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Abstract

We study the problem of generating a summary for a given
sentence. Existing researches on abstractive sentence sum-
marization ignore that keywords in the input sentence pro-
vide significant clues for valuable content, and humans tend
to write summaries covering these keywords. In this paper,
we propose an abstractive sentence summarization method
by applying guidance signals of keywords to both the en-
coder and the decoder in the sequence-to-sequence model. A
multi-task learning framework is adopted to jointly learn to
extract keywords and generate a summary for the input sen-
tence. We apply keywords-guided selective encoding strate-
gies to filter source information by investigating the inter-
actions between the input sentence and the keywords. We
extend pointer-generator network by a dual-attention and a
dual-copy mechanism, which can integrate the semantics of
the input sentence and the keywords, and copy words from
both the input sentence and the keywords. We demonstrate
that multi-task learning and keywords-oriented guidance fa-
cilitate sentence summarization task, achieving better perfor-
mance than the competitive models on the English Gigaword
sentence summarization dataset.

Introduction

Sentence summarization is a task that creates a condensed
version of a long sentence1. Different from extractive meth-
ods (Cheng and Lapata 2016; Jadhav and Rajan 2018;
Dong et al. 2018; Zhang et al. 2018), which select a subset
of text units in the original text to form the summary, ab-
stractive methods (Rush, Chopra, and Weston 2015; Takase
et al. 2016; Chen et al. 2016; See, Liu, and Manning 2017;
Tan, Wan, and Xiao 2017; Zhou et al. 2017; Narayan,
Cohen, and Lapata 2018; Lebanoff, Song, and Liu 2018;
Zhu et al. 2019) can generate novel words not present in the
input. Compared with extractive methods, abstractive sum-
marization is much closer to the way human make a sum-
mary, while it is more challenging. Intuitively, some impor-
tant words (a.k.a. keywords) in the original sentence pro-
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1For sentence compression task (Clarke 2008), the word of the
output must be in the input, while the vocabulary for sentence sum-
marization is not constrained.

Observation:
Input sentence: France and Germany called on world leaders 

Monday to take rapid action to press for the closure of Ukraine 's 

Chernobyl nuclear plant , site of the world 's worst ever nuclear 

disaster .

Reference summary: World leaders urged to back Chernobyl 

closure plan .

Solution:
Step1. Extracting keywords: world leaders closure Chernobyl 

Step2. Generating summary guided by the keywords: World 

leaders called for action on Chernobyl closure .

Figure 1: The overlapping keywords (marked in red) be-
tween the input sentence and the reference summary cover
the main ideas of the input sentence. Our motivation is to
generate summary guided by the keywords extracted from
the input sentence.

vide significant clues for the main points about the sentence.
Humans tend to write summaries containing these keywords
and then perform necessary modifications to ensure the flu-
ency and grammatically correctness. Thus, we believe that it
will be easier for a machine to generate a summary with the
help of keywords. Existing work has not explored the effec-
tiveness of keywords for sentence summarization task, and
our work focuses on it.

Given a pair of input sentence and reference summary,
we can roughly take the overlapping words (except for stop-
words) as the keywords. As shown in Figure 1, the overlap-
ping words cover the gist of the input. For example, the key-
words “closure” and “Chernobyl” can guide us to focus on
the part “closure of Ukraine ’s Chernobyl nuclear plant” of
the original sentence, which is highly related to “Chernobyl
closure plan” in the summary. This phenomenon is common
for sentence summarization. In the Gigaword sentence sum-
marization dataset (Rush, Chopra, and Weston 2015), over
half of the words in the summary are presented in the source
sentence.

Existing researches show that keywords are beneficial
for extractive summarization (Saggion and Lapalme 2002;
Zhang, Zincir-Heywood, and Milios 2004; Wang and Cardie
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2013). They point out that keywords compose the main
body of the sentence, which are regarded as the indicators
for important sentence selection. On the other hand, key-
words are proved useful for decoding process in abstrac-
tive document-level summarization task (Li et al. 2018a;
Gehrmann, Deng, and Rush 2018). We argue that keywords
can point out valuable content in the input sentence, which
can guide the summarizer to capture the gist of the input in
the process of both encoding and decoding.

A prerequisite for our model is the keywords of the in-
put sentence. For training, we can directly use the overlap-
ping words between the input sentence and the reference
summary as the ground-truth keywords, while the ground-
truth keywords are not available for testing. Consequently, a
keyword extractor is required. Sentence summarization and
keyword extraction both aim to mine the primary ideas of
the input text but with different forms of output. Sentence
summarization aims to express the main meanings of the in-
put with a complete sentence, while keyword extraction is to
select the important words from the input. Thus, these two
tasks both require the capacity of the encoder to recognize
the crucial text fragments in the source sentence. Based on
this, we adopt a multi-task learning framework to model sen-
tence summarization and keyword extraction jointly, which
is expected to be beneficial for both tasks. Then we explore
the effectiveness of the keywords for sentence summariza-
tion task through following three strategies. We first ap-
ply keywords-guided selective encoding strategies to filter
source information, and then we dynamically integrate the
semantics of the input sentence and the keywords to build
context representation via dual-attention. Furthermore, we
extend the copy mechanism to a dual-copy mode that can
copy words from both the input sentence and the keywords.
The framework of our model is shown in Figure 2.

Our main contributions are as follows:

• We propose an abstractive sentence summarization
method guided by the keywords in the original sentence.
• Our encoder builds an optimized latent representation by

keywords-guided selective encoding.
• Our decoder dynamically combines the information of

the original sentence and the keywords via dual-attention,
and we propose a dual-copy mechanism which facilitates
copying words from both the input sentence and the key-
words.
• We achieve significantly better performance than the com-

petitive methods on the English Gigaword dataset.

Related Work

Abstractive Text Summarization

Seq2seq model is the dominating framework for abstrac-
tive text summarization. Rush, Chopra, and Weston (2015)
are the first to apply the seq2seq model to abstractive sen-
tence summarization. They propose an attentive CNN en-
coder and a neural network language model (Bengio et al.
2003) decoder. Chopra, Auli, and Rush (2016) and Nalla-
pati et al. (2016) further extend the RNN-based summa-
rization model. Gu et al. (2016), Zeng et al. (2016) and
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Figure 2: The framework of our model with co-selective
encoding. During training, a BiLSTM reads the original
sentence (x1, x2, · · · , xn) and the ground-truth keywords
(k1, k2, · · · , km) into the first-level hidden states hr

i and
hk
i . A jointly trained keyword extractor takes hr

i as the in-
put to predict whether the input word is a keyword or not.
Co-selective encoding layer builds the second-level hidden
states hr′

i and hk′
i . Then the summary is generated via dual-

attention and dual-copy for both the original sentence and
the keyword sequence. During testing, the ground-truth key-
words are replaced by the keywords predicted by our trained
keyword extractor.

Gulcehre et al. (2016) introduce a copy mechanism into
seq2seq learning. See, Liu, and Manning (2017) incorporate
the pointer-generator model with the coverage mechanism.
Zhou et al. (2017) employ a selective encoding mechanism
to filter secondary information. Tan, Wan, and Xiao (2017)
propose a graph-based attention to tackle document-level
summarization. Cao et al. (2018) and Li et al. (2018b) solve
the problem of fake facts in a summary.

Keywords-Guided Summarization

Keywords have been proved beneficial for extractive text
summarization systems. Zhang, Zincir-Heywood, and Mil-
ios (2004) extract the most significant sentences based on
the density of keywords. Wang and Cardie (2013) train a
classifier to identify summary-worthy phrases and then ap-
ply a heuristic strategy to rank the sentences for the abstract.
Wan, Yang, and Xiao (2007) attempt to use a reinforce-
ment approach to extract keywords and summarize simulta-
neously, supposing that important sentences usually contain
keywords and keywords are also usually seen in important
sentences. Recently, keywords have been used in abstrac-
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tive document-level summarization task. Li et al. (2018a)
use the keywords to calculate attention distribution and copy
probability. Gehrmann, Deng, and Rush (2018) propose a
content selector to restrict the summarization model to copy
phrases from the source document. Above-mentioned work
focuses on enhancing the decoder. We believe that keywords
can eliminate the redundant information in the source, and
thus, we propose keywords-guided selective mechanisms to
improve the source encoding representations. Besides, our
decoder can dynamically combine the information of the in-
put sentence and the keywords to generate summaries.

Our Proposed Model

Overview

The input of sentence summarization task is a long sentence,
and the output is a condensed summary. Our hypothesis for
this task is that the keywords can provide essential clues for
the gist of the input sentence. The standard seq2seq model
takes into account of all source words, and attention mech-
anism may work as a soft keyword extractor. We propose a
novel pointer-generator-based abstractive sentence summa-
rization method incorporating a keyword extractor, which
can explicitly point out the valuable content of the input sen-
tence.

A prerequisite for our model is the keywords for the input
sentence. For training, we take the words appearing both in
the input sentence and the reference summary as the ground-
truth keywords. To acquire the keywords for testing, we train
a keyword extractor by multi-task learning (MTL) with sum-
marization model. The encoder read the input sentence into
a latent representation sequence, and a softmax layer over
latent representation predicts whether a word is a keyword
or not. Our summarization model consists of three major
parts: an encoder with selective encoding strategy, a gener-
ator combining context information of the original sentence
and the keywords via dual-attention, and a pointer copying
words from both the original sentence and the keywords via
dual-copy.

Here are the main steps of our model.

• Step 1. Extracting overlapping words between the input
and the reference as the ground-truth keywords.

• Step 2. Multi-task learning: generating summary using
the input sentence and the ground-truth keywords; train-
ing the keyword extractor.

• Step 3. Generating keywords using the trained keywords
extractor for the input sentence in the training set and
then fine-tuning the sentence summarizer using the origi-
nal sentence and the predicted keywords.

• Step 4. During testing, first generating keywords using
the trained keywords extractor for the input sentence and
then producing the summary using the input sentence and
the predicted keywords.

Ground-Truth Keyword Generation

Standard Gigaword dataset for sentence summarization task
does not provide the keywords for the input sentence. To

train our keyword extractor and keywords-guided summa-
rizer, we roughly regard the overlapping words (stop-words
are excluded) between the input sentence and the reference
summary as the ground-truth keywords (sentence-summary
pair in the Gigaword dataset is bound to have overlapping
non-stop-words).

Shared Text Encoder

The BiLSTM encodes input text forwardly and back-
wardly to generate two sequences of the hidden states:
(
−→
h 1, · · · ,−→h n) and (

←−
h 1, · · · ,←−h n), respectively, where:

−→
h i = LSTM(E[xi],

−→
h i−1) (1)

←−
h i = LSTM(E[xi],

←−
h i+1) (2)

E[xi] is the embedding for word xi. The final hidden rep-
resentation hi is the concatenation of the forward and back-
ward vectors: hi = [

−→
h i;
←−
h i].

Sentence summarization task and keyword extraction task
are very similar in the sense that both aim to select impor-
tant information contained in the input sentence. The output
of sentence summarization is a complete sentence, while the
output for keyword extraction is a set of words. It requires
different modules to generate corresponding output for vari-
ous tasks, while for the encoders, we believe they can benefit
from sharing parameters to promote the capacity of captur-
ing the gist of the input text. To this end, we use a shared
text encoder to generate hidden state sequences for both the
original sentence and the keyword sequence following Equa-
tion 1 and 2. Hereafter, hr

i and hk
i denote the hidden repre-

sentations for the input sentence and the keywords, respec-
tively.

Keyword Extraction

For keyword extraction task, the output layer is a softmax
classifier over the hidden representation hr

i for each word in
the sentence. The classifier predicts one of the following two
labels: ‘1’ for the keywords, and ‘0’ for the non-keywords.

We also try BiLSTM-CRF model (Huang, Xu, and Yu
2015) which extends the BiLSTM model with a CRF layer
allowing the model to use sequence-level tag information for
sequence prediction, but our experimental results show that
BiLSTM-CRF model leads to a similar performance (0.2%
higher accuracy) with around 20% more trainable param-
eters and doubled training time compared with BiLSTM-
softmax model.

Keywords-Guided Selective Encoding

We are inspired by the work of Zhou et al. (2017) on a new
paradigm to encode sentences. Specifically, they propose a
selective encoding mechanism to model the selection pro-
cess for sentence summarization. A selective gate is applied
to hr

i to construct a second-level tailored representation hr′
i .

The selective gate in their model is expected to maintain
the important information from an encoded sentence by ex-
ploring the semantic relationship between every word in the
input sentence and the whole sentence. This kind of selec-
tive encoding strategy can be referred to as self-selective en-
coding because the selective signal comes from the original
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sentence itself. Compared with the original sentence, key-
words contain more condensed semantics, and thus, the se-
lective signal could be more powerful. Unlike self-selective,
we leverage information of the keywords to construct the se-
lective gate. We propose two keywords-guided selective en-
coding strategies: keywords-selective which builds hr′

i for
the sentence guided by the keywords and co-selective en-
coding which builds hr′

i and hk′
i for the input sentence and

the keywords, respectively. More details are as follows.

Self-Selective Encoding A self-selective gate vector for
each hr

i is computed as follows:

selfGatesi = σ(Wrh
r
i + Ura

r) (3)

where σ denotes the sigmoid function, and ar = [
−→
hr
n;
←−
hr
1]

is the sentence representation. Then, hr′
i is computed as fol-

lows:

hr′
i = hr

i � selfGatesi (4)

where � is element-wise multiplication.

Keywords-Selective Encoding Keywords-selective gate
uses keywords to guide the encoding of the original sentence
as follows:

keyGateri = σ(Wkh
r
i + Uka

k) (5)

where ak = [
−→
hk
n;
←−
hk
1 ] is the keyword sequence representa-

tion. Then, hr′
i is computed as follows:

hr′
i = hr

i � keyGateri (6)

Co-Selective Encoding Beyond selecting encoding for
the sentence, we argue that each keyword contributes dif-
ferently to the summarization task, and thus, we propose a
co-selective encoding to select information for both the sen-
tence and the keywords jointly.

coGateri = σ(Wph
r
i + Upa

k) (7)

coGateki = σ(Wqh
k
i + Uqa

r) (8)

Then, hr′
i and hk′

i are computed as follows:

hr′
i = hr

i � coGateri (9)

hk′
i = hk

i � coGateki (10)

Dual-Attention Generator

Pointer-generator network is a seq2seq model with copy
mechanism, which predicts words based on probability dis-
tributions from the generator and the pointer (Vinyals, Fortu-
nato, and Jaitly 2015). The generator applies a dual-attention
mechanism to generate the context vector based on attention
over both the source sentence and the extracted keywords.

We use an LSTM with attention as the decoder to pro-
duce the output summary. At each timestep t, LSTM reads
the previous decoder state st−1, predicted output yt−1, and
context vector ct−1 to compute the current decoder state st
as follows:

st = LSTM(st−1, yt−1, ct) (11)

The decoder’s hidden state s0 is initialized as follows:

s0 = tanh(Wh[
−→
hr′
n ;
←−
hr′
1 ]) (12)

The input for our model includes the original sentence and
the keywords, and thus we first construct the context vector
for the sentence and the keywords with the attention mecha-
nism. Then we obtain the final context vector ct.

We compute the sentence context vector crt as follows:

crt =

N∑

i=1

αr
t,ih

r′
i (13)

where each vector is weighted by the attention weight αr
t,i,

as calculated in Equations 14 and 15 as follows:

ert,i = vTa tanh(Uast−1 + Wah
r′
i ) (14)

αr
t,i =

exp(ert,i)∑N
j=1 exp(e

r
t,j)

(15)

Similarly, the keyword attention αk
t,i and keyword context

vector ckt can be calculated using hk′
i and st−1. Next, we ap-

ply three approaches to fuse crt and ckt into the final context
vector ct, including concatenation fusion, gated fusion, and
hierarchical fusion.

Concatenation Fusion This fusion method simply con-
catenates two context vectors:

ct = [crt ; c
k
t ] (16)

Gated Fusion We first compute a fusion gate vector using
two context vectors and then combine context vectors by the
gate:

gt = σ(Wgc
r
t + Ugc

k
t ) (17)

ct = gt � crt + (1− gt)� ckt (18)

Hierarchical Fusion Gated fusion combines the two con-
text vectors with the gate related to the interaction between
them. Intuitively, the fusion process should reflect the rel-
ative informativeness of the sentence and the keywords to-
ward the decoder state st−1. We adopt a hierarchical atten-
tion mechanism which aims to establish a target-oriented
bond between the original sentence and the keywords as fol-
lows:

βr
t = σ(Uβst−1 + Wβc

r
t ) (19)

βk
t = σ(Uβst−1 + Wβc

k
t ) (20)

ct = βr
t c

r
t + βk

t c
k
t (21)

where βr
t and βk

t are two scalars.
Then, we can calculate probability distribution Pgen over

all words in the target vocabulary is calculated as follows:

Pgen(w) = softmax(Whst + Vhct + bh) (22)
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Dual-Copy Pointer

A general pointer copies a word w from the source via point-
ing:

Pcopy(w) =
∑

i:xi=w
αt,i (23)

We propose a dual-copy pointer that copies a word w from
both the source sequence and keyword sequence as follows:

Pcopys(w) =
∑

i:xi=w
αr
t,i (24)

Pcopyk(w) =
∑

i:ki=w
αk
t,i (25)

(26)

The final distribution is a weighted sum of the generation
distribution and dual-copy distribution:

λt = sigmoid(wT
a ct + uT

g st + vTg yt−1 + bg) (27)

P (w) = λtPgen(w) +
1

2
(1− λt)(Pcopys(w) + Pcopyk(w))

(28)

The loss function Lt for each timestep t is the negative
log-likelihood of the ground-truth target word yt :

Lt = −logP (yt) (29)

Multi-Task Learning

In our MTL setup, summary generation task is much more
complicated than keyword extraction, leading to different
learning difficulties and convergence rates. Therefore, sum-
mary generation is regarded as the central task and keyword
extraction as the auxiliary task. We optimize the two tasks
alternatively during training until convergence. Let γ be the
number of mini-batches of training for keyword extracting
after 100 mini-batches of training for sentence summariza-
tion (Pasunuru, Guo, and Bansal 2017). We adopt γ = 10 in
our experiments.

Fine-Tuning with Generated Keywords

Our model is trained with the ground-truth keywords, in-
stead of using the results of our keyword detector, while the
ground-truth keywords cannot be obtained during testing.
Using ground-truth keywords causes it to converge faster,
but the mismatching between the processes of training and
testing may exhibit instability. To solve this problem, we
propose to fine-tune our model with the predicted keywords
generated by our keyword detector as the input after the
training process converges using ground-truth keywords.

Experiment

Dataset

We conduct experiments on the English Gigaword dataset,
which has about 3.8 million training sentence-summary
pairs. We use 8, 000 pairs as the validation set and 2, 000
pairs as the test set, provided by Zhou et al. (2017).

Implementation Details

We set the size of word embedding and LSTM hidden state
to 300 and 512, respectively. Adam optimizer is applied with
the learning rate of 0.0005, momentum parameters β1 = 0.9
and β1 = 0.999, and ε = 10−8. We use dropout (Sri-
vastava et al. 2014) with probability of 0.2 and gradient
clipping (Pascanu, Mikolov, and Bengio 2013) with range
[−1, 1]. The mini-batch size is set to 64. At training time, we
test ROUGE-2 (Lin 2004) F1 score on the validation set for
every 2,000 batches, and we halve the learning rate if model
performance drops. We use the halved learning rate for fine-
tuning. At test time, we use beam search with a beam size of
10 to generate the summary. We report ROUGE F1 scores.

Comparative Methods

ABS. Rush, Chopra, and Weston (2015) use an attentive
CNN encoder and neural network language model de-
coder to summarize a sentence.

SEASS. Zhou et al. (2017) present a selective encoding
model to control the information flow from the encoder
to the decoder.

PG. See, Liu, and Manning (2017) introduce a hybrid
pointer-generator model that can copy words from the
source sentence via pointing.

KIGN. Li et al. (2018a) adopt key information to guide the
summarization generation. They use the key information
representation as the extra input to calculate the attention
distribution and the copy probability in the pointer mech-
anism.

Bottom-up. Gehrmann, Deng, and Rush (2018) employ a
content selection model to identify important phrases in
the input document.

Our models. We first take a seq2seq (S2S) model (Bah-
danau, Cho, and Bengio 2015) as the baseline model
with different input: the original sentence only (S2S-
Sentence) , the keywords only (S2S-Keywords), a
new sentence merging the original sentence and key-
words (S2S-Sentence&Keywords). We compare dif-
ferent selective-based models, including Self-Selective,
Keywords-Selective, and Co-Selective. We also report
the results for three approaches to fuse the context of the
original sentence and keywords, including Concatena-
tion fusion, Gated fusion, and Hierarchical fusion. Fi-
nally, we conduct experiment with PG and our proposed
dual-copy pointer-generator (DualPG).

Main Results

Table 1 shows that our proposed models perform better than
the models without keyword guidance. Among our mod-
els with different selective mechanisms, the experimental
results are improved steadily as more keyword guidance
signals added into the models, from Self-selective to Co-
Selective. The models with Hierarchical fusion exhibit ad-
vantages over those with other fusions. The model with
Co-Selective encoding, Hierarchical fusion decoding, and
DualCopy obtains the highest ROUGE score, which out-
performs S2S-Sentence absolute 2.05% ROUGE-1 score,
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Table 1: Main results (%). Concat, Gated, and Hier denote
Concatenation, Gated, and Hierarchical Fusion, respec-
tively. Our Co-Selective+Hier+DualPG model performs
significantly better than other baselines by the 95% confi-
dence interval in the ROUGE script.

Method R-1 R-2 R-L

ABS 37.41 15.87 34.70
SEASS 46.86 24.58 43.53
PG 46.97 24.63 43.66
KIGN 46.18 23.93 43.44
Bottom-up 45.80 23.61 42.54

S2S-Sentence 45.09 23.58 42.37
S2S-Keywords 44.85 20.54 41.61
S2S-Sentence&Keywords 46.14 24.07 43.30

Self- Concat 46.23 24.13 43.26
Selective Gated 46.44 24.31 43.44

Hier 46.51 24.32 43.45

Keywords- Concat 46.32 24.11 43.38
Selective Gated 46.70 24.48 43.59

Hier 46.72 24.50 43.81

Co- Concat 46.53 24.15 43.24
Selective Gated 46.71 24.53 43.63

Hier 46.80 24.75 43.83

Co- Concat+PG 46.68 24.33 43.31
Selective Gated+PG 46.91 24.61 43.71

Hier+PG 46.93 24.83 43.92

Co- Concat+DualPG 47.05 24.39 43.77
Selective Gated+DualPG 47.13 24.87 44.34

Hier+DualPG 47.14 25.06 44.39

1.48% ROUGE-2 score, and 2.02% ROUGE-L score. S2S-
Keywords with only the keywords as the input degrades
the performance, showing that missing information from the
keywords is also necessary.

SEASS brings in an excellent promotion for sentence
summarization task with the help of implicit emphases on
the keywords, and our best model achieves a better per-
formance with explicit use of the keywords. KIGN and
Bottom-up are keywords-based document summarization
models that mainly focus on improving the decoder, and
we apply them to sentence summarization task. Similar to
S2S-Keywords, Bottom-up also blocks out the words de-
tected as non-keywords with high probabilities, which also
leads to unsatisfactory results. KIGN is proposed to use the
keywords selected from the input document using unsuper-
vised TextRank algorithm (Mihalcea and Tarau 2004) based
on words co-occurrence relation, which may not be appro-
priate for sentence-level keyword extraction (Table 4 shows
that keyword extraction performance for TextRank is quite
poor compared with our model). Thus, we further imple-
ment KIGN with keywords extracted by our model, and the
results are: 46.84% for ROUGE-1, 24.33% for ROUGE-2,
and 43.98% for ROUGE-L, which are better than those of
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Figure 3: Results of Co-Selective models with MTL and
two-stage learning (TSL) for summarization task.
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Figure 4: Results of Co-Selective models with (w/) and with-
out (w/o) fine-tuning (FT) for summarization task.

the original KIGN model due to mitigating negative impact
of keyword extraction errors, while this model still performs
worse than ours. The comparison with existing keywords-
based models demonstrates the effectiveness of the key-
words to enhance both the encoder and the decoder.

Analysis and Discussion

To get better insights into our model, we conduct further
analysis on (1) upper bound performance, (2) multi-task
learning, (3) fine-tuning, and (4) selective encoding mech-
anism.

Upper Bound Performance

We explore the upper bound performance for our keyword-
guided sentence summarization model. We do this by di-
rectly using the ground-truth keywords for both training and

Table 2: Upper bound performances with the ground-truth
keywords for both training and testing.

Method R-1 R-2 R-L

S2S-Sentence (baseline) 45.09 23.58 42.37
S2S-Keywords 65.00 37.29 58.96
S2S-Sentence&Keywords 66.35 41.34 61.63

KIGN 66.00 41.19 60.66
Bottom-up 65.11 38.12 59.39

Co- Concat+DualPG 66.13 41.55 60.47
Selective Gated+DualPG 67.35 42.82 61.85

Hier+DualPG 67.61 42.94 62.07
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Table 3: Heat maps for our model with co-selective and self-selective encoding.

Self-selective gate for input sentence about #,### people gathered saturday in a central prague
park to support the legalization of marijuana

Summary generated by self-selective model about #,### people gathered in central prague

Co-selective gate for input sentence about #,### people gathered saturday in a central prague
park to support the legalization of marijuana

Co-selective gate for keywords people prague support legalization marijuana
Summary generated by co-selective model people gather to support legalization of marijuana

Reference summary thousand gather to support legalization of marijuana

Table 4: Comparison of MTL and two-stage learning for
keyword extraction. Accuracy is for all the words, and F1
score is for the keywords.

Method Accuracy F1

TextRank 73.25 31.45

Two-Stage Learning 84.37 59.35

MTL with Co-selective Concat 85.34 60.11
Encoding Gate 85.75 60.24

Hier 85.81 60.27

Table 5: Manual evaluation.
Method Readability Informativeness

S2S-Sentence 3.02 3.16
Co-Select+Hier 3.36 3.47
Co-Select+Hier+DualPG 3.61 3.79
Reference 4.17 4.54

testing. In this way, the keyword extraction error is elimi-
nated. The results are shown in Table 2. With this oracle set-
ting, ROUGE score improvements are more than 20% over
seq2seq model. Although the improvement is impressive, it
is based on the premise that we know which words should
be included in the summary in advance. Actually, choosing
a golden set of keywords may be difficult even for humans.
We believe this experiment holds out a promising prospect
for further development of sentence summarization task.

MTL v.s. Two-Stage Learning

MTL involves sharing parameters between related tasks,
whereby each task can benefit from extra information on
other tasks in the training process. We compare the per-
formance for MTL and two-stage learning (TSL, learning
two tasks independently). Figure 3 shows the results for sen-
tence summarization, and Table 4 shows the results for key-
word extraction. Our models with MTL achieve better per-
formances than those with TSL, proving that summarization
and keyword extraction can benefit from each other. In addi-
tion, we also train our summarizer by TSL directly with the
predicted keywords as input (without pre-training with the

ground-truth keywords), and it drops about 1% ROUGE-2
score.

Effectiveness of Fine-tuning

In this section, we evaluate the Co-Selective summarization
models with and without fine-tuning. The results in Figure 4
show that fine-tuning steadily enhances the performance,
improving absolute ROUGE-2 score about 1% for Hierar-
chical fusion.

Manual Evaluation

We employ six graduate students to evaluate readability and
informativeness of summaries generated by different meth-
ods with a score from 1 (worst) to 5 (best). Each participant
is provided 100 sentences randomly sampled from the test
set. As shown in Table 5, our method with keyword guid-
ance achieves higher scores than other methods except for
the reference.

Selective Encoding Visualization

Following Zhou et al. (2017), we visualize the selective gate
values with salience heat maps shown in Table 3. For our
model with co-selective gate, the important words are se-
lected correctly by the aid of keywords, while the output of
the model with self-selective gate is mismatched with the
reference summary because of inaccurate selective values.

Conclusion

This paper addresses the sentence summarization task,
namely, how to transform a sentence into a short-length sum-
mary. Our proposed model can take advantage of keywords
achieving better performance than the competitive methods.
We adopt a multi-task learning framework to extract key-
words and generate summaries jointly. We design keywords-
guided selective encoding strategies to select important in-
formation during encoding. We adopt a dual-attention struc-
ture to dynamically integrate context information of the in-
put sentence and the keywords. We propose a dual-copy
mechanism to copy the words from the input sentence and
the keywords. Experimental results on standard dataset ver-
ify the effectiveness of keywords for sentence summariza-
tion task. Oracle testing with ground-truth keywords leads to
absolute 20% ROUGE-2 score improvement over baseline,
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indicating a promising future direction based on keyword
extraction for sentence summarization task.
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