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Abstract

Continuous representation of words is a standard component
in deep learning-based NLP models. However, representing
a large vocabulary requires significant memory, which can
cause problems, particularly on resource-constrained plat-
forms. Therefore, in this paper we propose an isotropic itera-
tive quantization (IIQ) approach for compressing embedding
vectors into binary ones, leveraging the iterative quantization
technique well established for image retrieval, while satis-
fying the desired isotropic property of PMI based models.
Experiments with pre-trained embeddings (i.e., GloVe and
HDC) demonstrate a more than thirty-fold compression ratio
with comparable and sometimes even improved performance
over the original real-valued embedding vectors.

1 Introduction

Words are basic units in many natural language processing
(NLP) applications, e.g., translation (Bahdanau, Cho, and
Bengio 2014) and text classification (Joulin et al. 2016). Un-
derstanding words is crucial but can be very challenging.
One difficulty lies in the large vocabulary commonly seen in
applications. Moreover, their semantic permutations can be
numerous, constituting rich expressions at the sentence and
paragraph levels.

In statistical language models, word distributions are
learned for unigrams, bigrams, and generally n-grams. A
unigram distribution presents the probability for each word.
The histogram is already sufficiently complex given a large
vocabulary. Then, the complexity of bigram distributions is
quadratic in the vocabulary size and that of n-gram ones is
exponential. The combinatorial nature motivates researchers
to develop alternative representations which otherwise ex-
plode.

Instead of word distributions, continuous representations
with floating-point vectors are much more convenient to
handle: they are differentiable, and their differences can
be used to draw semantic analogy. A variety of algorithms
were proposed over the years for learning these word vec-
tors. Two representative ones are Word2Vec (Mikolov et
al. 2013a) and GloVe (Pennington, Socher, and Manning
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2014). Word2Vec is a classical algorithm based on either
skip grams or a bag of words, both of which are unsu-
pervised and can directly learn word embeddings from a
given corpus. GloVe is another embedding learning algo-
rithm, which combines the advantage of a global factoriza-
tion of the word co-occurrence matrix, as well as that of the
local context. Both approaches are effective in many NLP
applications, including word analogy and name entity recog-
nition.

Neural networks with word embeddings are frequently
used in solving NLP problems, such as sentiment analysis
(dos Santos and Gatti 2014) and name entity recognition
(Lample et al. 2016). An advantage of word embeddings is
that interactions between words may be modeled by using
neural network layers (e.g., attention architectures).

Despite the success of these word embeddings, they of-
ten constitute a substantial portion of the overall model. For
example, the pre-trained Word2Vec (Mikolov et al. 2013b)
contains 3M word vectors and the storage is approximately
3GB. This cost becomes a bottleneck in deployment on
resource-constrained platforms.

Thus, much work studies the compression of word em-
beddings. (Shu and Nakayama 2017) propose to represent
word vectors by using multiple codebooks trained with
Gumbel-softmax. (Grzegorczyk and Kurdziel 2017) learn
binary document emebddings via a bag-of-word-like pro-
cess. The learned vectors are demonstrated to be effective
for document retrieval.

In information retrieval, iterative quantization (ITQ)
(Gong et al. 2013) transforms vectors into binary ones,
which are found to be successful in image retrieval. The
method maximizes the bit variance meanwhile minimizing
the quantization loss. It is theoretically sound and also com-
putationally efficient. However, (Grzegorczyk and Kurdziel
2017) find that directly applying ITQ in NLP tasks may not
be effective.

In (Mu, Bhat, and Viswanath 2017), authors propose an
alternate approach that improves the quality of word em-
beddings without incurring extra training. The main idea
lies in the concept of isotropy used to explain the success
of pointwise mutual information (PMI) based embeddings.
The authors demonstrate that the isotropy could be improved
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through projecting embedding vectors toward weak direc-
tions.

Therefore, in this work we propose isotropic iterative
quantization (IIQ), which leverages iterative quantization
meanwhile satisfying the isotropic property. The main idea
is to optimize a new objective function regarding the
isotropy of word embeddings, rather than maximizing the
bit variance.

Maximizing the bit variance and maximizing isotropy are
two opposite ideas, because the former performs projection
toward large eigenvalues (dominant directions) while the
latter projects toward the smallest ones (weak directions).
Given prior success (Mu, Bhat, and Viswanath 2017), it is
argued that maximizing isotropy is more beneficial in NLP
applications.

2 Related Work

In information retrieval (where the proposed method is in-
spired), locality-sensitive hashing (LSH) is well studied and
explored. The aim of LSH is to preserve the similarity be-
tween inputs after hashing. This aim is well aligned with
that of embedding compression. For example, word simi-
larity can be measured by the cosine distance of their em-
beddings. If LSH is applied, the hashed emebddings should
maintain a similar distance as the original cosine distance
but have much lower complexity in the meantime.

A well-known LSH method in image retrieval is ITQ
(Gong et al. 2013). However, its application in NLP tasks
such as document retrieval is not as successful (Grzegorczyk
and Kurdziel 2017). Rather, the authors propose to learn bi-
nary paragraph embeddings via a bag-of-words-like model,
which essentially computes a binary hash function for the
real-valued embedding vectors.

On the other hand, (Shu and Nakayama 2017) propose a
compact structure for embeddings by using the gumble soft-
max. In this approach, each word vector is represented as
the summation of a set of real-valued embeddings. This idea
amounts to learning a low-rank representation of the embed-
ding matrix.

Pre-trained embeddings may be directly used in deep neu-
ral networks (DNN) or serve as initialization (Kim 2014).
There exist several compression techniques for DNNs, in-
cluding pruning (Han, Mao, and Dally 2015) and low-rank
compression (Sainath et al. 2013). Most of these techniques
requires retraining for specific tasks, thus challenges ex-
ist when applying them to unsupervised word embeddings
(e.g., GloVe).

(See, Luong, and Manning 2016) successfully apply DNN
compression techniques to unsupervised embeddings. The
authors use pruning to sparsify embedding vectors, which
however requires retraining after each pruning iteration. Al-
though retraining is common when compressing DNNs, it
often takes a long time to recover the model performance.
Similarly, (Acharya et al. 2019) uses low rank approxima-
tion to compress word embeddings, but they also face the
same problem to fine-tune a supervised model.

3 Preliminaries

3.1 Iterative Quantization

In this section, we briefly revisit the iterative quantization
method by breaking it down into two steps. The first step is
to maximize bit variance when transforming given vectors
into binary representation. The second step is about min-
imizing the quantization loss while maintaining the maxi-
mum bit variance.

Maximize Bit Variance. Let X ∈ R
n×d be the embed-

ding dictionary, where each row xT
i ∈ R

d denotes the em-
bedding vector for the i-th word in the dictionary. Assuming
that vectors are zero centered (

∑n
i=1 xi = 0), ITQ encodes

vectors with a binary representation {−1,+1} through max-
imizing the bit variance, which is achieved by solving the
following optimization problem:

max
W

F (W) =
1

n
tr(WTXTXW),

s.t. WTW = I and B = sgn(XW),

(1)

where W ∈ R
d×c and c ≤ d is the dimension of the en-

coded vectors. Here, B is the final binary representation of
X and tr(·) and sgn(·) are the trace and the sign function,
respectively. The problem is the same as that of Principal
Component Analysis (PCA) and could be solved by select-
ing the top c right singular vectors of X as W.

Minimize Quantization Loss. Given a solution W to
Equation (1), U = WR is also a solution for any orthogonal
matrix R ∈ R

c×c. Thus, we could minimize the quantiza-
tion loss via adjusting the matrix R while maintaining the
solution to (1). The quantization loss is defined as the differ-
ence between the vectors before and after the quantization:

Q(B,R) = ||B−XWR||2F , (2)

where || · ||F is the Frobenius norm. Note that B must be
binary. The proposed solution in ITQ is an iterative proce-
dure that updates B and R in an alternating fashion until
convergence. In practice, ITQ turns out able to achieve good
performance with early stopping (Gong et al. 2013).

3.2 Isotropy of Word Embedding

In (Arora et al. 2016), isotropy is used to explain the suc-
cess of PMI based word embedding algorithm, for exam-
ple GloVe embedding. However, (Mu, Bhat, and Viswanath
2017) find that existing word embeddings are not nearly
isotropic but could be improved. The proposed solution is to
project word embeddings toward the weak directions rather
than the dominant directions, which seems counter-intuitive
but in practice works well. The isotropy of word embedding
X is defined as:

I(X) =
min||e||=1 Z(e)

max||e||=1 Z(e)
, (3)

where Z(·) is the partition function

Z(e) =
∑

xi∈X

exp(eTxi). (4)
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The value of I(X) ∈ [0, 1] is a measure of isotropy of the
given embedding X. A higher I(·) means more isotropic and
a better quality of the embedding. It is found making the
singular values close to each other can effectively improve
embedding isotropy.

4 Proposed Method

The preceding section hints that maximizing the isotropy
and maximizing the bit variance are opposite in action: The
former intends to make the singular values close by remov-
ing the largest singular values, whereas the latter removes
the smallest singular values and maintains the largest. Given
the success of isotropy in NLP applications, we propose to
minimize the quantization loss while improving the isotropy,
rather than maximizing the bit variance. We call the pro-
posed method isotropic iterative quantization, IIQ.

The key idea of ITQ is based on the observation that
U = WR is still a solution to the objective function of (1).
In our approach IIQ, we show that the orthogonal transfor-
mation maintains the isotropy of the input embedding, so
that we could apply a similar alternating procedure as in ITQ
to minimize the quantization loss. As a result, our method is
composed of three steps: maximizing isotropy, reducing di-
mension, and minimizing quantization loss.

Maximize Isotropy. The isotropy measure I(X) can be
approximated as following (Mu, Bhat, and Viswanath 2017)
:

Î(X) =
|X| − ||1TX||+ 1

2σ
2
min

|X|+ ||1TX||+ 1
2σ

2
max

, (5)

where σmin and σmax are the smallest and largest singular
values of X, respectively. For Î(X) to be 1, the middle term
||1TX|| on both the numerator and the denominator must be
zero and additionally σmin = σmax. The former requirement
can be easily satisfied by the zero-centering given embed-
dings:

u =
1

n
1T ·X

X̄ = X− 1 · uT ,
(6)

where ||1T X̄|| = 0. The latter may be approximately
achieved by removing the large singular values such that the
rest of the singular values are close to each other. A rea-
son why removing the large singular values makes the rest
close, is that often the large singular values have substantial
gaps while the rest are clustered. However, removing singu-
lar components does not change its dimension. We denote
the maximized result as X̂.

Dimension Reduction. To make our method more flex-
ible, we perform a dimension reduction afterward by using
PCA. This step essentially removes the smallest singular val-
ues so that the clustering of the singular values may be fur-
ther tightened. Note that PCA won’t affect the maximized
isotropy of given embeddings, since it only works on the
singular values that are already closed to each other after
previous step. One can treat the dimension as a hyperparam-
eter, tailored for each data set.

Minimize Quantization Loss. Given a solution X̂ to the
maximization of (5), we prove that multiplying X̂ with an
orthogonal matrix R results in the same Î(X). In other
words, we could minimize the quantization loss (2) while
maintaining the isotropy.

Proposition 1. If X̂ ∈ R
n×d is isotropic and R ∈ R

d×d is
orthogonal, then U = X̂R admits Î(U) = Î(X̂).

Proof. Given that R is orthogonal, we first prove that U has
the same singular values as does X̂. Let X̂ have the singular
value decomposition (SVD)

X̂ = Pdiag(σmax, . . . , σmin)Q, (7)

where P ∈ R
n×d and orthogonal matrix Q ∈ R

d×d. Let
Q′ = QR. Then, we have

U = Pdiag(σmax, . . . , σmin)Q
′. (8)

Since Q′ is also orthogonal, Equation (8) gives the SVD of
U. Therefore, U has the same singular values as does X̂.

Moreover, ||1TU|| = ||1T X̂R|| = 0, thus U is also zero-
centered. By Equation (5), we conclude Î(U) = Î(X̂).

With the given proof, we can always use an orthogonal
matrix R to reduce the quantization loss. The iterative opti-
mization strategy as in ITQ (Gong et al. 2013) is adopted to
minimize the quantization loss. Two alternating steps lead to
a local minimum. First, compute B given R:

B = sgn(X̂ ·R). (9)

Second, update R given B. The update minimizes the quan-
tization loss, which essentially solves the orthogonal Pro-
crustes problem. The solution is given by

S ·Ω · ŜT = SVD(BT · X̂ ·R)

R = Ŝ · ST ,
(10)

where SVD(·) is the singular value decomposition function
and Ω is the diagonal matrix of singular values.

This iterative updating strategy runs until a local optimal
solution is found. Fig. 1 shows an example of the quantiza-
tion loss curve. This result is similar to the behavior of ITQ,
the authors of which proposed using early stopping to ter-
minate iteration in practice. We follow the guidance and run
only 50 iterations in our experiments.

Overall Algorithm. Our method is an unsupervised ap-
proach, which does not require any label supervision. There-
fore, it can be applied independently of downstream tasks
and no fine tuning is needed. This advantage benefits many
problems where embeddings often slow down the learning
process because of the high space and computation com-
plexity.

We present the pseudocode of the proposed IIQ method in
Algorithm 1. The input D denotes the number of top singu-
lar values to be removed, T denotes the number of iterations
for minimizing the quantization loss, and O denotes the di-
mension of the output binary vectors.
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Figure 1: Quantization loss curve of 50000 embedding vec-
tors from a pre-trained CNN model.

The first two lines make zero-centered embedding. Lines
3 to 5 maximize the isotropy. Lines 6 to 8 reduce the em-
bedding dimension, if necessary. Lines 9 to 15 minimize the
quantization loss. Within the iteration loop, lines 11 to 12
update B based on the most recent R, whereas lines 13 to
14 update R given the updated B. The last line uses the final
transformation R to return the binary embeddings as output.

Algorithm 1: Isotropic Iterative Quantization

Input: X ∈ R
n×d, D, T,O

Output: B
1 u← 1

n1
T ·X;

2 X̄← X− 1 · uT ;
3 S ·Ω · ŜT ← SVD(X̄);
4 Set top D singular values in Ω as 0;
5 X̂← S ·Ω · ŜT ;
6 if O < d then

7 X̂← PCA(X̂, O)
8 end
9 Randomly initialize an orthogonal matrix R;

10 for i← 1 to T do

11 U← X̂ ·R;
12 B← sgn(U);
13 S ·Ω · ŜT ← SVD(BT ·U);
14 R← Ŝ · ST ;
15 end

16 return sgn(X̂ ·R);

5 Experimental Results

We run the proposed method on pre-trained embedding vec-
tors and evaluate the compressed embedding in various NLP
tasks. For some tasks, the evaluation is directly conducted
over the embedding (e.g., measuring the cosine similarity
between word vectors); whereas for others, a classifier is

Table 1: Experiment Configurations.

Method Dimension Comp. Ratio

G
lo

V
e

Baseline 1917494× 300 1
Prune 1917494× 300 20
DCCL M = 32,K = 256 32
NLB 1917494× 300 32
ITQ 1917494× 300 32
IIQ-32 1917494× 300 32
IIQ-64 1917494× 150 64
IIQ-128 1917494× 75 128

H
D

C

Baseline 388723× 300 1
Prune 388723× 300 20
DCCL M = 32,K = 128 29
NLB 388723× 300 32
ITQ 388723× 300 32
IIQ-32 388723× 300 32
IIQ-64 388723× 150 64
IIQ-128 388723× 75 128

trained with the embedding. We conduct all experiments
in Python by using Numpy and Keras. The environment is
Ubuntu 16.04 with Intel(R) Xeon(R) CPU E5-2698.

Pre-trained Embedding. We perform experiments with
the GloVe embedding (Pennington, Socher, and Manning
2014) and the HDC embedding (Sun et al. 2015). The GloVe
embedding is trained from 42B tokens of Common Crawl
data. The HDC embedding is trained from public Wikipedia.
It has a better quality than GloVe because the training pro-
cess considers both syntagmatic and paradigmatic relations.
All embedding vectors are used in the experiment without
vocabulary truncation or post-processing.

In addition, we evaluate embedding compression on a
CNN model pre-trained with the IMDB data set. Different
from the prior case, the embedding from CNN is trained with
supervised class labels. We compress the embedding and re-
train the model to evaluate performance. This way enables
us to compare with other compression methods fairly.

Configuration. We compare IIQ with the traditional ITQ
method (Gong et al. 2013), the pruning method (See, Lu-
ong, and Manning 2016), deep compositional code learn-
ing (DCCL) (Shu and Nakayama 2018) and a recent method
(Tissier, Gravier, and Habrard 2019) we name as NLB. The
pruning method is set to prune 95% of the words for a sim-
ilar compression ratio. The DCCL method is similarly con-
figured. We run NLB with its default setting. We train the
DCCL method for 200 epochs and set the batch size to be
1024 for GloVe and 64 for HDC. For our method, we set
the iteration number T to be 50 since early stopping works
sufficiently well. We set the same iteration number for ITQ.
We also set the parameter D to be 2 for HDC, and 14 for
Glove embedding. Note that we perform all vector opera-
tions in real domain on the platform (Jastrzebski, Leśniak,
and Czarnecki 2015) and (Conneau and Kiela 2018).

Table 1 lists the experiment configurations with method
name, dimension, embedding value type, and compression
ratio. The baseline means the original embedding. Our
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Table 2: Word Similarity Results.

Method MEN MTurk RG65 RW SimLex999 TR9856 WS353

G
lo

V
e

Baseline 73.62 64.50 81.71 37.43 37.38 9.67 69.07
Prune 17.97 22.09 39.66 12.45 -0.37 8.31 14.52
DCCL 54.46 50.46 63.89 28.04 25.48 7.91 54.55
NLB 73.99 64.98 72.07 40.86 40.52 14.00 66.09
ITQ 57.37 52.93 72.08 25.10 26.23 8.98 55.00
IIQ-32 76.43 63.33 78.16 41.35 41.87 9.80 72.22
IIQ-64 71.55 58.37 74.94 37.61 38.80 12.81 67.99
IIQ-128 59.25 50.42 62.39 28.71 33.25 12.31 53.56

H
D

C

Baseline 76.03 65.77 80.58 46.34 40.68 20.71 76.81
Prune 46.83 41.49 56.14 29.84 26.27 15.27 52.06
DCCL 68.82 55.78 72.23 39.33 35.02 18.41 66.09
NLB 72.06 61.57 72.58 35.45 38.50 11.71 67.20
ITQ 72.31 61.68 74.70 37.01 37.40 9.69 72.32
IIQ-32 74.37 66.71 78.04 38.75 39.35 9.63 75.32
IIQ-64 66.32 56.73 65.77 35.63 36.22 11.33 72.70
IIQ-128 55.83 51.33 45.76 32.03 29.45 12.61 58.54

method starts with “IIQ,” followed by the compression ra-
tio. The “dimension” column gives the number of vectors
and the vector dimension. For DCCL, we list the parameters
M and K that determine the compression ratio. Note that we
use single precision for real values. The last column shows
the compression ratio, which is the the size of the original
embedding over that of the compressed one. Thus, the com-
pression from real value to binary is 32. Moreover, we also
apply dimension reduction in IIQ so that higher compression
ratio is possible.

5.1 Word Similarity

The task measures Spearman’s rank correlation between
word vector similarity and human rated similarity. A higher
correlation means a better quality of the word embed-
ding. The similarity between two words is computed as
the cosine of the corresponding vectors, i.e., cos(x,y) =
xTy/(||x|| · ||y||), where x and y are two word vectors.
Out-of-vocabulary (OOV) words are replaced by the mean
vector.

In this experiment, seven data sets are used, includ-
ing MEN (Bruni, Tran, and Baroni 2014) with 3000 pairs
of words obtained from Amazon crowdsourcing; MTurk
(Radinsky et al. 2011) with 287 pairs, focusing on word
semantic relatedness; RG65 (Rubenstein and Goodenough
1965) with 65 pairs, an early published dataset; RW (Lu-
ong, Socher, and Manning 2013) with 2034 pairs of rare
words selected based on frequencies; SimLex999 (Hill, Re-
ichart, and Korhonen 2015) with 999 pairs, aimed at gen-
uine similarity estimation; TR9856 (Levy et al. 2015) with
9856 pairs, containing many acronyms and name entities;
and WS353 (Agirre et al. 2009) with 353 pairs of mostly
verbs and nouns. The experiment is conducted on the plat-
form (Jastrzebski, Leśniak, and Czarnecki 2015).

Table 2 summarizes the results. The performance of IIQ
degrades as the compression ratio increases. This is ex-
pected, since a higher compression ratio leads to more loss

of information. In addition, our IIQ method consistently
achieves better results than ITQ, DCCL, NLB and the prun-
ing method. Particularly, one sees that on the Men data set,
IIQ even outperforms the baseline embedding Glove. An-
other observation is that on TR9856, a higher compression
ratio surprisingly yields better results for IIQ. We specu-
late that the cause is the multi-word term relations unique
to TR9856. Interestingly, the pruning method results in neg-
ative correlation in SimLex999 for the GloVe embedding.
This means that pruning too many small values inside word
embedding can drastically destroy the embedding quality.

5.2 Categorization

The task is to cluster words into different categories. The
performance is measured by purity, which is defined as the
fraction of correctly classified words. We run the experiment
using agglomerative clustering and k-means clustering, and
select the highest purity as the final result for each embed-
ding. This experiment is conducted on the platform (Jas-
trzebski, Leśniak, and Czarnecki 2015) where OOV words
are replaced by the mean vector.

Four data sets are used in this experiment: Almuhareb-
Poesio (AP) (Almuhareb and Poesio 2005) with 402 words
in 21 categories; BLESS (Baroni and Lenci 2011) with 200
nouns (animate or inanimate) in 17 categories; Battig (Bat-
tig and Montague 1969) with 5231 words in 56 taxonomic
categories; and ESSLI2008 Workshop (M Baroni and Lenci
2008) with 45 verbs in 9 semantic categories.

Table 3 lists evaluation results for GloVe and HDC em-
beddings. One sees that the proposed IIQ method works bet-
ter than ITQ, DCCL, and the pruning method on all data sets.
But NLB sometimes achieves the best result for example on
Battig. For ESSLI, IIQ even outperforms the original GloVe
and HDC embedding.
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Table 3: Categorization Results.

Method AP BLESS Battig ESSLI
G

lo
V

e

Baseline 62.94 78.50 45.13 57.78
Prune 38.56 46.00 23.42 42.22
DCCL 52.24 75.00 36.09 48.89
NLB 59.45 78.50 43.39 66.67
ITQ 58.71 76.50 40.76 48.89
IIQ-32 64.18 80.00 41.98 60.00
IIQ-64 56.22 76.50 37.49 51.11
IIQ-128 45.02 69.00 31.43 44.44

H
D

C

Baseline 65.42 81.50 43.18 60.00
Prune 34.33 48.00 23.28 51.11
DCCL 55.97 74.50 40.16 53.33
NLB 59.20 75.50 41.88 62.22
ITQ 57.21 77.50 41.04 55.56
IIQ-32 61.69 78.00 41.29 62.22
IIQ-64 48.51 72.50 35.90 53.33
IIQ-128 43.03 57.50 28.50 62.22

5.3 Topic Classification

In this experiment, we perform topic classification by us-
ing sentence embedding. The embedding is computed as the
average of the corresponding word vectors. The average of
binary embedding is fed to the classifier in single precision.
Missing words are treated as zero and so are OOV words.
In this task, we train a Multi-Layer Perceptron (MLP) as the
classifier for each method. Due to the different size of em-
beddings, we train 10 epochs for all Glove embeddings and
4 epochs for all HDC embedding. Five-fold cross validation
is used to report classification accuracy.

Four data sets are selected from (Wang and Manning
2012), including movie review (MR), customer review (CR),
opinion-polarity (MPQA), and subjectivity (SUBJ). Similar
performance is achieved by using the original embedding.
The experiment is conducted on the platform of (Conneau
and Kiela 2018).

Table 4 shows the results for each method. Similar to the
previous tasks, the proposed IIQ method consistently per-
forms better than ITQ, pruning, and DCCL. The only excep-
tion is that for MPQA and SUBJ, DCCL and NLB achieves
the best result for the GloVe embedding respectively. As
the compression ratio increases, IIQ encounters performance
degrade.

5.4 Sentiment Analysis

In this experiment, we evaluate over the embedding input to
a pre-trained Convolutional Neural Network (CNN) model
on the IMDB data set (Maas et al. 2011). The CNN model
follows the Keras tutorial (Chollet and others ). We train
50,000 embedding vectors in 300 dimensions. The model
is composed of an embedding layer, followed by a dropout
layer with probability 0.2, a 1D convolution layer with 250
filters and kernel size 3, a 1D max pooling layer, a fully
connected layer with hidden dimension 250, a dropout layer
with probability 0.2, a ReLU activation layer, and a single
output fully connected layer with sigmoid activation. More-

Table 4: Topic Classification Results.

Method CR MPQA MR SUBJ

G
lo

V
e

Baseline 78.78 87.16 76.42 91.29
Prune 73.48 81.93 71.97 87.19
DCCL 77.27 85.6 74.74 89.56
NLB 75.36 85.77 73.01 89.92
ITQ 71.79 84.11 73.18 89.55
IIQ-32 77.7 85.15 74.96 89.87
IIQ-64 75.07 83.02 73.17 88.14
IIQ-128 72.56 80.55 69.93 84.29

H
D

C

Baseline 76.40 86.61 75.71 90.86
Prune 70.97 78.84 67.56 83.58
DCCL 74.68 84.2 73.32 89.43
NLB 70.89 84.51 73.18 89.48
ITQ 73.57 84.44 72.3 89.46
IIQ-32 76.32 84.77 73.51 89.91
IIQ-64 72.18 82.07 70.32 87.41
IIQ-128 70.83 77.62 67.89 84.62

Table 5: Configurations for IMDB Classification.

Method Dimension Comp. Ratio

Baseline 50000× 300 1
Prune 50000× 300 20
DCCL M = 32,K = 32 27
NLB 50000× 300 32
ITQ 50000× 300 32
IIQ-32 50000× 300 32
IIQ-64 50000× 150 64
IIQ-128 50000× 75 128

Figure 2: IMDB CNN Test Accuracy Results.

over, we use adam optimizer with learning rate 0.0001, sen-
tence length 400, batch size 128, and train for 20 epochs.
Input embedding fed into CNN is kept fixed (not trainable).

The data set contains 25,000 movie reviews for train-
ing and another 25,000 for testing. We randomly separate
5,000 reviews from the training set as validation data. The
model with the best performance on the validation set is
kept as the final model for measuring test accuracy. More-
over, all results are averaged from 10 runs for each embed-
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(a) Nearest and furthest 100 words of “cook” in IIQ-GloVe. (b) Nearest and furthest 100 words of “man” in IIQ-HDC.

Figure 3: Visualizing Binary IIQ Word Embedding.

ding. The baseline model is the pre-trained CNN model with
87.89% accuracy. Table 5 summarizes the configurations for
this experiment. All configurations are similar to the previ-
ous experiments. The DCCL method is now configured with
M = 32 and K = 32 to achieve a similar compression ratio.

We present in Fig. 2 the result of each embedding. The
histogram shows the average accuracy of 10 runs experi-
ments for each method and the error bar shows the standard
deviation. One sees that among all compression methods,
IIQ achieves the least performance degrade. IIQ with com-
pression ratio 64 is the best.

5.5 Visualization

We visualize the binary IIQ embedding in Fig. 3 The near-
est and furthest 100 word vectors are shown. The distance
is calculated by the dot product. Fig. 3(a) shows the IIQ-
compressed GloVe embedding and Fig. 3(b) shows the IIQ-
compressed HDC embedding. The y axis lists every 10
words and the x axis is the dimension of the embedding.
One sees that similar word vectors have similar patterns in
many dimensions. A white column means that the dimension
is zero for all words. A black column means one. More-
over, there is obvious difference between nearest and fur-
thest words.

6 Conclusion

This paper presents an isotropic iterative quantization (IIQ)
method for compressing word embeddings. While it is based
on the ITQ method in image retrieval, it also maintains
the embedding isotropy. We evaluate the proposed method
on GloVe and HDC embeddings and show that it is effec-
tive for word similarity, categorization, and several other
downstream tasks. For pre-trained embeddings that are less
isotropic (e.g., GloVe), IIQ performs better than ITQ owing
to the improvement on isotropy. These findings are based on
a 32-fold (and higher) compression ratio. The results point
to promising deployment of trained neural network models
with word embeddings on resource constrained platforms in
real life.
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