriminator is trained
on the ground-truth labels to predict the probability that the
input data are real. By this training method, the discrimina-
tor cannot provide an informative signal to update the gener-
ator (Jolicoeur-Martineau 2018). Thus, this paper proposes
a novel training objective based on the relativistic relation
between real data and generated data on each category.

Formally, Y c
r and Y c

θ denote the real data sampled from
the real data distribution P c

r and the generated data sampled
from the generated data distribution P c

θ on the category c, re-
spectively. The category-wise relativistic objective contains
the summed category loss and the enhanced real-fake loss.
For the discriminator objective, it is defined as follows:

lCatRa
Dφ

=
∑k

c=1 LRa(Y c
r , Y

c
θ ) + LRa(Y all

r , Y all
θ ), (1)

where Y all
r and Y all

θ are sampled from the real data distribu-
tion P all

r and the generated data distribution P all
θ on all cat-

egories, respectively. On the right-hand side, the first term
measures the distance between the real data and the gener-
ated data on each category, while the second term measures
the overall distance on all categories. Similar to the form of
RaGAN (Jolicoeur-Martineau 2018), LRa(·) is defined by:

LRa(Yr, Yθ) =

− EYr∼Pr

[
log

(
D̄φ(Yr)

)]− EYθ∼Pθ

[
log

(
1− D̄φ(Yθ)

)]
,

(2)
where the relativistic relation is measured by:

D̄φ(Y ) =

{
sigmoid(Dφ(Y )− EYθ∼Pθ

[Dφ(Yθ)]) if Y is real
sigmoid(Dφ(Y )− EYr∼Pr

[Dφ(Yr)]) otherwise.
(3)

Intuitively, the relativistic relation shows the gap between
the probabilities of being real on the real samples and that
on the generated samples. For each category, the generator
wants to reduce this gap for making generated samples as
realistic as real samples, while the discriminator wants to
increase the probability that real samples are more realistic
than generated samples. Generally, the generator objective
can be set to lCatRa

Gθ
= −lCatRa

Dφ
. Compared with the standard

GAN objective, the category-wise relativistic objective can
efficiently train our model for category text generation.
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Relational Memory Core based Generator. Since the
LSTM based generator may lack enough expressive power
for text generation, relational memory core (RMC) is em-
ployed as the generator Gθ. The basic concept of RMC is to
consider a fixed set of memory slots (e.g., memory matrix)
and allow self-attention mechanism (Vaswani et al. 2017) to
interact in these memories. The increased capacity of mem-
ory boosts the expressive power and the ability to capture the
category information. Given a new vocabulary observation
yt at time t, it is represented by the embedded token Eyt ,
and the embedded category Ec is built to control the cate-
gory information. Then, the input vector xt of the generator
is obtained by a linear transformation Wx on the concatena-
tion of Eyt

and Ec:
xt = [Eyt ;Ec]Wx, (4)

where [; ] denotes the row-wise concatenation.
Considering a memory matrix Mt, Fig. 1 (b) shows how

Mt+1 is updated from Mt by incorporating xt at time t. As
implied by the name of the multi-head dot product atten-
tion (MHA), a H-heads RMC contains H groups of linear
transformation weights for query MtWq , key [Mt;xt]Wk

and value [Mt;xt]Wv . Then, M̃t+1 can be interpreted as a
proposed update to Mt as follows:

M̃t+1 = σ

(
MtWq([Mt;xt]Wk)

T

√
dk

)
[Mt;xt]Wv, (5)

where σ(·) denotes the row-wise softmax function, and dk is
the column dimension of [Mt;xt]Wk. Thus, the next mem-
ory Mt+1 and the generator output ot are obtained by:

Mt+1 = ψ1(M̃t+1,Mt), ot = ψ2(M̃t+1,Mt), (6)
respectively, where the two parameterized functions ψ1(·)
and ψ2(·) both represent the interactions between M̃t+1 and
Mt by leveraging residual connections, multi-layer percep-
tion (MLP) and gated operations.

Directly sampling yt+1 from the multinomial distribution
σ(ot) will cause the non-differentiability problem (Yu et
al. 2017), thus the Gumbel-Softmax relaxation is employed
with the generator to approximate the samples. The Gumbel-
Max trick (Maddison, Mnih, and Teh 2017) and the softmax
function σ(·) are used to sample discrete sentences and ap-
proximate the argmax function, respectively. The Gumbel-
Max trick samples the discrete token yt+1 at time t by:

yt+1 = argmax
1≤d≤|V|

(o
(d)
t + g

(d)
t ), (7)

where o(d)t is the value of the d-th dimension of ot, and
g
(d)
t is sampled from the Gumbel distribution, where g(d)t =

− log(− logU
(d)
t ) with U (d)

t ∼ Uniform(0, 1). The differ-
entiable approximation of argmax is obtained by:

ŷt+1 = σ(τ(ot + gt)), (8)
where τ is the temperature variable. Since the softmax-like
token ŷt+1 is differentiable with respect to ot, it is used as
the input of the discriminator instead of the discrete token
yt+1. τ can adjust bias and variance while approximating
yt+1. Larger τ brings lower bias but higher variance (Tucker
et al. 2017), allowing the generator to obtain higher diversity
but poorer quality samples (Caccia et al. 2018).

Hierarchical Evolutionary Learning Algorithm

Unlike previous text generation methods, which adopt the
fixed temperature strategy and one adversarial objective to
train a generator and a discriminator, our hierarchical evo-
lutionary learning algorithm evolves a population of gener-
ators, with various temperatures and objectives, to play the
adversarial game with the discriminator.

Variation. During the variation procedure, the individu-
als {Gθ1 , Gθ2 , · · · } are mutated from the parents {Gθ} via
asexual reproduction based on the combination of two kinds
of strategies, the temperature mutation strategy (TMS) and
the objective mutation strategy (OMS). TMS is to maintain
the high sample quality when the diversity improves (i.e., τ
increases). To explore the possible solutions of the genera-
tor in the parameter space, OMS further stabilizes the model
training process via leveraging various training objectives.

Previous works adopt the monotone increasing function
fτtar(n) to boost τ over training iterations, where τtar is the
target temperature, and n ∈ [1, N ] denotes the current itera-
tion of the maximum iterations N . τ obtains a subtle incre-
ment after each iteration. Although the monotone increasing
τ brings diversity, it leads to quality degradation. In one it-
eration, the subtle change of τ only affects the tightness of
the relaxation for one batch of training samples which can-
not fully represent all training samples. Thus, various subtle
changes have the potential to improve the sample quality.
With overall increasing τ , TMS aims at finding the opti-
mal temperature change direction according to the quality
in each iteration. The comparison between the evolution-
ary temperature and the monotone increasing temperature
is given in the supplementary material1. Formally, T de-
notes the TMS set that includes the temperatures with vari-
ous change directions:

T = {fτtar(n− 1), fτtar(n), fτtar(n+ 1)}. (9)

Besides, O denotes the OMS set which contains several
relativistic training objectives for the generator as follows:

O = {lCatRS
Gθ

, lCatRa
Gθ

}, (10)

where lCatRS
Gθ

is another way to measure the the relativistic
relation for all categories, similar to the form of lCatRa

Gθ
:

lCatRS
Gθ

= −
k∑

c=1

EY c
r ∼P c

r
Y c
θ ∼P c

θ

[log(sigmoid(Dφ(Y
c
θ )−Dφ(Y

c
r )))]

− EY all
r ∼P all

r

Y all
θ ∼P all

θ

[log(sigmoid(Dφ(Y
all
θ )−Dφ(Y

all
r )))].

(11)
It is worth noting that adding more temperatures and ob-

jectives into T and O is feasible. The Cartesian product of
T and O constitutes all mutation directions M = T × O

on each round of evolution. Each individual is mutated by
one mutation direction. That is, the generator is updated by
a specific training objective under a certain temperature.

1https://arxiv.org/abs/1911.06641

8428



Hierarchical Evaluation. Since the goals of TMS and
OMS are different, two stages, including the temperature-
oriented stage Stagetemp and the objective-oriented stage
Stageobj, are designed. Both the evaluation procedure and the
selection procedure are divided into the above two stages,
where Stagetemp can preliminarily filter the individuals for
Stageobj. In Stagetemp, the individuals with different temper-
atures in T can only be compared under the same objec-
tive. For each objective in O, the individual with the opti-
mal temperature is preserved for the further selection. Then,
Stageobj selects the best individual considering overall per-
formance. Thus, the proposed learning algorithm including
two stages, Stagetemp and Stageobj, is considered as the hi-
erarchical evolutionary learning algorithm. Two properties,
the sample diversity and quality, are mainly considered to
measure the performance of each individual in the whole hi-
erarchical evolutionary learning algorithm.

For evaluating the diversity, a new metric named NLLdiv
is proposed. NLLdiv calculates the negative log-likelihood of
generated samples on the generator by:

NLLdiv = −EYθ∼Pθ
[logPθ(y1, · · · , yT )], (12)

where Pθ is the generated sample distribution. NLLdiv can
captures the repeatability of the generated samples, which
will better reflect the mode collapse issue. When the gener-
ator can only learn some limited patterns from the real data
or assign all its probability mass to a small region, the value
of NLLdiv will become extremely low.

For evaluating the quality, D̄φ(Yθ) in Eq. 3 can accurately
measure the gap between the generated samples and the real
samples. The higher D̄φ(Yθ), the better quality sentences
that the generator can generate. Therefore, the evaluation
scores in Stagetemp and Stageobj are respectively defined as:

Ftemp = EYθ∼Pθ
[D̄φ(Yθ)], (13)

Fobj = EYθ∼Pθ
[D̄φ(Yθ)] + λNLLdiv, (14)

where λ can be tuned to balance the quality and diversity.
Ftemp aims at maintaining the quality when τ increases in
Stagetemp, and Fobj wants to stabilize the training process
and further balance the sample quality and diversity. Then,
we expect to maximize Ftemp and Fobj hierarchically.

Hierarchical Selection. The evaluation procedure of each
stage corresponds to a selection process, which selects the
individuals with larger evaluation scores. Firstly, according
to each objective in O, the individual which has the largest
Ftemp is preserved with a selected direction in T. Secondly,
the surviving individuals are further filtered based on Fobj
to obtain the best-performing generators as the new parents,
which will participate in future adversarial training. Follow-
ing the principle of “survival of the fittest”, the optimal tem-
perature and training objective are selected for the generator,
allowing the whole model is trained as expected.

Experimentation

Experimental Setting

Evaluation Metrics. Some evaluation metrics have been
widely used to measure the performance of text generation

Table 1: The NLLoracle scores on category text generation.
For the NLLoracle scores, the lower the better.

Length SentiGAN CSGAN CatGAN
20 6.976 8.431 6.649 ± 0.097
40 6.821 7.621 6.498 ± 0.186

Table 2: The performance comparison on MR. ↑ means
higher is better, and ↓ means lower is better.

Method SentiGAN CSGAN CatGAN
BLEU-2 ↑ 0.532 0.452 0.589 ± 0.041
BLEU-3 ↑ 0.285 0.204 0.335 ± 0.032
BLEU-4 ↑ 0.167 0.112 0.194 ± 0.028
BLEU-5 ↑ 0.143 0.082 0.144 ± 0.028

NLLgen ↓ 2.436 2.912 1.619 ± 0.169
NLLdiv ↑ 0.484 0.254 0.535 ± 0.045

Table 3: The performance comparison on AR.
Method SentiGAN CSGAN CatGAN

BLEU-2 ↑ 0.870 0.879 0.987 ± 0.002
BLEU-3 ↑ 0.801 0.674 0.943 ± 0.006
BLEU-4 ↑ 0.691 0.442 0.867 ± 0.016
BLEU-5 ↑ 0.554 0.256 0.751 ± 0.029

NLLgen ↓ 3.374 3.197 3.104 ± 0.203
NLLdiv ↑ 0.892 1.264 1.539 ± 0.050

models from various aspects (Semeniuta, Severyn, and Gelly
2018). Generally, the negative log-likelihood NLLoracle (Yu
et al. 2017) is used to measure the quality on synthetic data.
Two evaluation metrics, NLLdiv and NLLgen, are adopted to
measure the diversity, where NLLdiv is defined by Eq. 12,
and NLLgen (Zhu et al. 2018) is the reversed direction of
NLLoracle. NLLoracle and NLLgen are defined as follows:

NLLoracle = −EYθ∼Pθ
[logPr(y1, · · · , yT )], (15)

NLLgen = −EYr∼Pr
[logPθ(r1, · · · , rT )], (16)

where Pθ is the generated data distribution and Pr is the real
data distribution. NLLoracle is sensitive to the quality, while
NLLdiv and NLLgen are sensitive to the diversity.

Since NLLoracle cannot evaluate the quality of real data,
the BLEU scores (Zhu et al. 2018) are adopted. For category
text generation, the harmonic mean values of the metrics on
each category are obtained to evaluate the performance. The
repeatable experiment code is made publicly available for
further research2.

Datasets. Both synthetic and real data are employed to test
CatGAN, as in previous works (Guo et al. 2018). For cat-
egory text generation, synthetic data include 20,000 sam-
ples, and each 10,000 samples are obtained from different
oracle-LSTM (Yu et al. 2017), and real data include movie
reviews (MR) (Socher et al. 2013) and amazon reviews
(AR) (McAuley et al. 2015). MR has two sentiment classes
(negative and positive), and AR includes two types of prod-
uct reviews (book and application). For general text gener-
ation, synthetic data include 10,000 training samples gener-
ated by an oracle-LSTM, and real data contain EMNLP2017
WMT News (EN). All real data employ the same prepro-
cessing as in LeakGAN (Guo et al. 2018). MR has 4,503

2https://github.com/williamSYSU/CatGAN
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Table 4: The impact of λ on AR.
Method 0 0.001 0.01 0.1 1

BLEU-2 ↑ 0.982 0.987 0.982 0.980 0.982
BLEU-3 ↑ 0.942 0.943 0.936 0.927 0.917
BLEU-4 ↑ 0.868 0.867 0.841 0.825 0.803
BLEU-5 ↑ 0.757 0.751 0.712 0.682 0.654
NLLgen ↓ 3.577 3.104 2.902 2.552 2.404
NLLdiv ↑ 1.470 1.539 1.605 1.655 1.689

Table 5: The ablation study on AR.
Method CatGAN w/o H CatGAN w/o T CatGAN w/o O CatGAN

BLEU-2 ↑ 0.977 0.986 0.979 0.987
BLEU-3 ↑ 0.900 0.934 0.911 0.943
BLEU-4 ↑ 0.772 0.836 0.792 0.867
BLEU-5 ↑ 0.613 0.703 0.638 0.751

NLLgen ↓ 3.440 3.135 3.166 3.104
NLLdiv ↑ 1.524 1.555 1.618 1.539

samples, including 3,152 samples for training and 1,351
samples for testing. For AR, each category review includes
100,000 samples for training and 10,000 samples for testing,
and each sample may have multiple sentences. EN contains
200,000 training samples and 10,000 test samples.

Compared Models. Several state-of-the-art methods are
set as baselines in the experiments. For category text genera-
tion, SentiGAN (Wang and Wan 2018) and CSGAN (Li et al.
2018) are compared with CatGAN (k = 2). For general text
generation, four models are compared with CatGAN (k =
1), including SeqGAN (Yu et al. 2017), RankGAN (Lin et
al. 2017), LeakGAN (Guo et al. 2018), and RelGAN (Nie,
Narodytska, and Patel 2019). The standard MLE training is
used for all models before the adversarial training. For the
models which need the temperature, the exponential func-
tion fτtar(n) = τ

n/N
tar is adopted to increase the tempera-

ture, and τtar is set to 1 on synthetic data and 100 on real
data. Adam (Kingma and Ba 2014) is employed to opti-
mize our model. CatGAN is run with 6 random seeds on all
experiments, and the final scores are presented with means
and standard deviations (see the supplementary material for
more detailed settings).

Category Text Generation Experiments

Synthetic Data Experiments. The synthetic data exper-
iments are set with sequence length 20 and 40. NLLoracle
is used to measure the sample quality, and the ground-truth
scores are 5.748 and 4.015 for different sequence length, re-
spectively. In Table 1, multiple generators help SentiGAN to
obtain competitive results, and CatGAN outperforms Senti-
GAN by 0.327 and 0.323 on NLLoracle, which illustrates that
our model can obtain better quality on all categories.

Real Data Experiments. The real data experiments are
conducted on MR and AR. After the same preprocessing,
MR consists of 6,216 unique words with the maximum sen-
tence length 15, and AR contains 6,416 unique words with
the maximum sentence length 40. The results over generated
samples are shown in Table 2 and Table 3. On MR, since
SentiGAN is designed to generate sentiment text, it shows
better results than CSGAN on the BLEU scores. On AR,

Table 6: The NLLoracle scores on general text generation.
Length SeqGAN RankGAN LeakGAN RelGAN CatGAN

20 8.736 8.247 7.038 6.680 6.377 ± 0.116
40 10.310 9.958 7.191 6.756 6.235 ± 0.131

Figure 2: The training curves of CatGAN and RelGAN on
the synthetic data of length 20 under different temperatures
τtar ∈ {1, 5}. The performances are evaluated with NLLoracle
(left) and NLLdiv (right). The black dotted line represents the
end of pre-training.

Table 7: The performance comparison on EN.
Method SeqGAN RankGAN LeakGAN RelGAN CatGAN

BLEU-2 ↑ 0.777 0.727 0.826 0.881 0.954 ± 0.001
BLEU-3 ↑ 0.491 0.435 0.645 0.705 0.804 ± 0.008
BLEU-4 ↑ 0.261 0.209 0.437 0.501 0.603 ± 0.010
BLEU-5 ↑ 0.138 0.101 0.272 0.319 0.402 ± 0.008

NLLgen ↓ 2.773 3.345 2.356 2.482 2.316 ± 0.138
NLLdiv ↑ 1.695 1.178 1.291 1.117 1.716 ± 0.143

the sufficient training samples improve the performance of
all methods. CSGAN heavily relies on the auxiliary classi-
fier and the RL algorithm, and it shows a significant quality
degradation than CatGAN on BLEU while generating long
sentences on AR. Compared with the baselines, CatGAN is
not limited by the category type of data and obtains the bet-
ter BLEU scores on both MR and AR, which also shows
that CatGAN can catch the dependencies in short and long
sentences. Besides, on AR, CatGAN gets 3.104 on NLLgen
and 1.539 on NLLdiv, which illustrates that our model can
maintain good diversity while significantly improving qual-
ity. Actually, optimizing NLLdiv based score function can
lead to a better NLLdiv, yet CatGAN still consistently bests
NLLdiv and an existing metric, NLLgen.

The impact of λ is investigated on AR. In the right-hand
side of Eq. 14, the first term used to measure the quality
lies in [0, 1], while the second term NLLdiv usually lies in
[0, 10]. To balance the sample quality and diversity, λ is set
to increase from 0 to 1. Table 4 shows that the increase of
λ triggers the increase of diversity but the degradation of
quality, especially for BLEU-4 and BLEU-5. In practice, λ
is set to 0.001 for CatGAN on all experiments, since it shows
a good trade-off between quality and diversity.

For illustrating the effectiveness of TMS and OMS, the
ablation study is conducted on AR. The whole hierarchi-
cal evolutionary learning algorithm is removed as CatGAN
w/o H, TMS is removed from CatGAN as CatGAN w/o T,
and OMS is replaced with lCatRa

Gθ
to form CatGAN w/o O.

The results are shown in Table 5. Compared with CatGAN,
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Table 8: Samples from different methods on MR and AR.
Dataset SentiGAN CSGAN CatGAN

MR

Negative: Negative: Negative:
a tired, talky a hole in the worst movie. goes interesting, and the comedy were

interesting. (Wrong category)
the premise is intriguing but quickly be-
comes distasteful and creepy.

Positive: Positive: Positive:
a touching, and politically potent piece
of work, a film.

it ’s a treat. (Short) one of the greatest family-oriented,
fantasy-adventure movies ever.

AR

Book: Book: Book:
i have read as the series. i could rec-
ommend it to my other walker series.
(Short)

this book had an hard time for what’s
a nice fast read. good character is great
reading. what works worth the money.

this is a really good book in a series. the
characters are great and they are so easy
to read. it is a good read, can’t wait for
the next book.

Application: Application: Application:
i love it. i love it. i would recommend a
great game. (Short)

i got this game from amazon it is
that i have even it said weather tries.
(Unreadable)

great game. i play it until i get to level
3. it ’s a nice game for the whole family.
my kids too, and it does a great job.

CatGAN w/o T shows the degradation on all BLEU scores
and only increases NLLdiv by 0.016, which means the worse
quality and the similar diversity, respectively. Although Cat-
GAN w/o O achieves competitive sample diversity over Cat-
GAN, it shows a significant degradation on BLEU, which
means OMS can effectively guide our model. CatGAN w/o
H gets the worse sample quality than CatGAN w/o O, but
it still outperforms SentiGAN. The ablation study illustrates
that combining TMS and OMS facilitates generating diver-
sified and high-quality samples on real data.

General Text Generation Experiments

The experiments on general text generation are further to
show the contribution of the hierarchical evolutionary learn-
ing algorithm. General text generation can be considered as
the special case of category text generation when k = 1.

Synthetic Data Experiments. The synthetic data experi-
ments run with sequence length 20 and 40, and the ground-
truth NLLoracle scores are 5.750 and 4.071, respectively. The
results are presented in Table 6. Compared with all base-
lines, CatGAN outperforms the best of them by 0.303 and
0.521 on NLLoracle with different sequence length, respec-
tively, which verifies the better sample quality. Specially,
with sequence length 40, CatGAN significantly improves the
metric by 0.956 and 3.723 over LeakGAN and RankGAN,
respectively, and it illustrates that our model is more pow-
erful to catch long-term dependencies. With the help of the
hierarchical evolutionary learning algorithm, CatGAN out-

Figure 3: The performance comparison of the human score.

performs RelGAN which also employs the temperature and
the Gumbel-Softmax relaxation.

The trade-off between quality and diversity under differ-
ent temperatures is shown in Fig. 2. It illustrates that the im-
provement of quality is always accompanied by the decline
in diversity, and higher τtar brings more diversity. Compared
with RelGAN, CatGAN shows better quality under the same
diversity. With the help of TMS, CatGAN greatly improves
the quality over RelGAN under the temperature τtar = 5.
The results validate that the hierarchical evolutionary learn-
ing algorithm can reduce the impact of mode collapse.

Real Data Experiments. The real data experiments are
conducted on the EN dataset. After the preprocessing, EN
contains 5,255 unique words with the maximum sentence
length 51. Table 7 shows that CatGAN consistently outper-
forms other methods on BLEU, which illustrates its power to
generate high-quality long sentences. Under the premise of
achieving better BLEU scores, our model improves NLLgen
and NLLdiv by 0.04 and 0.021 than the best performance of
the baselines, which shows CatGAN can maintain the higher
sample quality and diversity simultaneously.

Human Evaluation

The human evaluation is conducted for further evaluating
the sample quality of generated sentences on AR and EN.
The sample quality is measured based on grammatical and
semantic correctness, and the detailed protocol is provided
in the supplementary material. For category text generation,
each model randomly generates 100 samples for each cate-
gory, then these samples with category information are rated
by five graduate students with the score from 1 to 5, where 1
means the worst quality and 5 means the best. The harmonic
mean values of the average score on each category are shown
in Fig. 3. For general text generation, the average score over
100 generated sentences from each model is reported. The
human evaluation results demonstrate that CatGAN can gen-
erate better quality samples than other baselines.

Case Study

With trained on MR and AR, the generated sentences from
SentiGAN, CSGAN, and CatGAN are listed in Table 8. As
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shown by the examples, CSGAN shows some problems,
such as short length, wrong category and unreadable sen-
tence. Especially on AR, CSGAN lacks the ability for catch-
ing the long-term dependencies and generates many unread-
able sentences. SentiGAN is capable of obtaining sentiment
category text, but it also cannot generate the high-quality
long sentences on AR, which may due to the gap between
the distributions of two products from AR is larger than the
gap of various sentiments. To summarize, CatGAN produces
the samples which are longer, more readable and accurate
on different categories (see the supplementary material for
more samples).

Conclusion

This paper proposes CatGAN for category text generation.
In order to guide the category-aware model to obtain cate-
gory samples accurately, the informative updating signal is
provided by measuring the relativistic relation between gen-
erated samples and the corresponding real samples on each
category. Besides, a hierarchical evolutionary learning algo-
rithm is developed to train CatGAN and improve genera-
tion performance. It allows the model to preserve the well-
performing offspring, where the generated category samples
can retain diversified and high-quality after each training
iteration. Experimental results on several datasets demon-
strate that CatGAN achieves a better performance than most
of the existing state-of-the-art methods on both category text
generation and general text generation.
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