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Abstract

For conversational Al and virtual assistants to communicate
with humans in a realistic way, they must exhibit human
characteristics such as expression of emotion and person-
ality. Current attempts toward constructing human-like dia-
logue agents have presented significant difficulties. We pro-
pose Human Level Attributes (HLAs) based on tropes as the
basis of a method for learning dialogue agents that can imi-
tate the personalities of fictional characters. Tropes are char-
acteristics of fictional personalities that are observed recur-
rently and determined by viewers’ impressions. By combin-
ing detailed HLA data with dialogue data for specific charac-
ters, we present a dataset, HLA-Chat, that models character
profiles and gives dialogue agents the ability to learn charac-
ters’ language styles through their HLAs. We then introduce
a three-component system, ALOHA (which stands for Artifi-
cial Learning of Human Attributes), that combines character
space mapping, character community detection, and language
style retrieval to build a character (or personality) specific
language model. Our preliminary experiments demonstrate
that two variations of ALOHA, combined with our proposed
dataset, can outperform baseline models at identifying the
correct dialogue responses of chosen target characters, and
are stable regardless of the character’s identity, the genre of
the show, and the context of the dialogue.

1 Introduction

Attempts toward constructing human-like dialogue agents
have met significant difficulties, such as maintaining conver-
sation consistency (Zhang et al. 2018). This is largely due to
inabilities of dialogue agents to engage the user emotionally
because of an inconsistent personality (Rashkin et al. 2019).
Many agents use personality models that attempt to map per-
sonality attributes into lower dimensional spaces (e.g. the
Big Five (John and Srivastava 1999)). However, these repre-
sent human personality at a very high-level and lack depth.
They prohibit the ability to link specific and detailed per-
sonality traits to characters, and to construct large datasets
where dialogue is traceable back to these traits.
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All right, based on a cursory reading, it doesn't look
like you have much of a case, Sheldon.

@ Okay. Don't really know where we go from here.

Omnidisciplinary
Scientist

Green Eyed
Epiphany

Insufferable Genius N f'
AntiHero - ----- g |

Neat Freak

@ 1 suggest we treat our relationship as if it were a
crashed computer and restore it to the last point we
both agree it worked.

. @ Sheldon, relax.

How can | relax? My nervous system is being
..302 Attributes stretched out like the strings of a harp and plucked by

More holes and birds and wind and the low-hanging scrotum
of the difficult-to-evict Professor.

Sheldon Cooper
.* “The Big Bang Theory"

Cultural Rebel

Book Dumb

Figure 1: Example of a character and its associated HLAs
(tropes) on the left and dialogue lines on the right.

For this reason, we propose Human Level Attributes
(HLASs), which we define as characteristics of fictional char-
acters representative of their profile and identity. We base
HLAs on tropes collected from TV Tropes (tvtropes.org
2004), which are determined by viewers’ impressions of the
characters. See Figure 1 for an example. Based on the hy-
pothesis that profile and identity contribute effectively to
language style (Pennebaker and King 1999), we propose that
modeling conversation with HLAs is a means for construct-
ing a dialogue agent with stable human-like characteristics.
By collecting dialogues from a variety of characters along
with this HLA information, we present a dataset, HLA-Chat,
with novel labelling of this dialogue data traceable back to
both its context and associated human-like qualities.

We also propose a system called ALOHA (Artificial
Learning of Human Attributes) as a novel method of incor-
porating HL As into dialogue agents. ALOHA maps charac-
ters to a latent space based on their HLAs, determines which
are most similar in profile and identity, and recovers lan-
guage styles of specific characters. We test the performance
of ALOHA in character language style recovery against four
baselines, demonstrating outperformance and system stabil-
ity. We also run a human evaluation supporting our results.

Our major contributions are: (1) We propose HLAs as per-
sonality aspects of fictional characters from the audience’s
perspective based on tropes; (2) We provide a large dialogue
dataset, HLA-Chat, traceable back to both its context and
associated human-like attributes; (3) We propose a system



called ALOHA that is able to recommend responses linked
to specific characters. We demonstrate that ALOHA, com-
bined with the proposed dataset, HLA-Chat, outperforms
baselines. ALOHA also shows stable performance regard-
less of the character’s identity, genre of the show, and con-
text of the dialogue. We release all of ALOHA’s data and
code along with additional information for reproduction.'

2 Related Work

Task completion chatbots (TCC), or task-oriented chatbots,
are dialogue agents used to fulfill specific purposes, such
as helping customers book airline tickets, or a government
inquiry system. Examples include the AIML based chat-
bot (Satu, Parvez, and others 2015) and DIVA Framework
(Xuetao, Bouchet, and Sansonnet 2009). While TCC are low
cost, easily configurable, and readily available, they are re-
stricted to working well for particular domains and tasks.

Open-domain chatbots are more generic dialogue sys-
tems. An example is the Poly-encoder from Humeau et al.
(2019). It outperforms the Bi-encoder (Mazaré et al. 2018;
Dinan et al. 2018) and matches the performance of the
Cross-encoder (Wolf et al. 2019) while maintaining reason-
able computation time. It performs strongly on downstream
language understanding tasks involving pairwise compar-
isons, and demonstrates state-of-the-art results on the Con-
vAI2 challenge (Dinan et al. 2019). Feed Yourself (Han-
cock et al. 2019) is an open-domain dialogue agent with a
self-feeding model. When the conversation goes well, the
dialogue becomes part of the training data, and when the
conversation does not, the agent asks for feedback. Lastly,
Kvmemnn (Eric and Manning 2017) is a key-value mem-
ory network with a knowledge base that uses a key-value
retrieval mechanism to train over multiple domains simul-
taneously. We use all three of these models as baselines
for comparison. While these can handle a greater variety of
tasks, they do not respond with text that aligns with particu-
lar human-like characteristics.

Li et al. (2016) defines persona (composite of elements
of identity) as a possible solution at the word level, using
backpropagation to align responses via word embeddings.
Bartl and Spanakis (2017) uses sentence embeddings and a
retrieval model to achieve higher accuracy on dialogue con-
text. Liu et al. (2019) applies emotion states of sentences as
encodings to select appropriate responses. Pichl et al. (2018)
uses knowledge aggregation and hierarchy of sub-dialogues
for high user engagement. Mairesse and Walker (2007)’s
PERSONAGE focuses on generating language using the ex-
traversion personality trait of the Big Five. However, these
agents all represent personality at a high-level and lack de-
tailed human qualities. We model language styles through
HLAs which are much more detailed and specific. Hence,
the language styles we are recovering may likely capture ad-
ditional information.

"https://github.com/newpro/aloha-chatbot
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3 Methodology
3.1 Human Level Attributes (HLA)

We collect HLA data from TV Tropes (tvtropes.org 2004),
a knowledge-based website dedicated to pop culture, con-
taining information on characters from a variety of sources.
Similar to Wikipedia, its content is provided and edited col-
laboratively by a massive user-base. These attributes are de-
termined by human viewers and their impressions of the
characters, and are correlated with human-like characteris-
tics. Furthermore, many tropes include context information
(e.g. jealous girlfriend) versus high-level personality mod-
els such as the Big Five. We believe that TV Tropes is bet-
ter for our purpose of fictional character modeling than data
sources used in works such as Shuster et al. (2019) because
TV Tropes’ content providers are rewarded for correctly pro-
viding content through community acknowledgement.

TV Tropes defines tropes as attributes of storytelling that
the audience recognizes and understands. We use tropes as
HLAs to calculate correlations with specific target charac-
ters. We collect data from numerous characters from a va-
riety of TV shows, movies, and anime. We filter and keep
characters with at least five HLA, as those with fewer are not
complex enough to be correctly modeled due to reasons such
as lack of data. We end up eliminating 5.86% of total char-
acters, and end up with 45,821 characters and 12,815 unique
HLA, resulting in 945,519 total character-HLA pairs. Each
collected character has 20.64 HLAs on average. See Figure 1
for an example character and their HLAs.

3.2 Overall Task
Our task is the following, where ¢ denotes “target”:

Given a target character c; with HLA set H,, recover the
language style of c; without any dialogue of ¢; provided.

For example, if Sheldon Cooper from The Big Bang Theory
is ¢, then H; is the set of HLA on the left side of Figure 1.

We define the language style of a character as its diction,
tone, and speech patterns. It is a character specific language
model refined from a general language model. We must learn
to recover the language style of c¢; without its dialogue as
our objective is to imitate human-like qualities, and hence
the model must understand the language styles of characters
based on their traits. If we feed ¢;’s dialogue during training,
the model will likely not effectively learn to imitate language
styles based on HLAs, but based on the correlation between
text in the training and testing dialogues (Joshi et al. 2019).

We define character space as the character representa-
tions within the HLA latent space (see Figure 2), and the
set C' = {c1,ca, ..., ¢ } as the set of all characters. We de-
fine Observation (OBS) as the input that is fed into any di-
alogue model. This can be a single or multiple lines of di-
alogue along with any additional information. The goal of
the dialogue model is to find the best response to this OBS.
We show an example of our model’s responses imitating five
distinct characters in Table 1.

3.3 ALOHA

We propose a three-component system called ALOHA to
solve the task (see Figure 3). The first component, Charac-



Input Let us go to a party!

No chance, hot pants! 1'd rather die and kill all of you than party
for one more millisecond!

Whoa, whoa, whoa! I enjoy partying as much as the next fellow,
but this is Oktoberfest. Good day, sir!

Sheldon Cooper

Jean-Luc Picard

Monica Geller A boy-girl party?

Neelix, look, I appreciate your enthusiasm, but since I'm the only

Gil Grissom Klingon on board, there's really no point in throwing a party.

Marge Simpson | / think you cannot have a party. Your mother left me in charge.

Table 1: Interaction example using ALOHA-Poly.

Figure 2: t-SNE visualization of the character space gener-
ated by our Character Space Module (CSM) based on HLAs.

ter Space Module (CSM), generates the character space and
calculates confidence levels using singular value decompo-
sition (Sarwar et al. 2000) between characters c; (for j = 1
to n where j # t) and ¢; in the HLA-oriented neighborhood.

The second component, Character Community Module
(CCM), ranks the similarity between our target character c;
with any other character c; by the relative distance between
them in the character space.

The third component, Language Style Recovery Module
(LSRM), recovers the language style of ¢, without its dia-
logue by training the BERT bi-ranker model (Devlin et al.
2019) and Poly-encoder (Humeau et al. 2019) to rank re-
sponses from similar characters. This results in two varia-
tions of our system, ALOHA-BERT and ALOHA-Poly. Our
results demonstrate higher accuracy at retrieving ¢;’s ground
truth response. Our system is able to pick responses which
are correct both in context as well as character space.

Hence, the overall process for ALOHA works as follows.
First, given a set of characters, determine the character space
using the CSM. Next, given a specific target character, de-
termine the positive community and negative set of associ-
ated characters using the CCM. Lastly, using the positive
community and negative set determined above along with a
dialogue dataset, recover the language style of the target.
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Data scraped from
various internet sources

=" Dialogue | _
dataset

Language Style Recovery Module (LSRM) | Character HLA
dataset
Pre-trained open domain |

BERT model
| Dialogue candidates
T selected at random

Ground truth candidates

| | selected from positive

community, distractors
from negative set

Data scraped from
tvtropes.org

Character Space Module (CSM)

Create character
space and calculate
distances between
characters

7

Generate positive
and

Model training with
uniform character sampling

Model fine-tuned towards
target character with
negative character sampling

negative set of
characters

Character Community
Module (CCM)

Figure 3: Overall system architecture for ALOHA-BERT.

3.4 Character Space Module (CSM)

CSM learns how to rank characters. We can measure the in-
terdependencies between the HLA variables (Hu, Koren, and
Volinsky 2008) and rank the similarity between the TV show
characters. We use implicit feedback instead of neighbor-
hood models (e.g. cosine similarity) because it can compute
latent factors to transform both characters and HLAs into the
same latent space, making them directly comparable.

We define a matrix P that contains binary values, with
P,; = 1 if character v has HLA ¢ in our dataset, and
P, ; = 0 otherwise. We define a constant « that measures
our confidence in observing various character-HLA pairs as
positive. o controls how much the model penalizes the error
if the ground truth is P, ; = 1. If P, ; = 1 and the model
guesses incorrectly, we penalize by « times the loss. But if
P, ; = 0 and the model guesses a value greater than 0, we
do not penalize as « has no impact. This is because P, ; = 0
can either represent a true negative or be due to a lack of
data, and hence is less reliable for penalization. See Equa-
tion 1. We find that using o = 20 provides decent results.

We further define two dense vectors X, and Y;. We call
X, the “latent factors for character «”, and Y; the “latent
factors for HLA 7. The dot product of these two vectors pro-
duces a value (X!'Y;) that approximates P, ; (see Figure 4).
This is analogous to factoring the matrix P into two sepa-
rate matrices, where one contains the latent factors for char-
acters, and the other contains the latent factors for HLAs.
We find that X, and Y; being 36-dimensional produces de-
cent results. To bring Xg Y as close as possible to P, ;, we
minimize the following loss function using the Conjugate
Gradient Method (Takacs, Pilaszy, and Tikk 2011):

loss = > (aPu; — X Yi)* + A1Xal1? + [|YilP)

(D

The first term penalizes differences between the model’s pre-
diction (Xg Y;) and the actual value (P, ;). The second term
is an L2 regularizer to reduce overfitting. We find A = 100
provides decent results for 500 iterations (see Section 5.1).

3.5 Character Community Module (CCM)

CCM aims to divide characters (other than c;) into a posi-
tive community and a negative set. We define this positive
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Figure 4: Illustration of our Collaborative Filtering proce-
dure. Green check-marks indicate a character having an
HLA, and ‘X’ indicates otherwise. We randomly mask 30%
of this data for validation, as marked by the ‘?°.

community as characters that are densely connected inter-
nally to ¢; within the character space, and the negative set
as the remaining characters. We can then sample dialogue
from characters in the negative set to act as the distractors
(essentially negative samples) during LSRM training.

As community finding is an ill-defined problem (Fortu-
nato and Hric 2016), we choose to treat CCM as a simple
undirected, unweighted graph. We use the values learned in
the CSM for X, and Y; for various values of u and 7, which
approximate the matrix P. Similar to Hu, Koren, and Volin-
sky (2008), we can calculate the correlation between two
rows (and hence two characters).

We then employ a two-level connection representation by
ranking all characters against each other in terms of their
correlation with ¢;. For the first level, the set S is the
top 10% most highly correlated characters with ¢; out of the
45,820 total other characters we have HLA data for. For the
second level, for each character s; in S¥Z, we determine the
30 most heavily correlated characters with s; as set SPL.
The positive set SP°¢ are the characters present in at least 10
SPL sets. We call this value 10 the minimum frequency. All
other characters in our dialogue dataset make up the negative
set S™¢9. These act as our positive community and negative
set, respectively. See Figure 5 for an example.

3.6 Language Style Recovery Module (LSRM)

LSRM creates a dialogue agent that aligns with observed
characteristics of human characters by using the positive
character community and negative set determined in the
CCM, along with a dialogue dataset, to recover the language
style of ¢; without its dialogue. We use the BERT bi-ranker
model from the Facebook ParlAl framework (Miller et al.
2017) and the Poly-encoder (Humeau et al. 2019), where the
models have the ability to retrieve the best response out of 20
candidate responses. These are trained to produce LSRM-
BERT and LSRM-Poly, respectively. (Dinan et al. 2019;
Urbanek et al. 2019; Zhang et al. 2018) choose 20 candidate
responses, and for comparison purposes, we do the same.

BERT (Devlin et al. 2019) is first trained on massive
amounts of unlabeled text data. It jointly conditions on
text on both the left and right, which provides a deep bi-
directional representation of sentence inference. BERT is
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@ Positive Characters
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Figure 5: Illustration of the two-level connection represen-
tation procedure, using a minimum frequency of two. The
transparent red circle indicates the first level set (S¥'1),
while the blue ones indicate the sets SP%. The lines indicate
connections between the characters within the community
structure of ¢;.

proven to perform well on a wide range of tasks by sim-
ply fine-tuning on one additional layer. We are interested in
its ability to predict the next sentence, called Next Sentence
Prediction. We perform further fine-tuning on BERT for our
target character language style retrieval task to produce our
LSRM-BERT model by optimizing both the encoding layers
and the additional layer. We use BERT to create vector rep-
resentations for the OBS and for each candidate response.
By passing the first output of BERT’s 12 layers through an
additional linear layer, these representations can be obtained
as 768-dimensional sentence-level embeddings. It uses the
dot product between these embeddings to score candidate
responses and is trained using the ranking loss.

Poly-encoder (Humeau et al. 2019) is a transformer archi-
tecture that learns global rather than local level token fea-
tures to perform attention on. The model has state-of-the-art
accuracy on response retrieval on the Persona-Chat dataset.
As in the Bi-encoder, a given candidate response is first en-
coded into a vector. Then, softmax attention against multi-
ple context vectors encoded from the input observation is
performed to compute the final score.

Candidate response selection is similar to the proce-
dure from previous work done on grounded dialogue agents
(Zhang et al. 2018; Urbanek et al. 2019). Along with the
ground truth response, we randomly sample 19 distractor
responses from other characters from a uniform distribution
of characters, and call this process uniform character sam-
pling. Based on our observations, this random sampling pro-
vides multiple context correct responses. Hence, the BERT
bi-ranker model is trained by learning to choose context cor-
rect responses, and the model learns to recover a domain-
general language model that includes training on every char-
acter. This results in a Uniform Model that can select context
correct responses, but not responses corresponding to a tar-
get character with specific HLAs.

We then fine-tune on the above model to produce our
LSRM-BERT model with a modification: we randomly sam-



ple the 19 distractor responses from only the negative char-
acter set instead. We choose the responses that have simi-
lar grammatical structures and semantics to the ground truth
response, and call this process negative character sampling.
This guides the model away from the language style of these
negative characters to improve performance at retrieving re-
sponses for target characters with specific HLAs.

We train a second version of our LSRM, LSRM-Poly, by
training Poly-encoder directly on HLA-Chat using negative
character sampling following the same procedure as above
with 19 distractor responses. Our results demonstrate higher
accuracy from both ALOHA-BERT and ALOHA-Poly vari-
ations of our system at retrieving the correct response from
character c;, which is the ground truth.

4 Experiment
4.1 Dialogue Dataset and HLA-Chat

To train the Uniform Model and LSRM, we collect dialogues
from 327 major characters (a subset of the 45,821 charac-
ters we have HLA data for) in 38 TV shows from various
existing sources of clean data on the internet, resulting in
a total of 1,042,647 dialogue lines. We use a setup similar
to the Persona-Chat dataset (Zhang et al. 2018) and Cornell
Movie-Dialogs Corpus (Danescu-Niculescu-Mizil and Lee
2011), as our collected dialogues are also paired in terms of
valid conversations.> See the right side of Figure 1 for an
example of these dialogue lines. We combine these dialogue
lines with our collected HLA (tropes) data for these charac-
ters to form our proposed dataset, HLA-Chat.

4.2 HLA Observation Guidance (HLA-OG)

We define HLA Observation Guidance (HLA-OG) as explic-
itly passing a small subset of the most important HLAs of a
given character as part of the OBS rather than just an initial
line of dialogue. This is adapted from the process used in
Zhang et al. (2018) and Wolf et al. (2019) which we call Per-
sona Profiling. Specifically, we pass eight HLAs that are ran-
domly drawn from the top 40 most important HLAs of the
character. We train the Uniform Model using No HLA-OG
by explicitly passing eight HLAs of ‘none’ along with the
initial line of dialogue as the OBS. We use HLA-OG during
training of the LSRM (both BERT and Poly-encoder vari-
ations) and testing of all models. This is because the base-
lines (see Section 5.3) already follow a similar process (Per-
sona Profiling) for training. For testing, HLA-OG is neces-
sary as it provides information about which HLAs the mod-
els should attempt to imitate in their response selection. Just
passing an initial line of dialogue without HLAs replicates
a typical dialogue response task based only on context cor-
rectness. See Table 2.

4.3 Training Details
BERT bi-ranker is a baseline model trained by us on the
Persona-Chat dataset. Similar to Zhang et al. (2018), we

2Our dataset has much more dialogue per character compared
to Persona-Chat and Cornell Movie-Dialogs Corpus as we need
sufficient data to learn each character’s language style.
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Persona Profiling

HLA-OG

No HLA-OG

OBS:

Persona: I like to remodel homes.

Persona: 1 like to go hunting.
Persona: 1 like to shoot a bow.
Persona: My favourite holiday is
Halloween.

OBS:
Persona: | am jerkass.
Persona: I am lack of empathy.

Persona: I am insufferable genius.

Persona: I am brilliant but lazy.
Persona: I am bunny ears lawyer.

OBS:

Persona: none.
Persona: none.
Persona: none.
Persona: none.
Persona: none.

Persona: none.
Persona: none.
Persona: none.

Persona: I am brutal honesty.
Persona: I am adorkable.
Persona: I am abusive parents.

Hi, how are you doing?

Ground Truth Response:
1 am getting ready to do some
cheetah chasing to stay in shape.

All right, based on a cursory
reading, it doesn’t look like you
have much of a case, Sheldon.

All right, based on a cursory
reading, it doesn’t look like you
have much of a case, Sheldon.

Ground Truth Response:
Do so, do so.

Ground Truth Response:
Do so, do so.

Table 2: Example for Persona Profiling, HLA-OG, and No
HLA-OG. All lines under OBS are fed together as input to
the language style retrieval model.

cap the length of the OBS at 360 tokens and the length
of each candidate response at 72 tokens.> We use a batch
size of 80, learning rate of Se-5, and perform warm-up up-
dates for 1000 iterations. The learning rate scheduler uses
SGD optimizer with Nesterov’s accelerated gradient descent
(Sutskever et al. 2013) and is set to have a decay of 0.4 and
to reduce on plateau.* We initialize using pretrained fastText
(Bojanowski et al. 2017) embeddings.

Uniform Model is trained using BERT’s pretrained
weights on the dialogue data discussed in Section 4.1 us-
ing uniform character sampling. We use the same hyperpa-
rameters as the BERT bi-ranker along with half-precision
operations (i.e. float16 operations) to increase batch size as
recommended (Humeau et al. 2019). We initialize using pre-
trained fastText embeddings.

LSRM-BERT is produced by finetuning on the Uniform
Model discussed above using HLA-Chat and negative char-
acter sampling. We use the same hyperparameters as the
BERT bi-ranker with the same half-precision operations as
above. We refer to our BERT model as ALOHA-BERT.

LSRM-Poly is produced by training the Poly-encoder di-
rectly on HLA-Chat using negative character sampling.
Humeau et al. (2019) introduced an effective pretraining
procedure on Reddit data which we fine-tune on. Other than
using a smaller batch size of 80, we adapt all parameters
used in Humeau et al. (2019): Adam optimizer with learn-
ing rate of 2e-4, 51 = 0.9, 82 = 0.98, no L2 weight decay,
linear learning rate warmup, and inverse square root decay
of the learning rate. We refer to our Poly-encoder model as
ALOHA-Poly.

5 Evaluation
5.1 CSM Evaluation

We begin by evaluating the ability of the CSM component of
our system to correctly generate the character space. To do
s0, during training, 30% of the character-HLA pairs (which
are either O or 1) are masked, and this is used as a validation

3Tokens here refer to the WordPiece tokens used by BERT.

“We are able to recover up to 78% Hits @ I accuracy on Persona-
Chat (see Section 5.4).



set (see Figure 4). For each character ¢, the model generates
a list of the 12,815 unique HLAs ranked similarly to Hu,
Koren, and Volinsky (2008) for c. We look at the recall of our
CSM model, which measures the percentage of total ground
truth HLAs (over all characters c¢) present within the top N
ranked HLAs for all ¢ by our model. That is:

S |HLAS N HLAY|
> |HLAZ|

where H LAY® are the ground truth HLAs for ¢, and H LA'N
are the top N ranked HLAs by the model for c. We use N =
100, and our model achieves 25.08 % recall.

To inspect the CSM performance, we use the T-distributed
Stochastic Neighbor Embedding (t-SNE) (Maaten and Hin-
ton 2008) to reduce each high-dimensionality data point
to two-dimensions via Kullback-Leibler Divergence (Kull-
back and Leibler 1951). This allows us to map our char-
acter space into two-dimensions, where similar characters
from our embedding space have higher probability of being
mapped close by. We sampled characters from four different
groups or regions. As seen in Figure 2, our learned character
space effectively groups these characters, as similar charac-
ters are adjacent to one another in four regions.

@

recall =

5.2 Automatic Evaluation Setup

Five-Fold Cross Validation is used for the training and
testing of the Uniform Model and two LSRM variations. The
folds are divided randomly by the TV shows in our dialogue
data. We use the dialogue data for 80% of these shows as the
four-folds for training, and the dialogue data for the remain-
ing 20% as the fifth-fold for testing. The dialogue data used
is discussed in Section 4.1. This ensures no matter how our
data is distributed, each part of it is tested, allowing our eval-
uation to be more robust to different characters. See Table 3
for detailed statistics.

Five Evaluation Characters are chosen, one from each of
the five testing sets described above. Each is a well-known
character from a separate TV show, and acts as a target char-
acter c¢; for evaluation of every model. We choose Sheldon
Cooper from The Big Bang Theory, Jean-Luc Picard from
Star Trek, Monica Geller from Friends, Gil Grissom from
CSI, and Marge Simpson from The Simpsons. We choose
characters of significantly different identities and profiles
(intelligent scientist, ship captain, outgoing friend, police
leader, and responsible mother, respectively) from shows of
a variety of genres to ensure that we can successfully recover
the language styles of various types of characters. We choose
well-known characters because humans require knowledge
on the characters they are evaluating (see Section 5.5).

For each of these five evaluation characters, all the dia-
logue lines from the character act as the ground truth re-
sponses. The initial dialogue lines are the corresponding di-
alogue lines to which these ground truth responses are re-
sponding. For each initial dialogue line, we randomly sam-
ple 19 other candidate responses from the associated testing
set using uniform character sampling. Note that this is for
evaluation, and hence we use the same uniform character
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| Fold 1 | Fold 2| Fold 3 | Fold 4| Fold 5
TV SHOW TRAINING/TESTING SPLITS
Total shows (Train Fold) 30 30 30 31 31
Total shows (Test Fold) 8 8 8 7 7
DIALOGUE COUNT INFO
Total dialogue (Train Fold) 764168836414 8528021929025 788179
Total dialogue (Test Fold) 278479(206233| 189845 113622254468
Total target dialogue (Testing) | 9133 | 11036 | 7448 | 6100 [ 10244
CHARACTER COUNT INFO
Total characters (Train Fold) | 256 255 276 275 246
Total characters (Test Fold) 71 72 51 52 81
Total characters (Testing) 1 1 1 1 1
CHARACTER HLA COUNTS AND POSITIVE/NEGATIVE SPLITS
Target character HLA count 217 125 97 43 110
Positive community (to target) | 125 101 122 106 86
Negative set (to target) 131 154 154 169 160

Table 3: Detailed five-fold cross validation statistics.

sampling method for all models including ALOHA. The use
of negative character sampling is only in ALOHA’s training.

5.3 Baselines

We compare against four dialogue system baselines:
Kvmemnn, Feed Yourself, Poly-encoder, and a BERT bi-
ranker baseline trained on the Persona-Chat dataset using
the same training hyperparameters (including learning rate
scheduler and length capping settings) described in Sec-
tion 4.3.> For the first three models, we use the provided
pretrained (on Persona-Chat) models. For the Poly-encoder
baseline, we use the official model trained on ConvAI2. We
evaluate all four baselines on our five evaluation characters
discussed in Section 5.2.

5.4 Key Evaluation Metrics

Hits@n/N is the accuracy of the correct ground truth
response being within the top n ranked candidate re-
sponses out of IV total candidates. We measure Hits@ 1/20,
Hits@5/20, and Hits@10/20.

Mean Rank is the average rank that a model assigns the
ground truth response among the 20 total candidates.

Mean Reciprocal Rank (MRR) looks at the mean of the
multiplicative inverses of the rank of each correct answer out
of a sample of queries Q:

L @
|Q| —rank;

where rank; refers to the rank position of the correct re-
sponse for the i-th query, and |Q| refers to the total number
of queries in Q.

MRR = 3)

3See Section 2 for more details about the first three models.



How would Sheldon Cooper respond to this

Al right, based on a cursory reading, it doesn't look like you have much of a case, Sheldon

@

= -

©é

Yeah. But | think the thing that makes me maddest s that he's right.
Not exactly a Manhattan hot spot

Nothing

It's Valentine's Day. [Name], of course.

Well, the female body is a... work of art. The male body s utiitarian, it's for gettin' around, like a jeep.

Yeah. About a quart of wine.

Do so, do so.

No, I gotta talk to her today. If something's over, its just got to be over. [Name], she's...she's not an affair

I cut off all my fingers? Ted, you're a great guy. | know it, you know it, she knows it. | would bet you a gazillion dollars--
no, I'm even more confident. | would bet you a floppity jilion dollars that she's not calling to break up with you

1 know that | want [Name] dead, which puts me squarely on team you. Besides, if you two ever need me to swap
places with [Name] again, the less people know that I'm here, the better. Think about it, [Name]. Come on. Be smart
So, they deal with terrorism. Among other things. You know, Washington has had a wary eye on the heavens for
decades, [Name], watching for any threat from beyond the stars. I've heard they call that program [Name].

I'm sorry.

Go. Now.

Will you go to the prom with me?

Al this time | thought the reason | survived that Porsche accident was because of you, [Name]. Now ' not so sure.
See, I've always tried to explain everything by looking outside myself. But maybe the truth lies inside my own
physiology. Maybe | am a freak

Ohit's your cat!

Asore point with me and [Name]

Very big blocks of time.

[Name] [Name], hey, look, I'm sorry. I'm late and I'm trying to get to class.
French fry convention?

AR 22

Human Participant Selection: <>
Ground Truth Response:
Other context correct responses: _)

Figure 6: Example of what a human participant sees on each
page of the questionnaire, along with their chosen response
and the ground truth. As seen, there are multiple context cor-
rect (but not necessarily HLA correct) candidate responses.
In this case, Sheldon as a character should not be able to
admit his mistake.

. precisionkrecall . ;-
Fi-score equals 2 x Drecisiontrecall” For dialogue, preci

sion is the fraction of words in the chosen response con-
tained in the ground truth, and recall is the fraction of words
in the ground truth response contained in the chosen one.

BLEU (Papineni et al. 2002) generally indicates how close
two pieces of text are in content and structure, with higher
values indicating greater similarity. We report our final
BLEU scores as the average scores of 1 to 4-grams.

5.5 Human Evaluation Setup

We conduct a human evaluation to get an upper bound on
expected performance with 12 participants, 8 male and 4 fe-
male, who are affiliated project researchers aged 20-39 at the
University of Waterloo. We choose the same five evaluation
characters as in Section 5.2. To control bias, each partici-
pant evaluates one or two characters. For each character, we
randomly select 10 testing samples (each includes an initial
line of dialogue along with 20 candidate responses, one of
which is the ground truth) from the same testing data for the
automatic evaluation discussed in Section 5.2.

These ten samples make up a single questionnaire pre-
sented in full to each participant evaluating the correspond-
ing character, and the participant is asked to select the single
top response they think the character would most likely re-
spond with for each of the ten initial dialogue lines. See Fig-
ure 6 for an example. We mask any character names within
the candidate responses to prevent human participants from
using names to identify which show the response is from.

Each candidate is prescreened to ensure they have suf-
ficient knowledge of the character to be a participant. We
ask three prescreening questions where the participant has to
identify an image, relationship, and occupation of the char-
acter. All 12 of our participants passed the the prescreening.
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Hits@1/20
0.1232
0.0482
0.1759
0.2579
03077
0.4063
0.4117
0.4067

Hits@5/20
0.3400
0.2396
0.4824
0.5644
0.6258
0.7290
0.7180

Hits@10/20
0.5750
0.4852
0.7158
0.7698
0.3180
0.8850
0.8730

Mean Rank BLEU
0.0907
0.0418
0.1329
0.2064
0.2451
0.3267
0.3295

Fl-score
0.1560
0.0934
0.2081
0.2884
0.3356
0.4316
0.4366

MRR

Kvmemnn

Feed yourself
Bert Bi-ranker

Poly-encoder
Uniform Model
ALOHA-BERT
ALOHA-Poly

Human

10.7174
7.2680
6.2528
5.4552
4.2456
4.3840

03312
0.4084
0.4588
0.5531
0.5532

Table 4: Average automatic evaluation on HLA-OG and hu-
man evaluation results. Bold indicates the best performance.

Training Data Model Sheld Picard | Monica | Grissom | Marge
Kvmemnn 0.1236 | 0.1117 | 0.1419 | 0.1289 | 0.1097

Persona-Chat Feed yourse]f 0.0590 | 0.0492 | 0.0514 | 0.0359 | 0.0455
Bert Bi-ranker | 0.1596 | 0.2085 | 0.2022 | 0.1708 | 0.1384

Poly-encoder 0.2468 | 0.2959 | 0.2551 | 0.2848 | 0.2071

Uniform 0.3176 | 0.2301 | 0.3816 | 0.3564 | 0.2527

HLA-Chat ALOHA-BERT | 0.3826 | 0.4387 | 0.4160 | 0.4770 | 0.3171
ALOHA-Poly | 0.4116 | 0.4385 | 0.4110 | 0.4618 | 0.3356

Human 0.4833 | 0.4000 | 0.3000 | 0.5000 | 0.3500

Table 5: Average Hits@ 1/20 scores by evaluation character
on HLA-OG data. Bold indicates the best performance (ex-
cluding humans).

6 Results and Analysis
6.1 Evaluation Results

Table 4 shows average results of our automatic and human
evaluations. Table 5 shows average Hits@1/20 scores by
evaluation character. See Table 1 for a demo interaction ex-
ample between a human and ALOHA-Poly for all five eval-
uation characters.

6.2 Evaluation Challenges

The evaluation of our task (retrieving the language style of
a specific character) is challenging and hence the five-fold
cross validation is necessary for the following reasons:

1. The ability to choose a context correct response without
attributes of specific characters may be hard to separate from
our target metric, which is the ability to retrieve the correct
response of a target character by its HLAs. However, from
manual observation, we noticed that in the 20 chosen candi-
date responses, there are typically numerous context correct
responses, but only one ground truth for the target character
(for an example, see Figure 6).

To investigate this, we randomly chose 50 sets of in-
put and candidate responses (a total of 1000 candidate re-
sponses: 10 sets per target character and 20 responses per
set), and manually labelled the number of context correct re-
sponses for each set. We found a total of 333 context correct
responses (79, 71, 68, 53, 62 for characters 1 to 5 respec-
tively) which means an average of 6.66 (out of 20) per input,
and so a random guess over these context-correct responses
would give an accuracy of 15%. Our empirical results in-
dicate human accuracy is around 40%, demonstrating that
humans make a choice relying on much more than just con-
text correctness. Both ALOHA variations perform similarly
(around 41%) and show that human performance is seem-
ingly achievable by our system.

2. Retrieving responses for the target character depends
on the other candidate responses. For example, dialogue



retrieval performance for Grissom from CSI, which is a
crime/police context, is higher than other evaluation char-
acters (see Table 5), potentially due to other candidate re-
sponses not falling within the same crime/police context.

6.3 Performance: ALOHA vs. Humans

As observed from Tables 4 and 5, ALOHA (both varia-
tions) has a performance relatively close to humans. Human
Hits@1/20 scores have a mean of 40.67% and a median over
characters of 40%. The limited human evaluation size limits
what can be inferred, but it indicates the problem is solved
to the extent that ALOHA is able to slightly outperform hu-
mans on two folds and perform closely on another two folds.
Even humans do not perform extremely well, demonstrating
this task is more difficult than typical dialogue retrieval tasks
(Urbanek et al. 2019; Dinan et al. 2019).

Looking more closely at each character from Table 5, we
can see that human evaluation scores are higher for Sheldon
and Grissom. This may be due to these characters having
more distinct personalities, making them more memorable.
ALOHA performs worse on Sheldon compared to humans.
This is possibly due to the large number of Sheldon’s HLAs
(217) compared to the other four evaluation characters (av-
erage of 93.75), along with the limited amount of HLAs we
are using for guidance due to the models’ limited memory.

We also look at Pearson correlation values of the
Hits@1/20 scores across the five evaluation characters. For
human versus Uniform Model, this is 0.047 (heavily un-
correlated), demonstrating that the Uniform Model, with-
out knowledge of HLAs, fails to imitate human impres-
sions. For human versus ALOHA-BERT and ALOHA-Poly,
these are 0.4149 and 0.5468, respectively, demonstrating
that ALOHA is able to retrieve character responses some-
what similarly to human impressions. The difference be-
tween the ALOHA variations and the Uniform Model is
based on the additional knowledge of the HLAs (e.g. by
using HLA-OG and negative instead of uniform character
sampling). This demonstrates that HLAs are indeed an ac-
curate method of modeling human impressions of character
attributes and that ALOHA is able to effectively use them to
improve upon dialogue retrieval performance.

6.4 Performance: ALOHA vs. Baselines

ALOHA, combined with HLA-Chat, achieves a significant
improvement on the target character language style retrieval
task compared to the baseline open-domain chatbot mod-
els across all five folds. As observed from Tables 4 and 5,
ALOHA achieves a significant boost in Hits@n/N accu-
racy and other metrics for retrieving the correct responses
from five diverse characters (see Section 5.2). Paired t-tests
between the Hits@1/20 scores of ALOHA-BERT against
BERT Bi-ranker and ALOHA-Poly against Poly-encoder
across all five evaluation folds are statistically significant
with p-values of 0.0004 and less than 0.0001, respectively,
showing that the consistent improvement is meaningful.

6.5 Performance: ALOHA vs. Uniform Model

We observe a noticeable improvement in performance be-
tween ALOHA and the Uniform Model in recovering
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the language styles of specific characters that is consis-
tent across all five folds (see Tables 4 and 5). Paired t-
tests between the Hits@ 1/20 scores of ALOHA-BERT and
ALOHA-Poly against the uniform model across all five eval-
uation folds are statistically significant with p-values of
0.0329 and 0.0234, respectively, showing that the consis-
tent improvement is meaningful. This indicates that lack of
knowledge of HLAs limits the ability of the model to suc-
cessfully recover the language style of specific characters.
We claim that, to the best of our knowledge, we have made
the first step in using HLA-based character dialogue cluster-
ing to improve upon personality learning for chatbots.
ALOHA demonstrates an accuracy boost for all five eval-
uation characters, showing that the system is robust and
stable and has the ability to recover the dialogue styles of
fictional characters regardless of the character’s profile and
identity, genre of the show, and context of the dialogue.

7 Conclusion and Future Work

We proposed Human Level Attributes (HLAs) as a novel
approach to model human-like attributes of characters, and
collected a large volume of dialogue data for various char-
acters with complete HLA profiles which we release in
a dataset, HLA-Chat. We also proposed and evaluated a
system, ALOHA, that uses HLAs to recommend tailored
responses by specific characters. We demonstrated both
ALOHA-BERT and ALOHA-Poly’s outperformance of the
baselines, and their ability to effectively recover language
styles of various characters, showing promise for learning
character or personality styles. Further, we demonstrated
ALOHA's slight outperformance of humans for two out of
five evaluation characters, with close performance on two
others. ALOHA was shown to be stable regardless of the
character’s identity, genre of show, and context of dialogue,
and ALOHA-Poly was shown to be particularly robust.

Potential directions for future work include training
ALOHA with a multi-turn response approach (Zhang et al.
2018) that tracks dialogue over multiple responses. Another
potential is the modeling of the dialogue counterpart (e.g. the
dialogue of other characters speaking to the target charac-
ter). Further, performing semantic text exchange on the cho-
sen response with a model such as SMERTT (Feng, Li, and
Hoey 2019) may improve the ability of ALOHA to converse
with humans. This is because the response may be context
and HLA correct, but incorrect semantically (e.g. it may say
the weather is sunny when it is actually rainy). HLA-aligned
generative models is another area of exploration. Typically,
generative models produce text that is less fluent, but fur-
ther work in this area may lead to better results. Lastly, a
more diverse and larger participant pool is required due to
the limited size of our human evaluation. We can also inves-
tigate other factors affecting human performance on specific
characters such as their familiarity with TV series (e.g. they
may be more familiar with more recent shows).
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