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Abstract

A major bottleneck in training end-to-end task-oriented dia-
log system is the lack of data. To utilize limited training data
more efficiently, we propose Modular Supervision Network
(MOSS), an encoder-decoder training framework that could
incorporate supervision from various intermediate dialog sys-
tem modules including natural language understanding, dia-
log state tracking, dialog policy learning and natural language
generation. With only 60% of the training data, MOSS-all
(i.e., MOSS with supervision from all four dialog modules)
outperforms state-of-the-art models on CamRest676. More-
over, introducing modular supervision has even bigger bene-
fits when the dialog task has a more complex dialog state and
action space. With only 40% of the training data, MOSS-all
outperforms the state-of-the-art model on a complex laptop
network trouble shooting dataset, LaptopNetwork, that we in-
troduced. LaptopNetwork consists of conversations between
real customers and customer service agents in Chinese. More-
over, MOSS framework can accommodate dialogs that have
supervision from different dialog modules at both framework
level and model level. Therefore, MOSS is extremely flexible
to update in real-world deployment.

Introduction

Most current end-to-end generative dialog models require
thousands of annotated dialogs to train a simple information
request task (Lei et al. 2018). It is difficult and time consum-
ing to collect human-human dialogs (Serban et al. 2015).
Due to the task constraints, it is even impossible to collect
a large number of dialogs. In contrast, traditional modular
framework (Williams and Young 2007) requires less train-
ing data (Lowe et al. 2017). Traditional modular framework
is a pipeline of the following four functional modules devel-
oped independently: a natural language understanding mod-
ule that maps the user utterance to a distributed semantic
representation; a dialog state tracking module that accumu-
lates the semantic representation across different turns to
form the dialog state; a dialog policy learning module that
decides system dialog act based on the dialog state, and a
natural language generation module that maps the obtained
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dialog act to natural language. However, each module in
such traditional modular system is independently optimized.
Therefore, it is difficult to update each module whenever
new training data come. For example, when the natural lan-
guage understanding module is retrained with new data, all
the other modules that depend on it become sub-optimal due
to the fact that they were trained on the output distributions
of the older version of the module.

To combine the benefits from both modular and end-to-
end systems, we propose to follow the idea of modular sys-
tems by injecting rich supervision from each dialog module
in an end-to-end trainable framework. Under MOSS frame-
work, dialog modules such as natural language understand-
ing, dialog state tracking, dialog policy learning and nat-
ural language generation share an encoder but have their
own decoders. Decoders of different modules are connected
through hidden states rather than symbolic outputs. Then all
the modules can be optimized jointly to avoid error propaga-
tion and model mismatch. In addition, since MOSS produces
output from individual modules during testing, we can easily
locate the error by checking the modular output.

MOSS is also a flexible framework that can be used in a
plug-and-play fashion by removing supervision from some
modules. The plug-and-play feature offers options at two
levels to enable full utilization of all available annotations.
At framework level, for example, if the data do not have
natural language understanding supervision, we can create
a new instance (model) of MOSS framework by removing
the natural language understanding module in MOSS. As a
general rule of thumb, the more supervision the model has,
the better the performance is, and potentially the less number
of dialogs are required to reach good performance. Our re-
sults show that, MOSS-all (MOSS with supervision from all
four dialog modules) on only 60% of the training data out-
performs state-of-the-art models on CamRest676 including
TSCP (Lei et al. 2018). At model level, we could patch the
performance of an individual module of a specific model by
adding incompletely annotated training dialogs. For exam-
ple, we observe a large performance improvement of natural
language generation on MOSS-all with 60% of the training
data when we add the additional 40% training dialogs in raw
format (i.e., without any annotations).
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Figure 1: Modular Supervision Framework (MOSS): The left part shows several instances of MOSS framework in plug-and-
play fashion: MOSS-all (MOSS with supervision from all four dialog modules), MOSS w/o NLU, MOSS w/o DPL, MOSS
w/o NLU DPL (which is actually TSCP (Lei et al. 2018)). The right part shows the detailed architecture of MOSS-all with
one decoder and four decoders (Natural Language Understanding, Dialog State Tracking, Dialog Policy Learning and Natural
Language Generation). The black dash lines connecting different modules represent shared hidden states. The colored dash
lines represent modular attention, by which MOSS-all feeds input to each module.

Theoretically, introducing modular supervision has even
bigger benefits when the dialog task has more complex di-
alog states and action spaces. To prove MOSS’s ability on
complex tasks, we collect and annotate LaptopNetwork, a
dataset on the laptop network malfunction trouble-shooting
task from real-world dialogs. Compared to existing datasets,
LaptopNetwork has a more complex and realistic dialog
structure since the dialogs are between real users and profes-
sional computer maintenance engineers. Different from pre-
vious information request tasks, LaptopNetwork has more
actions as the dialogs are driven by the goal of fixing the net-
work. On LaptopNetwork, MOSS-all (MOSS with all super-
vision) outperforms state-of-the-art model with only 40% of
the training data. Based on our experiments on both Laptop-
Network and CamRest676, we summarize the take-aways
for how to efficiently build a dataset to solve a task. We re-
lease the code and data'.

Related work

Different end-to-end trainable task-oriented dialog systems
inject supervision differently. Eric et al. (2017) proposed to
use an attention sequence-2-sequence (Seq2Seq) (Sutskever,
Vinyals, and Le 2014) encoder-decoder model without inter-
mediate dialog module’s supervision except for the natural
language generation part. Such systems require thousands
of dialogs to learn one simple task. It is not clear if such
systems can work well on complex tasks (Lowe et al. 2017;
He et al. 2018). Lee 2014 suggested that there is a positive
correlation between end-to-end dialog performance and di-
alog state tracking performance. So we believe incorporat-
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ing dialog state tracking supervision will improve overall
system performance. NDM and LIDM (Wen et al. 2017b;
2017a) incorporated dialog state tracking supervision via
a separately-trained belief tracker. TSCP (Lei et al. 2018)
introduced a two-decoder pipeline that combines two dia-
log modules together. Specifically, it jointly trained belief
span decoding (dialog state tracking) and response gener-
ation. Shu et al. (2018) extended TSCP (Lei et al. 2018)
by separately decoding information slot and predicting re-
quested slot for dialog state tracking. All these approaches
outperform Eric et al. (2017). None of them incorporated
supervision from dialog policy learning. Though both NDM
and LIDM (Wen et al. 2017b; 2017a) have policy network
components, they are single layer MLPs functioning as the
glue that binds the system modules together. Their policy
network component does not incorporate supervision from
dialog policy learning. However, the dialog policy learning
is important because it decides the system’s next action. The
system dialog act can guides the language generation. There
is also work that incorporates supervision from dialog pol-
icy but not natural language understanding (Liu et al. 2018).
However, incorporating natural language understanding su-
pervision improve performance for tasks in which user utter-
ances have a large number of intents and slots. Although Li
et al. 2017 incorporated supervision from all four modules,
it feeds the symbolic output from NLU to downstream mod-
ules and could not avoid error propagation. Therefore, we
propose MOSS, an encoder-decoder based end-to-end train-
able framework that can incorporate supervision from all in-
termediate dialog modules, including natural language un-
derstanding (NLU), dialog state tracking (DST), dialog pol-
icy learning (DPL) and natural language generation (NLG).



Most existing task-oriented dialog datasets, such as Wen
et al. (2017b) and Budzianowski et al. (2018), are collected
in the Wizard-of-Oz (WOZ) role-play paradigm. In such a
paradigm, the users are asked to conduct the task with de-
tailed instruction. It improved the efficiency in collecting
domain-specific data and ensures coherence and consistency
between the two conversation partners. However, the user
action space is relatively small compared to the real-world
dialog because of the predefined constraints. In addition, the
users are role-playing instead of having a real need to talk
to the system, so the dialogs are different from practical us-
age. Towards tackling tasks with more dialog acts, Lewis
et al. (2017); He et al. (2018); Wang et al. (2019) collected
negotiation and persuasion dialogs by asking the two Turk-
ers negotiate or persuade each other to reach an agreement.
However, these tasks are still not collected from real users.
The only real human-human real-world dialog system is a
domain-specific IT helpdesk dataset (Vinyals and Le 2015).
But unfortunately, this dataset is not public. Therefore, to
test MOSS’s ability to handle complex tasks, we publish an
annotated real-world dataset, LaptopNetwork. It contains di-
alogs between real users and computer maintenance engi-
neers on solving laptop network issues.

MOSS: Modular Supervision Network

MOSS is an encoder-decoder based end-to-end trainable
framework that could incorporate supervision from various
intermediate dialog system modules. Figure 1 (right) shows
the detailed architecture of MOSS-all (i.e., MOSS with su-
pervision from all four dialog modules). Inspired by tradi-
tional modular architecture, MOSS-all has a unified encoder
and four separate decoders. Each decoder aligns with a dia-
log module so the supervision can be introduced from each
decoder. Between different modules, we transfer knowledge
via cross-modular attention and shared hidden states without
relying on symbolic outputs. We jointly optimize the four
decoders to avoid error propagation. Moreover, as Figure 1
(left) shows, with different instantiations, MOSS framework
can accommodate dialogs that have supervision from differ-
ent dialog modules in a plug-and-play fashion.

Methodology

We first present the architecture of MOSS-all and then de-
scribe how the plug-and-play feature deals with incomplete
annotations. For each dialog turn ¢, the system inputs are: the
state summary of the previous turn By = [S;—1; A¢—1]
(the concatenation of the dialog state S;_; and the system
act A;_1 of previous turn), the system response utterance
R;_1 of previous turn and the user utterance U;. We for-
mulate each module into a sequence-to-sequence (Seq2Seq)
framework with [B;_1, R;_1, Uy] as the input sequence.

Natural Language Understanding (NLU) Module The
NLU module generates a distributed semantic representation
M, = (ml,m},... ml) of the user utterance U;. M, is the
concatenation of user intent and the extracted values for slot
filling. The NLU module could be formulated as:

My = Seq2Seqn v (Bi—1, Ri—1,Uy)
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Diaog State Tracking (DST) Module The DST module
maintains the dialog state S; = (s, s!,...,s.), which is
the concatenation of user expressed constraints and requests.
DST achieves this by accumulating user semantic represen-
tation M; across different turns 0, 1, ..., ¢. So the DST mod-
ule could be formulated as:

Sy = Seq2Seqpst(Bi—1, Ri—1, Us| My)

Dialog Policy Learning (DPL) Module The DPL mod-
ule generates system act A, = (at,ab, ..., a}) based on the
current dialog state S;. It could be formulated as:

Ay = Seq2Seqppr(Bi—1, Re—1, U| My, St)

Natural Language Generation (NLG) Module The nat-
ural language generation (NLG) module then maps the di-
alog act to its surface form R, = (rf,r5,...,70). So the
NLG module could be formulated as:

Ry = Seq2Seqnrc(Bi-1, Ri—1, Ut| My, St, Ay)
Plug-and-Play: Dealing with Incomplete Annotations
The plug-and-play feature offers options at both framework
level and model level to deal with incomplete annotations.
At framework level, to accommodate dialogs that lack super-
vision from different dialog modules, we could create dif-
ferent instances (models) of MOSS framework by removing
the corresponding decoder in MOSS as shown in Figure 1
(left). We further adopt the down-stream module(s) by re-
moving the condition dependencies on the module(s) to be
removed. For example, if we remove the dialog policy learn-
ing module, then we get MOSS without supervision from di-
alog policy learning (MOSS w/o DPL) and re-formulate the
NLG module as:

Ry = Seq2Seqnra(Bi—1, Ri—1, UMy, St)
where A; is removed in the condition.

At model level, for a specific instance (model), we could
patch the performance of an individual module by adding
incompletely-annotated training dialogs. For example, if the
performance of natural language generation is not satisfac-
tory, we could add raw training dialogs without any an-
notations. For these training dialogs, we calculate the loss
solely based on the natural language generation module and
back-propagate the gradient to the entire model. The flexibil-
ity offered by these two levels of plug-and-play encourages
the maximum utilization of all available annotations and the
practical updates in deployed systems.

Building Blocks: Encoder and Decoder

Encoder An encoder is shared by all modules under
MOSS framework. For each dialog turn ¢, a shared bidi-
rectional GRU encodes the following three input: the state
summary of the previous turn By = [S;_1; A;_1] (the
concatenation of the dialog state S;_; and the system act
A;_1 of previous turn), the system response utterance R;_1
of previous turn and the user utterance Us.

Etfh ﬁtfla ﬁty h’}; = EnCOder(Btfla Ry 1, Ut)

where Et,l, ﬁt,l, U} are the encoder states when encoding
each token of B;_1,R;_1 and U, respectively. h’}; is the last
encoder hidden state.



Decoder The decoders in all modules (NLU, DST, DPL,
NLG) have the same structure. Each decoder is imple-
mented as an attention (Bahdanau, Cho, and Bengio 2015)
based unidirectional GRU augmented with the copy mech-
anism (Gu et al. 2016). The decoder input is a sequence
of distributed representations X = (z1,22,...,2,). In
addition, the initial decoder hidden state hy could be as-
signed as prior knowledge. The decoder output is ¥ =

(y1,Y2,---,Ym), a sequence of the probability of out-
put tokens. We also records Y = (91,92,.--,Um) =
(h1,ha,...,hm), the decoder hidden states when decoding

Y because it would be used by its downstream modules. The
decoder could be formulated as:

Y,Y = Decoder,(X, ho)

where ¢ is the module name which could be NLU, DST,
DPL or NLG. The loss is defined as negative log likelihood.

Natual Language Understanding (NLU) Decoder

Traditionally, a NLU module processes intent detection and
slot filling separately: intent detection is treated as a seman-
tic utterance classification problem, and slot filling is treated
as a sequence labeling task. We jointly formulate intent de-
tection and slot filling as a sequence generation problem,
which solves multi-intent problem.

The NLU module maps user utterance U, to user semantic
representation M, with the help of the information in previ-
ous turns (B;_1, R;_1). we formulate Decoder s as:

My, My = DeCOdeTNLU([Et—h R 1, ﬁt]’ hi)

Note that M, is the decoder hidden states when decoding
user semantic representation M;. It will be used as the input
of later modules. The initial hidden state of Decoder i is
initialized as the last hidden state h’; of the encoder.

Dialog State Tracking (DST) Decoder

MOSS formulates DST into a sequence-to-sequence frame-
work with copy mechanism. So the DST module can
solve the out-of-vocabulary words problem of traditional
classification-based methods, as users may mention values
for the informable slots which have never appeared in the
training data. The DST module tracks dialog state .S; by ac-
cumulating user semantic representation M across different
turns.

The DST decoder also takes system response utterance
R;_1, user utterance U, as input. Different from condensed

context like state summary of previous turn B;_1, Ry;—1, U,
is the immediate dialog context of this turn. The immediate
dialog context might contain information that’s not in the
condensed context. So we formulate the DST decoder as:

S;, S; = Decoderpsr([Bi—1, Ri_1, Uy, M]vﬁlZ)

Here Decoder pgr is initialized with the last hidden state of
the NLU decoder !, as prior.
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Model Mat Succ.F1 BLEU
KVRN N/A N/A 0.134
NDM 0.904 0.832 0.212
LIDM 00912 0.840 0.246
TSCP 0927 0.854 0.253
MOSS w/o DPL 0932  0.856 0.251
MOSS w/o NLU  0.932 0.857 0.255
MOSS-all x 60% 0.947 0.857 0.202
MOSS x (60%all + 40%raw ) 0.947 0.859 0.221
MOSS-all  0.951 0.860 0.259

Table 1: Performance comparison on CamRest676 among
the baselines, MOSS-all, and several variants of MOSS.

Dialog Policy Learning (DPL) Decoder

We formulate DPL as a sequence-to-sequence problem to
enable MOSS to generate multiple system acts. The DPL
module predicts the system acts A; by considering both
the dialog states .S; and the query results from the external
database DB. Following Wen et al. (2016), the DPL module
forms the database query by taking the union of the maxi-
mum values of each informable slot in dialog state S; (Wen
et al. 2017b). The DB returns a one-hot vector k; represent-
ing different degrees of matching in the DB (no match, 1
match, ... or more than 5 matches). As language model type
condition (Wen et al. 2016), k; is concatenated with the word
embedding of each a%, j € [1,...,] as the new embedding.

emf(at) = )

The DPL decoder explicitly conditions on the state summary
of this turn S; to generate the system act A;.

emb(a})

Ky

Ay, Ay = Decoderppr ([Ri—1, Uy, Sel, 5q)

The hidden state of Decoderppy, is initialized as the last
hidden state §f1 of Decoderpsr.

Natural Language Generation (NLG) Decoder

The NLG decoder converts the system dialog acts A; into
system response R;. The NLG also conditions on DB query
result k; in the same way as the DPL. The NLG decoder
initializes its hidden state with the last hidden state a} of the
Decoderppy, as the prior knowledge of system acts A;.

Rt, Et = DGCOdeT’NLG([At, Etfl, ﬁt], EL?)

Finally, we sum up the cross-entropy losses of the four de-
coders and optimize the four decoders jointly to avoid error
propagation and model mismatch:

L=LNrv+Lpst+Lppr+ LNLc

Restaurant Search Task

We first use CamRest676 (Wen et al. 2017b) dataset to
show MOSS’s advantage on existing task-oriented dialog
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Figure 2: The detailed perforamance change of TSCP and MOSS-all on CamRest676 using a different amount of data.

User: I'm looking for an expensive restaurant
in the south.
True: Hi!We have Mexican,ltalian,Indian and
Chinese restaurants that fit the bill.
Do you have any preferences?
MOSS-all:  What type of food are you interested in
the south part of town? (act: “ask _food”)
TSCP: Curry Garden is a expensive Indian

restaurant in the south part of town.

Table 2: An example of MOSS-all and TSCP on Cam-
Rest676. The bold word indicates MOSS-all’s correct pre-
diction on dialog policy.

datasets. We annotate CamRest676 with five user intents
(e.g., Inform_type_change, Goodbye) and 10 system dialog
acts (e.g., give_foodtype, ask_food). We follow Wen et al.
(2017b); Lei et al. (2018) to split the data as 3:1:1 for train-
ing, validation and testing.

Baselines and Metrics

We compare our model against a set of state-of-the-art mod-
els: (i) KVRN (Eric et al. 2017) is an attention seq2seq
encoder-decoder model without intermediate dialog mod-
ule’s supervision except for the natural language generation;
(ii) NDM (Wen et al. 2017b) and (iii) LIDM (Wen et al.
2017a) incorporate dialog state tracking supervision via a
separately-trained belief tracker; (iv) TSCP (Lei et al. 2018)
could be viewed as an instance of MOSS without supervi-
sion from natural language understanding and dialog policy
learning. (v- viii) We also evaluate some variants of MOSS
shown in Figure 1 (left). Following Lei et al. (2018), we use
three evaluation metrics: entity match rate (Mat) on dialog
state, success F1 (Succ.F1) on requested slots and BLEU
(Papineni et al. 2002) on generated system utterances.

Results

The first key takeaway is that the more supervision the
model has, the better the performance is. As shown in Ta-
ble 1, in terms of overall performance, we have (i) KVRN
< (ii) NDM = (iii) LIDM < (iv) TSCP < (v) MOSS w/o
DPL =~ (vi) MOSS w/o NLU < (ix) MOSS-all. We note
that this performance ranking is the same as the ranking of
how much supervision each system receives: (i) KVRN only
incorporates supervision from one dialog module (i.e., nat-
ural language generation); (ii, iii, iv) NDM, LIDM, TSCP
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Response and request

Sys: Unfortunately there are no Thai restaurants in the
north, do you want to change an area to look for ?
User: How about west area? I also want the address,
phone number, and the price range?

MOSS-all.NLU: ask_Inf : west address phone price

True.NLU: inform_Type_Change :
price

MOSS-all.DST: constraints: Thai north requests: ad-
dress phone price

west address phone

True.DST: constraints: Thai west request: address phone
price

Table 3: An MOSS-all error analysis example. The under-
lined words indicate the correct outputs while the bold parts
indicate the incorrect outputs.

incorporate supervision from two dialog modules (i.e., di-
alog state tracking and natural language generation); (v, vi)
MOSS without dialog policy learning (MOSS w/o DPL) and
MOSS without natural language understanding (MOSS w/o
NLU) incorporate supervision from three dialog modules;
(ix) MOSS-all incorporates supervision from all four mod-
ules and outperform all models on all three metrics.

Another takeaway is that models that have access to more
detailed supervision need fewer number of dialogs to reach
good performance. Row 7 in Table 1 shows that with only
60% training data, MOSS-all outperforms state-of-the-art
baselines in terms of task completion (Mat and success F1).
As for language generation quality (BLEU), MOSS-all with
60% training data performs worse. We suspect that it is par-
tially because MOSS-all with 60% training data has seen
fewer number of dialogs and thus has a weaker natural lan-
guage generation module. We validate this hypothesis by
training MOSS-all with 60% training data with all annota-
tions plus the left 40% training data without any annotation
(i.e., MOSS-all x 60% + 40%raw, Row 8 in Table 1). We
observe a large improvement on the BLEU score.

MOSS-all x 60% + 40%raw also shows the plug-and-
play feature at model level. An instance of MOSS frame-
work (e.g., MOSS-all) could accommodate dialogs that have
supervision from different dialog modules (e.g., all four
modules v.s. only natural language generation module). The
plug-and-play feature at model level allows us to patch the
performance of an individual module (e.g., natural language
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Figure 3: The detailed performance change of TSCP and MOSS-all on LaptopNetwork using a different amount of data.

generation) by adding incompletely annotated dialogs.

Compared to MOSS-all with only 60% training data,
MOSS-all using all data only improves the performance
slightly from 0.947 to 0.951 in Mat and 0.857 to 0.867
in Succ.F1. The improvement is not huge because restau-
rant search is a relatively simple task. TSCP’s performance
drops drastically by reducing the training data (from 0.927
to 0.902 in Mat and 0.854 to 0.831 in Succ.F1). If limited
training data is available, MOSS would potentially outper-
form TSCP much more significantly (0.947 VS 0.902 in Mat
and 0.857 VS 0.831 in Succ.F1). Figure 2 shows the detailed
performance change between the two models using a differ-
ent amount of data.

For traditional modular dialogue systems, we note that
Braunschweiler and Papangelis construct a traditional mod-
ular dialogue system and compare it against NDM on Cam-
Rest676 dataset in a synthesized speech scenario. The results
show that NDM significantly outperforms the traditional
modular dialogue system. While our method outperforms
NDM with a huge margin. Therefore, we expect MOSS also
outperforms traditional modular dialogue systems.

Case Study Since TSCP is the best among all the base-
lines, we select TSCP to compare against MOSS in the case
study. Table 2 presents an example from the testing set.
We found after incorporating supervision from dialog policy
MOSS performs better than TSCP. MOSS-all learns to ask
the user for more information (act: “ask_food”) when there
are too many matched results in the database. In contrast,
TSCP instead acts as there is only one restaurant satisfying
the user’s constraint, though TSCP tracts the dialog state cor-
rectly. We suspect this error is caused because TSCP replies
with the utterance it has seen the most in a similar context
without distinguishing even similar context may lead to dif-
ferent dialog act choice.

Error analysis The output from individual modules in
MOSS helps to locate its error easily. Table 3 shows an error
in the generated dialog state of MOSS (“north” v.s. “west”).
The natural language understanding produced correct slots
but in the dialog act intent prediction (“ask_info” v.s. “in-
form_type_change”), it produced wrong values. So the DST
receives the wrong information. For such errors, given that
“inform_type_change” occurs much less than other tags like
“ask_info”, one solution is to collect more examples on
these two confusing dialog acts for training.
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Laptop Network Troubleshooting

In this section, we first introduce a complex laptop network
troubleshooting dataset-LaptopNetwork. We then evaluate
MOSS on LaptopNetwork, showing that when the dialog
task has a more complex dialog state and action space, in-
troducing modular supervision has even bigger benefits.

LaptopNetwork Dataset

We collect LaptopNetwork, a real-world laptop network
troubleshooting task in Chinese. Different from dialogs gen-
erated by crowd-source workers (Wen et al. 2017b), Lap-
topNetwork is more realistic since it involves real customers
with technical problems and professional computer mainte-
nance engineers on an online typing after-sales service plat-
form. In LaptopNetwork, the engineer might give different
solutions based on the feedback from customers. Laptop-
Network contains 618 dialogs from 97 engineers with 14.76
turns per dialog, 51.67 Chinese characters per utterance and
985.82 seconds of time elapsed per dialog on average.

Developing an annotation scheme for LaptopNetwork is
challenging because dialogs are full of computer main-
tenance terminologies such as ‘“network adaptor” and
“winsock” that are difficult to understand for naive anno-
tators. So to guarantee the annotation quality, we hired two
well-trained computer technicians and went through many
iterations to polish the dialog annotation scheme. Finally we
identified 60 different dialog acts with 12 of them as net-
work solution related dialog acts. Compared to dataset on in-
formation search task like CamRest676 which only has two
dialog acts: request and provide information, our proposed
network troubleshooting task is much more complex. as the
system needs to first understand users’ problem and then
collaborate with user to perform troubleshooting to resolve
the problem. After finalizing the dialog annotation scheme,
the two technicians then annotate each utterance with one or
more dialog acts. The two experts reached x = 0.852 inter-
annotator agreement on 300 turns.

Baselines and Metrics

Table 1 shows TSCP (Lei et al. 2018) perform the best
among the baselines on CamRest676. So we compare our
model against TSCP and some variants of MOSS on Lap-
topNetwork. We augment the belief span B, originally in-
troduced in Lei et al. (2018) by concatenating user act, old
B, and system act in TSCP. This augmentation makes sure
that TSCP has access to the same annotations as MOSS, oth-
erwise TSCP could hardly generate reasonable response.



TN User

System utterance
(Ground truth)

System utterance
(TSCP)

System utterance
(MOSS)

The wireless network is
not working.

What is the operating system of
your computer?

What is your computer model? Computer model?

My computer operating
system is win7.

Can you show me your computer’s
Mobility Center?

Are you able to find the wireless

signal? Computer model?

| have sent you the
result.

Launch your computer console
window, enter ‘netsh winsock reset’.

Show me your
network adaptor.

Launch your computer console
window, enter ‘netsh winsock reset’.

4 Okay, let me try.

Don’t forget to restart your
computer.

Show me your

Don’t forget to restart the computer.
8 P network adaptor.

5 My problem is solved!

Next time, just enter ‘netsh winsock
reset’ into the console.

Next time you can try typing ‘netsh
winsock reset’.

Can | help you with
anything else?

6 Thank you!

You’re welcome. Can | help you with
anything else?

Can | help you with
anything else?

You’re welcome. Can | help you with
anything else?

No! Thank you for your
help!

Goodbye! Have a nice day.

Can | help you with

Goodbye! Have a nice day. anything else?

Figure 4: An example dialog generated by MOSS-all and TSCP. TN denotes the turn number.

Model NLU.acc DST.acc DPL.acc Succ.acc BLEU
TSCP 0.32 0.35 0.25 0.18 0.050
MOSS w/o DPL  0.51 0.34 - - 0.109
MOSS w/o NLU - 0.45 0.40 0.50 0.115
MOSS x 40% 0.48 0.42 0.27 0.47 0.063
MOSS-all  0.52 0.52 0.43 0.61 0.122

Table 4: Performance comparison on LaptopNetwork among MOSS-all, TSCP, and several variants of MOSS.

Since LaptopNetwork is more complex than Cam-
Rest676, we add more metrics to capture different perspec-
tives for model performance evaluation. To evaluate the per-
formance of all four modules respectively, we calculate: nat-
ural language understanding accuracy NLU.ace, the accu-
racy of user dialog act and slots; dialog state tracking ac-
curacy DST.acc, the accuracy of user expressed constraints
and requests; dialog policy learning accuracy DPL.acc, the
accuracy of system dialog act and slots. In LaptopNetwork,
whether the system can give an accurate solution to solve
the problem is important. So we design Succ.acc to capture
the system’s task completion rate. Because the task is very
complex, as long as the system provides the correct solution,
the task is considered successful.

Results

As expected, introducing modular supervision has even big-
ger benefits when the dialog task has a more complex dialog
state and action spaces. As shown in Table 4, with only 40%
training data, MOSS-all can outperform the TSCP on all the
metrics. Figure 3 shows a consistent large performance gap
between TSCP and MOSS-all on LaptopNetwork using a
different amount of data.

With 100% training data, MOSS-all significantly outper-
forms TSCP on all the metrics mentioned above. For task
completion rate (Succ.acc), MOSS-all outperforms the state-
of-the-art model by 42%. We suspect that the big perfor-
mance boost comes from the additional modular supervision
MOSS-all has. For the complex task, user dialog act and sys-
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tem dialog act are very effective supervision to facilitate di-
alog system learning. Without such supervision, we observe
that TSCP tends to repeat trivial system responses that are
frequently seen in the training data (more details in Case
Study). Therefore, TSCP achieves moderate, but not high
scores for all the metrics. MOSS-all also outperforms the
state-of-the-art model by 7% in language generation qual-
ity. It is not surprising that with the supervision from DPL,
the generated dialog act can guide the NLG module to gen-
erate a response with the correct intent.

We now examine the performance change in each per-
spective when removing dialog policy learning module
(MOSS w/o DPL) or natural language understanding mod-
ule (MOSS w/o NLU). Without dialog policy learning mod-
ule, MOSS w/o DPL achieves comparable natural language
understanding accuracy (NLU.acc) but degraded dialog state
tracking accuracy (DST.acc) and natural language genera-
tion quality (BLEU). Without dialog policy learning mod-
ule, MOSS w/o DPL exhibits difficulty in directly learn-
ing the correlation between dialog state tracking and natural
language generation. Without natural language understand-
ing module, MOSS w/o NLU lacks the semantic informa-
tion from user utterance and performs worse in downstream
tasks (i.e., dialog state tracking, dialog policy learning, nat-
ural language generation).

Case Study Figure 4 presents an example in LaptopNet-
work. Without supervision from NLU and DPL, it is diffi-
cult to generate correct system acts and responses in com-
plex tasks. So TSCP tends to repeat trivial system responses



(turn 1&2 ; turn 3&4; turn 5&64&7) that are frequently seen
in the training data. In contrast, with supervision from NLU
and DPL, MOSS understands the dialog context better and
reacts with proper system acts and responses: MOSS is able
to make inquiries (turn 1&2), give solutions (turn 3), remind
users important steps in the solution (turn 4) and close the
dialog politely (turn 5&6&7).

Discussion

Our experiments provide some guidance for managing the
budget of constructing a new dialog dataset. For dialog tasks
that have more complex dialog states and action space like
LaptopNetwork, supervision from all four modules leads to
much higher performance and requires significantly fewer
number of dialogs (e.g., 40% in LaptopNetwork). There-
fore, annotating natural language understanding and dialog
policy learning should be prioritized during the construction
of such datasets. For simple dialog tasks like information
search tasks (e.g., CamRest676), the benefits of adding more
supervision is still huge. Moreover, it is possible to automat-
ically annotate the natural language understanding and di-
alog policy learning in these simple tasks. In CamRest676
for example, we obtain annotations for natural language un-
derstanding by calculating the difference of the current and
previous dialog states. We also obtain annotations for dia-
log policy learning by reusing the regular expressions de-
signed for delexicalization of system response in (Wen et
al. 2017b). Although collecting more dialogs is important, if
it is possible to get detailed annotations for free, we suggest
to incorporate these supervision first.

Conclusion

We propose Modular Supervision Network (MOSS), an end-
to-end trainable framework that incorporates supervision
from various intermediate dialog system modules. Our ex-
periments show that the more supervision the model has, the
better the performance. If more supervision is included, the
model needs less number of training dialogs to reach state-
of-the-art performance. In addition, such benefit is observed
even larger when the dialog task has a more complex dialog
state and action space for example, LaptopNetwork. We in-
troduce LaptopNetwork, which is a complex real-world lap-
top network malfunction trouble-shooting task. Moreover,
MOSS framework accommodates dialogs that have supervi-
sion from different dialog modules at both framework level
and model level. At framework level we create different
models with different modules removed; at model level we
support feeding dialogs with annotations for different mod-
ules into the same model. Such property is extremely useful
in real-world industry setting.
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