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Abstract

Though early successes of Statistical Machine Translation
(SMT) systems are attributed in part to the explicit mod-
elling of the interaction between any two source and target
units, e.g., alignment, the recent Neural Machine Transla-
tion (NMT) systems resort to the attention which partially
encodes the interaction for efficiency. In this paper, we em-
ploy Joint Representation that fully accounts for each possi-
ble interaction. We sidestep the inefficiency issue by refining
representations with the proposed efficient attention opera-
tion. The resulting Reformer models offer a new Sequence-to-
Sequence modelling paradigm besides the Encoder-Decoder
framework and outperform the Transformer baseline in either
the small scale IWSLT14 German-English, English-German
and IWSLT15 Vietnamese-English or the large scale NIST12
Chinese-English translation tasks by about 1 BLEU point. We
also propose a systematic model scaling approach, allowing
the Reformer model to beat the state-of-the-art Transformer
in IWSLT14 German-English and NIST12 Chinese-English
with about 50% fewer parameters. The code is publicly avail-
able at https://github.com/lyy1994/reformer.

Introduction

To translate one sentence in the source language to its equiv-
alent in the target one, the translation model relies on the
bilingual interaction between any two source and target units
to select the appropriate hypothesis. Early SMT systems are
good examples of this as they use the alignment matrix be-
tween the source sentence and the translated part to direct
the decoding (Koehn 2009).

When it comes to NMT, the natural idea to explicitly
model the interaction is by extending the intrinsic represen-
tation to have the size S × T ×H , dubbed Joint Represen-
tation, where S is the source sentence length, T is the target
sentence length and H is the hidden size. Despite that this
representation can flexibly learn to encode various types of
interaction, it is inefficient as it incurs high computation and
storage cost. A practical surrogate is the well-known atten-
tion mechanism (Vaswani et al. 2017). It mimics the desired

∗Corresponding Author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

interaction by dynamically aggregating a sequence of rep-
resentations. Though successful, the receptive field of each
position in the attention is restricted to one source or target
sequence only instead of the cartesian product of them as
required by the joint representation.

In this work, we take one step toward the model family
Reformer, which built entirely on top of the joint represen-
tation. We efficiently adapt the most advanced self-attention
module to the joint representation space R

S×T×H , namely
Separable Attention. With this building block at hand, we
present two instantiations of Reformer. The former one,
Reformer-base, enjoys the best theoretical effectiveness with
the capability that it can access any source or target token
with minimum O(1) operations but has higher complex-
ity induced by stacking separable attentions. The latter one,
Reformer-fast, better trades off the effectiveness and effi-
ciency of the separable attention, achieving comparable re-
sults as Reformer-base but 50% faster. As both Reformer
variants do not resort to either the encoder or the decoder,
they shed light on exploring the new promising Sequence-
to-Sequence paradigm in the future.

We additionally show that with proper model scaling, our
Reformer models are superior to the state-of-the-art (SOTA)
Transformer (Vaswani et al. 2017) with fewer parameters on
larger datasets. The proposed model scaling method requires
only O(2) runs to generate the enhanced model compared to
the common Grid Search, whose cost grows polynomially as
the candidates of hyper-parameters increase.

In our experiments, the Reformer models achieve 1.3,
0.8 and 0.7 BLEU point improvement over the Transformer
baseline in the small scale IWSLT15 Vietnamese-English
and IWSLT14 German-English, English-German datasets
as well as 1.9 in the large scale NIST12 Chinese-English
dataset. After scaling, it outperforms the SOTA large Trans-
former counterpart by 0.7 and 2 BLEU point with about
50% parameters in IWSLT14 German-English and NIST12
Chinese-English translations respectively.

Background

Sequence-to-Sequence Learning

Given a sentence pair (x, y), the NMT model learns to max-
imize its probability Pr(y|x), which is decomposed into the
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hěn

hǎo
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(b) Decoding (T -th step)

Figure 1: Separable Attention over representations (Chinese pinyin-English: “wǒ hěn hǎo .” → “I am fine .”).

product of the conditional probability of each target token
Pr(y|x) = ∏T

t=1 Pr(yt|y<t, x), where yt is the target token
at position t and y<t is all target tokens before t. Existing
Sequence-to-Sequence models for NMT will first use an en-
coder to map the source sentence x into a sequence of real
value vectors h, then a decoder to predict Pr(yt|y<t, x) us-
ing h and y<t.

Transformer

The most successful sequence-to-sequence model is Trans-
former (Vaswani et al. 2017), which consists of a stack of
layers. Each layer first utilizes the self-attention to extract
information from the whole sentence, then follows a point-
wise feed-forward network to provide non-linearity. These
two types of building blocks, self-attention and feed-forward
network, are both wrapped by the residual connection (He et
al. 2016) to form a sublayer:

Sublayer(x) = Block(LayerNorm(x)) + x (1)

where x is the input representation, Block is either the self-
attention or the feed-forward network and LayerNorm is the
layer normalization (Ba, Kiros, and Hinton 2016). The self-
attention is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dm

)V (2)

where dm is the dimension of the hidden representation and
set as the embedding size. For the self-attention inside the
encoder, Q,K, V ∈ R

S×dm , while for the self-attention
inside the decoder, Q,K, V ∈ R

T×dm . For the attention
that bridges the encoder and decoder, Q ∈ R

T×dm and
K,V ∈ R

S×dm . As for the feed-forward network, it consists
of two linear projections with ReLU activation in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

For more details, please refer to Vaswani et al. (2017).

The Reformer Family

Joint Representation

The first problem of designing Reformer is to construct the
initial joint representation as the model input. For the en-
coder or the decoder of a standard NMT model, its input is a

sized S ×E or T ×E matrix, where E is the token embed-
ding size. It implies that there are S or T tokens with each
represented by a sized E embedding. For the joint represen-
tation with the size S × T × H , it could be interpreted in
a similar way: there are S × T tokens combinations where
the first token is from the source sentence and the second
one is from the target sentence. Each tokens combination is
represented by a sized H embedding.

However, naively assigning a unique embedding to each
possible combination is intractable, as it will result in a
V 2 ×H embedding matrix, where V is the vocabulary size
typically with the scale 103 ∼ 104. Intuitively, there are
only weak connections (e.g., word translation) among to-
kens from different languages without knowing the context.
The independency among tokens can then be safely imposed
to factorize their combination. Therefore the combination of
each token embedding becomes the embedding of the tokens
combination.

Another issue is to inject the position information to the
joint representation for the attention mechanism, as it is un-
aware of tokens orders. Inspired by the position embedding
of Transformer, we similarly use the sinusoidal position em-
bedding to represent the position information of one token
and the combination of each token position embedding as
the position embedding of tokens combination, because po-
sitions are independent of the ones from another axis. Here
we choose the simplest addition to combine embedding.
Eventually, for the combination of i-th token from the source
sentence and j-th token from the target sentence, the embed-
ding of their combination and its position embedding are:

embedij = embedi + embedj

posij = posi + posj
(4)

where embed is the token/combination embedding, pos
is the position embedding. The H of joint representation
equals to E according to Eq. (4). The Reformer input is the
sum of embedij and posij then multiplied by

√
E.

Separable Attention

The simplest approach to adapt the self-attention to the
R

S×T×E input space is to collapse the S and T dimen-
sions into a single dimension J = S × T , then perform
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Figure 2: The Reformer Architecture. The green cube in the bottom of Figure. 2(a) is the target token embedding and the blue
one is the source token embedding if in Reformer-base otherwise the preprocessed source token embedding from Figure. 2(c).

self-attention to aggregate different combinations informa-
tion by treating it as a length J sequence. But such an ap-
proach suffers from great inefficiency though it can access
any combination with O(1) attention, as the operations re-
quired for the self-attention grow quadratically with the se-
quence length, i.e., J2 = S2 × T 2 operations.

Inspired by Separable Convolution (Howard et al. 2017)
and the fact that combinations are strongly connected along
either the S or T dimension, we instead perform the self-
attention on these two temporal dimensions separately and
sequentially, dubbed Separable Attention. Without the lack
of theoretical effectiveness, the network output can access
the input information in any source or target token through
O(2) attentions, as long as we stack one attention operated
on S and another one on T alternatively. This way reduces
the complexity from S2×T 2 to S2×T +S×T 2. Formally,
for the separable attention that aggregates information along
the dimension D ∈ {S, T}, we have:

SepAttn(Q,K, V ) = Concat(split1, · · · , splitD)

where spliti = Attention(Qi,Ki, Vi)
(5)

where Attention is the self-attention from Eq. (2) and
Q,K, V ∈ R

S×T×E . If D = S, then Qi,Ki, Vi ∈ R
T×E ,

otherwise Qi,Ki, Vi ∈ R
S×E . In practical implementa-

tions, we can perform Eq. (5) efficiently by treating the non-
aggregated dimension as an extra batch dimension. Figure.
1(a) shows an example of separable attention during train-
ing, where the target attention denotes separable attention
on T and source attention denotes separable attention on S.

Similar to the masked self-attention in Transformer, a fu-
ture mask is adopted to mask out the illegal softmax inputs
in the target attention. This mask, as well as the parallelism
among positions, allows the previously generated represen-
tations to be reused for computing only the sized S × E
representation which is associated to the latest target tokens
at each decoding step. We exemplify it in Figure. 1(b).

Reformer-base

Having the initial joint representation and separable atten-
tion, we present Reformer-base. As shown in Figure. 2(a),
Reformer-base is simply a stack of layers. After computing
the input x ∈ R

S×T×E according to Eq. (4), it will pass
through four sublayers in each layer: the first one is the target
attention that aggregates information along the dimension T ,
the second one is a point-wise feed-forward network as in
Eq. (3), the third one is the source attention that aggregates
information along the dimension S and the final one is an-
other feed-forward network. All these sublayers are wrapped
by the residual connection similar to Eq. (1). A graphical il-
lustration of these sublayers is in Figure. 2(b).

In the last layer, the network will produce the output with
a size of S × T × E. If a linear projection as well as a soft-
max is immediately followed, it will result in S distinct pre-
dictions for each target position, while we expect only one.
Thereby a Reduction component is introduced to transform
an input x ∈ R

S×E to an output y ∈ R
E before the linear

projection and softmax so as to obtain one prediction for one
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Layer Type Complexity Path Length

Separable Attention O(n3d) O(1)
Self-Attention O(n2d) O(l)
Recurrent O(nd2) O(l + n)
Convolution O(knd2) O(l + n logk(n))

Table 1: The path length required to access any source or
target token, n is the sequence length, d is the representation
size, k is the kernel size of convolutions and l is the number
of layers.

target position. The reduction is defined as:

Reduction(x) = Concat(head1, · · · , headE)
where headi = softmax(Wix

T )xi

(6)

where W are the learnable parameters and Wi ∈ R
1×E and

xi ∈ R
S×1. The input and output of the reduction will go

through a layer normalization first before any subsequent
processing. This simple attention-like mechanism uses all
E features of a token to determine the importance of a sin-
gle feature and normalizes it with other S features in the
same position but from different tokens. The rightmost part
of Figure. 2(b) demonstrates how reduction runs.

Another important detail of Reformer-base is Dropout.
From the initial construction of the joint representation in
Eq. (4), we see that the information of a source token is dis-
tributed along the dimension T and for the target token along
the dimension S. This means that Dropout is no longer able
to regularize model by encouraging feature independency
within a token representation, as the model can access to the
dropped features from representations of other tokens. We
introduce Dropout1d and Dropout2d to alleviate this prob-
lem (Tompson et al. 2015). In principle, the standard dropout
noise is sampled independently for each feature. To prevent
the feature dependency along specific dimensions, sharing
dropout noise in these dimensions will mask out all poten-
tial duplicates that might creep into the model. We apply
Dropout2d to the S and T dimensions of the output of the
feed-forward network and Dropout1d to the S/T dimension
of the output of the target/source attention. We do so be-
cause for the feed-forward network it operates on the whole
R

S×T×E space and we need to prevent feeding dropped fea-
tures back via S and T dimensions, while for the separa-
ble attention it aggregates representations along one tempo-
ral dimension thus we only block feature dependency in the
other one so as to not affect the aggregation.

Trading-Off the Effectiveness & Efficiency

The Pros & Cons of Reformer-base

As noted in Table 1, Reformer-base can access the informa-
tion of any source or target token in a path with the min-
imum O(1) operations. Transformer with the self-attention
layer requires O(l) operations as the source side informa-
tion is only available after passing through l layers in the
encoder. The same also happens in other layer types, result-
ing in the l occurs inside their path lengths. This observation

implies that Reformer-base can better capture the dependen-
cies between the source and target tokens, because the path
length for propagating the source side information is min-
imized. Although the separable attention of Reformer-base
has higher complexity, it also has a higher degree of paral-
lelism, as it computes all S × T positions simultaneously.

Despite the theoretical effectiveness of Reformer-base, it
suffers from two important issues that hinder its efficiency:

Duplicate Computation When a new target token is fed
into the model during decoding, its inner representation is
computed only based on the output of the previous layer
and starts from the embedding, as depicted in Figure.
1(b). This means that the high-level information about the
source sentence and previously generated target tokens is
unavailable for the lower layers since it is usually stored in
the higher layers representations. In each decoding step,
the model will have to recompute this information from
scratch, which wastes the model capacity.

Computation Allocation Another less obvious problem of
Reformer-base is that it assigns the same amount of com-
putation to both the source and target side, as in each layer
the model has one source attention on S and one target at-
tention on T . It is undesirable since the number of source
tokens fed into the model is significantly more than the
one of target tokens at each decoding step. This observa-
tion implies that there should be more computation allo-
cated to process the source side input (Wang et al. 2019).
Reformer-base can only stack more separable attention
for compensation, where the redundant target attention in-
troduces extra computation cost as noted by the separable
attention complexity in Table. 1.

Reformer-fast

Directly feeding the higher layer output from the preced-
ing decoding steps into the lower layer input might resolve
these two issues of Reformer-base. But this naive approach
is not feasible as its sequential nature breaks the training par-
allelism by forcing the computation of the representation in
one layer and one decoding step to wait for all representa-
tion below or before it finished computing, giving the total
O(LT ) training cost, where L is the total number of layers
and T is the target sentence length. Yet for Reformer-base,
each of its layers only relies on the previous layer output,
thus O(LT ) training cost can reduce to O(L) by paralleling
the computation over different steps.

The solution we adopted here is that before computing
the joint representation in Eq. (4), we introduce a prepro-
cessing network PreNet to process the source token embed-
ding embedi first and the network output is used to replace
embedi in Eq. (4). This network provides not only as much
extra computation as required for the source tokens, but also
a reusable high-level abstraction of these tokens. It consists
of a stack of layers and a layer normalization at the end,
where each layer is composed of a self-attention in Eq. (2)
and a feed-forward network in Eq. (3) with both wrapped as
in Eq. (1). PreNet shares the same hyper-parameters setting
as Reformer-base, e.g., the hidden size of the feed-forward
network. PreNet is very efficient, as it is computed only once
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and reused at each decoding step. Figure. 2(c) shows the
PreNet architecture. Reformer-base together with the PreNet
forms our new design, Reformer-fast.

Reformer-fast has higher efficiency than Reformer-base,
cause it avoids stacking many high complexity separable at-
tentions by reusing the high-level abstraction provided in the
low complexity PreNet, i.e., from O(n3d) to O(n2d). But
Reformer-fast scarifies the effectiveness of Reformer-base
since it can no longer access any source or target token with
O(1) operation but O(l) as the self-attention counterpart.

Discussion Reformer-fast introduces one additional
hyper-parameter to be tuned, i.e., the number of layers
of PreNet, which denotes how much extra computation
is allocated to process the source sentence. Assuming the
source sentence length N equals to the target sentence
length, there will be N source tokens and t target tokens are
fed into the model at the t-th decoding step. This implies
that total N2 source tokens and 1

2N
2+ 1

2N target tokens are
presented in the whole decoding process. Considering only
the second-order terms, the ratio of source tokens count to
target tokens count N2/ 1

2N
2 = 2 gives the insight that the

computation allocated to the source side should be roughly
2× more than the one of the target side. Therefore, we set
the PreNet to have the same height as Reformer-base.

Toward Optimal Model Scaling

Understanding Reformer

To scale Reformer to datasets that are larger than the one
that the base setup is optimized for, we need to better under-
stand both the network capacity and parameters. Unfolding
the residual connection of the input xL in the last linear clas-
sifier layer, we have:

xL = xL−1 + f(xL−1)

= x0 + f(x0) + · · ·+ f(xL−1)
(7)

where x0 stands for the embedding, x is the layer input and f
is the layer. Three factors that determine the network capac-
ity are observed: the number of layers l, the embedding size
e and the hidden size of the feed-forward network h = w×e,
where larger l and e provide more features for the last layer
and higher w strengthens the capacity of each layer thus the
output features quality.
l, w, e are also the dominant factors of network param-

eters. Omitting the bias terms and layer normalization, we
have the number of parameters P (l, w, e) = 2le2(4 + 2w),
where we do not consider the embedding matrix here as the
involved embedding are negligible on-the-fly. We can ob-
serve that P grows quadratically with e, thus enlarging e will
overwhelm the contributions of l, w and expose the model to
the high risk of overfitting. Therefore we leave e out of con-
sideration for either scaling or calculating parameters. This
gives a simplified formulation of parameters:

P (l, w) = 2l(4 + 2w) (8)

Then the problem of scaling becomes finding l and w that
maximize the model performance on the validation set:

max
l,w

L(l, w) (9)

where L is any performance measurement metric. In our ex-
periments, we use the cross-entropy loss instead of BLEU as
L because it is more stable.

Discussion Eq. (7) reveals that the superiority of Reformer
comes from the fact that it has a larger input space thus
richer input features, i.e., from R

l×e×S of the encoder or
R

l×e×(T+S) of the decoder to R
l×e×S×T of Reformer,

where S is the source sentence length and T is the target
sentence length. This also suggests that Reformer is a spe-
cial scaled Transformer that scales e dynamically.

Single-Shot Gradient-Based Scaling

Though many research have attempted to find the concrete
formulation between the generalization and model complex-
ity (Zhang et al. 2017), there is still no clear conclusion yet.
Hence we can only rely on the black-box optimization algo-
rithms to solve Eq. (9), e.g., Grid Search.

However, most black-box optimization algorithms are ex-
tremely inefficient in our case despite their superior empir-
ical performances, because they require to evaluate L with
different l, w many times while a single evaluation is a com-
plete training process. An efficient way is to compute the ap-
proximate gradient of L with respect to the current l, w and
perform only one step gradient ascent along with a step size
α to scale l, w. By the infinitesimal definition of the partial
derivative, we have the gradient of L w.r.t. l:

L′
l = lim

δ→0

L(l + δ, w)− L(l, w)
δ

≈ L(l + ε, w)− L(l, w)
ε

(10)
where ε is a small number that we manually pick for the ap-
proximation. The same method is also adopted for retrieving
L′
w. Although the approximated gradients are only useable

within a small region around the current l, w since it is only
a local direction indicator, it is sufficient when the step size
α is small as we need not deviate from the base setup much.

The next problem is to choose a proper step size α. When
scaling up a network, we would like to maximize its perfor-
mance while its risk of overfitting as well as the resource
requirement is under controlled. In most cases, the number
of parameters P expresses the risk of overfitting, e.g., the use
of L0-Norm regularization term, and the required resources
such as space and time also grow with P . Therefore the re-
source requirement and the risk of overfitting can be jointly
represented by the parameters. Choosing a step size α under
the parameters constraints is then equivalent to solving:

P (l + αL′
l, w + αL′

w)

P (l, w)
≈ β (11)

where the manually given constraint β is the ratio we want
to scale current parameters, i.e., having β× parameters after
scaling. Solving Eq. (11) with P replaced by Eq. (8) will
produce a new promising l and w setup, denoted as l̂ = l +
αL′

l and ŵ = w + αL′
w respectively.

Discussion Compared to other hyper-parameter tuning al-
gorithms (Golovin et al. 2017), our approach is not directly
applicable to hyper-parameters except l, w, because they do
not contribute to Eq. (11), therefore finding the optimal step
size for them reduces to the Grid Search.
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System Vi-En De-En En-De Zh-En
tst2012 tst2013 valid test valid test MT06 MT05 MT08

baseline 24.70 27.53 34.44 33.63 28.19 27.54 49.63 48.23 43.10
Reformer-base 24.42 27.18 35.87 34.92 29.42 28.32 50.00 48.72 45.04
Reformer-fast 24.98 28.26 35.87 34.87 29.31 28.36 50.82 49.29 44.64

Table 2: BLEU results of NMT systems.

System PPL BLEU Params Speed

baseline 5.39 34.44 16M 1×
Reformer 5.00 35.16 16M 0.47×
+Dropout 1/2d 4.82 35.87 16M 0.52×
+PreNet 4.89 35.87 17M 0.73×

Table 3: Ablation study on De-En validation set.

Experiments

Setup

Dataset We evaluated our approach on IWSLT15
Vietnamese-English (Vi-En), IWSLT14 German-English
(De-En), English-German (En-De) and NIST12 Chinese-
English (Zh-En) translation tasks. For Vi-En translation,
the training set consisted of 130K sentence pairs and we
used tst2012 as the validation set and tst2013 as the test
set. For De-En and En-De translations, the training set
consisted of 160K sentence pairs and we randomly drew
7K samples from the training set as the validation set.
We concatenated dev2010, dev2012, tst2010, tst2011 and
tst2012 as the test set. For Zh-En translation, We used 1.8M
sentence Chinese-English bitext provided within NIST12
OpenMT1. We chose the evaluation data of NIST MT06
as the validation set, and MT05, MT08 as the test set. All
Chinese sentences were word segmented by a language
model-based toolkit.

Model Our baseline systems were based on the open-
source implementation of the Transformer model (Vaswani
et al. 2017) presented in Ott et al. (2019). The model con-
sisted of the 6-layer encoder and decoder. The size of the
embedding, the heads and hidden layer of the feed-forward
network were set to 256/512, 4/8 and 1024/2048 for the
IWSLT/NIST datasets. Dropout was set to 0.1 for all exper-
iments. For training, we used the Adam optimizer (Kingma
and Ba 2015) where the learning rate and batch size were
set to 0.0007 and 4096×8 tokens. We applied BPE (Sen-
nrich, Haddow, and Birch 2016) to the De-En, En-De and
Zh-En tasks except for the Vi-En one, where the word-based
vocabulary achieved better performance.

For both Reformer-base and Reformer-fast, we adopted
the same settings as the Transformer baseline, except that
Reformer-base consisted of 7 layers and for Reformer-fast it
had 5 layers so as to obtain the similar number of parameters
as the baseline. In the scaling experiments, we doubled the

1LDC2000T46, LDC2000T47, LDC2000T50, LDC2003E14,
LDC2005T10, LDC2002E18, LDC2007T09, LDC2004T08

System De-En Zh-En
test Params MT08 Params

baseline 33.63 16M 43.10 101M
+scaling 34.41 42M 44.60 291M
Reformer-fast 34.87 17M 44.64 105M
+scaling 35.11 27M 46.66 146M

Table 4: BLEU results of scaled systems.

embedding size and set dropout to 0.3 for Transformer as
provided in Ott et al. (2019) for IWSLT14 De-En translation
and used Transformer-big setting for NIST12 Zh-En transla-
tion. As for Reformer-fast, we used β = 2 to constraint the
added parameters. All experiments were done on 8 Titan V
GPUs with the half-precision training.

Results

As shown in Table 2, both Reformer-base and Reformer-
fast significantly outperform the Transformer baseline by a
considerable margin in almost all test sets. For Vi-En trans-
lation, Reformer-base slightly underperforms the baseline.
We attribute this to the symmetric computation allocation
for both the source and target side in Reformer-base, as the
Vietnamese sentences are typically longer than their English
translations thus requesting more source-side operations.
For De-En and En-De translations, Reformer-base outper-
forms Reformer-fast in most cases, where the symmetric
computation allocation property better suits these datasets
since German sentences are often of similar lengths as their
English equivalents. As for Zh-En translation, none of the
Reformer models outperforms the other one in all test sets,
which indicates that both models behave similarly well.

We perform the ablation study of Reformer models on the
IWSLT14 De-En validation set. According to Table 3, we
find that dropout 1/2d did better regularize our model with
0.7 BLEU point improvement. With the same amount of pa-
rameters, adding PreNet achieves comparable performance
but nearly 50% faster than the one without PreNet in de-
coding, justifying that Reformer-fast did better trade-off the
effectiveness and efficiency than Reformer-base.

In the scaling experiments, we obtain L′
l = 0.01063 and

L′
w = 0.01069 by picking ε = 1, which implies that depth

and width are of similar importance to Reformer-fast. Solv-
ing Eq. (11) under β = 2 gives the approximate solution of
adding 2 layers and 1/2 hidden size. Table 4 shows the test
set performances after applying the resulting scaling strat-
egy. We observe that our scaling approach indeed generates
a stronger model with better generalization ability, which
outperforms the SOTA baseline by 0.7/2 BLEU points in the
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Figure 3: Length statistics.

De-En/Zh-En translation with only ∼50% parameters.

Analysis

We investigate the effectiveness of the proposed two Re-
former variants. The left of Figure. 3 demonstrates the ra-
tio of the translations lengths to the references lengths in
various systems. We observe that Reformer models gener-
ate translations with more appropriate lengths than the base-
line, i.e., less likely to have under-translation. Interestingly,
Reformer-base has higher length ratio than the others, im-
plying it tends to generate longer translations. The right of
Figure. 3 shows the BLEU score of translations under source
sentences of different lengths. Reformer models outperform
the baseline the most in long sentences, which implies that
they better capture the long-term dependencies.

In addition to the length perspective, we provide a series
of accuracy statistics for the analysis. According to the left
of Figure. 4, we find that Reformer models have higher pre-
diction accuracy than the baseline over all target positions
within sentences, especially for the distant ones. This obser-
vation is on par with the one in the right of Figure. 3 that Re-
former outperforms Transformer the most in long sequences.
The right of Figure. 4 presents how systems behave on tar-
get tokens of different occurrence frequencies. An interest-
ing phenomenon is that Reformer predicts low-frequency to-
kens more accurate than Transformer, which means that it
exploits the context better to infer rare tokens.

Moreover, we illustrate an example of separable atten-
tion in Figure. 5. The left part is the source attentions of
the source token “.” to the other ones given different tar-
get tokens. These distributions vary when the target token
changed, as opposed to a single fixed distribution in the
Transformer encoder self-attention. The right part is the tar-
get attentions of “fine” to previous target tokens given dif-
ferent source tokens. Each source token has its own distribu-
tion and it differs from each other, contrary to a single static
distribution in the Transformer decoder self-attention. This
suggests that Reformer passes more information through
more channels.
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Figure 5: Attention (“wǒ hěn hǎo .” → “I am fine .”).

Related Work

The problem of modelling the interaction in the machine
translation systems has long been discussed for years. SMT
systems explicitly represent the alignment (Koehn 2009),
which directly account for one type of the interaction be-
tween any two source and target units. For NMT models, the
interaction is only partially modelled via the attention, as it
is restricted to one sequence rather than the cartesian prod-
uct of two sequences. Recent works attempt to alleviate this
issue through the joint representation. Kalchbrenner, Dani-
helka, and Graves (2015) extends LSTM from one dimen-
sion to multi-dimensions and Bahar, Brix, and Ney (2018)
uses a two dimensions version to iterate through the joint
representation. Perhaps the most related work is the perva-
sive attention model (Elbayad, Besacier, and Verbeek 2018).
They first construct a joint representation from the source
and target embedding, then stack several convolution layers
to produce the final predictions. Our network is also built
on top of the joint representation, but each layer can access
to any source or target token in a path with the minimum
O(1) operation, compared to O(n) for the 2D LSTM and
O(logk(n)) for the pervasive attention, where n is the se-
quence length and k is the kernel size of the convolution.

Conclusion

We proposed two attention-based networks that use the
joint representation to model the interaction. These mod-
els achieved significant improvements over four translation
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tasks, including the small and large scale ones. Despite their
successes, we expect more future work on this type of mod-
els as they are still in a primitive form.
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