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Abstract

Most state-of-the-art named entity recognition systems are
designed to process each sentence within a document inde-
pendently. These systems are easy to confuse entity types
when the context information in a sentence is not sufficient
enough. To utilize the context information within the whole
document, most document-level work let neural networks on
their own to learn the relation across sentences, which is not
intuitive enough for us humans. In this paper, we divide en-
tities to multi-token entities that contain multiple tokens and
single-token entities that are composed of a single token. We
propose that the context information of multi-token entities
should be more reliable in document-level NER for news ar-
ticles. We design a fusion attention mechanism which not
only learns the semantic relevance between occurrences of
the same token, but also focuses more on occurrences be-
longing to multi-tokens entities. To identify multi-token en-
tities, we design an auxiliary task namely ‘Multi-token En-
tity Classification’ and perform this task simultaneously with
document-level NER. This auxiliary task is simplified from
NER and doesn’t require extra annotation. Experimental re-
sults on the CoNLL-2003 dataset and OntoNotesnbm dataset
show that our model outperforms state-of-the-art sentence-
level and document-level NER methods.

Introduction

Named entity recognition (NER) is one of the first stages
for natural language processing. Most neural network based
models are designed for sentence-level NER: they treat sen-
tences in a document independently during training or pre-
dicting (Huang, Xu, and Yu 2015; Chiu and Nichols 2016;
Lample et al. 2016; Ma and Hovy 2016; Gregoric, Bachrach,
and Coope 2018; Peters et al. 2018). This may easily lead
to tagging inconsistency problems: the same entity in two
different sentences might be recognized as different entity
types. For the example given in Figure 1, there are three
occurrences of the token ‘Matsushita’ in three sentences
within a document. A sentence-level NER model, namely
BiLSTM-CNNs-CRF (Ma and Hovy 2016), can success-
fully recognize ‘Yasuo Matsushita’ as a ‘PERSON’. How-
ever, it incorrectly classifies the latter two ‘Matsushita’ as
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Figure 1: An example of the label inconsistency problem
within a document in the CoNLL-2003 English dataset.
Green and red tags indicate respectively correct and incor-
rect tags predicted by a sentence-level model. Green and
black arrows refer to useful and less useful contextual in-
formation for the second ‘Matsushita’ token.

‘ORG’. After investigation, we find ‘Matsushita’ usually
refers to the organization ‘Matsushita Electric Industrial’. In
the glove embedding space, it is most close to the names of
Japanese companies such as ‘sanyo’ and ‘panasonic’. Thus,
without further contextual information, the latter two ‘Mat-
sushita’ are easily recognized as ‘ORG’.

A possible solution to solve the above problem is to ex-
tend sentence-level NER to document-level NER, which
leverages information from the entire document. For the ex-
ample shown in Figure 1, the first occurrence of the to-
ken ‘Matsushita’ can provide useful information for dis-
ambiguating the second occurrence. Various document-level
information has been incorporated, ranging from manu-
ally designed information (Chieu and Ng 2003; Finkel,
Grenager, and Manning 2005; Krishnan and Manning 2006;
Kazama and Torisawa 2007) to automatically learned infor-
mation (Strubell et al. 2017; Luo et al. 2017; Zhang et al.
2018; Xu, Wang, and He 2018). For example, some global
attention mechanisms (Zhang et al. 2018; Luo et al. 2017;
Xu, Wang, and He 2018) were designed to utilized con-
text information across sentences. In these methods, atten-
tion weights are all calculated based on contextual hidden
states produced by LSTM. It’s not clear enough which con-
text information should be more reliable and it’s hard for us
humans to understand what the high attention weights are
based on in the learned attention mechanisms. In this paper,
we call this kind of attention mechanism as semantic atten-
tion mechanism.
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In this paper, we propose to pay more attention to the to-
ken occurrences within multi-token entities - entities com-
posed of multiple tokens, when modeling document level
information for entity recognition. Multi-token entities are
commonly used in texts. In an article, it is common that
a multi-token entity such as ‘Yasuo Matsushita’ is fully
spelled out at the beginning of the article, and then referred
to by one of its token (e.g ‘Matsushita’) later. We think con-
textual information of this kind of multi-token entities are
more helpful for disambiguating other token occurrences be-
cause they are usually more specific. As shown in Figure 1,
the author uses ‘Matsushita’s full name when mentioning
him for the first time and then uses the last name to refer
to him. It is obvious that the contextual information of first
‘Matsushita’, a part of the multi-token entity ‘Yasuo Mat-
sushita’, is more important than the third occurrence, which
is also ambiguous. After an investigation to the CoNLL-
2003 English data set, we found 26.62% of the single-token
entities are constituents of multi-token entities in the same
document. Furthermore, among these single-token entities,
78.87% of them have at least one multi-token entity of the
same type within a document. Multi-token entities are usu-
ally less ambiguous than single-token entities. They provide
useful information for disambiguating other occurrences of
single-token entities in the same document. This is the idea
we exploit in this paper.

For news articles, we propose a ME (Multi-token Entity)-
Informed Document-level model (MEID) for document-
level named entity recognition based on the above investiga-
tion. Specifically, MEID uses a fusion attention mechanism
to generate document-level features. Besides taking into ac-
count semantic relevance between occurrence of a particu-
lar token, our fusion attention mechanism pays more atten-
tion to occurrences which are a part of multi-token entities.
However, whether or not a token belongs to a multi-token
entity is not informed in the inputs of NER. To introduce
this information, we design an auxiliary Multi-token En-
tity Classification task which is jointly learned with NER
and doesn’t requires extra annotation. The document-level
features are then combined with the local features in sen-
tences, as the input to the CRF layer to decode token la-
bels. We evaluate the model on the CoNLL-2003 dataset
and OntoNotesnbm dataset. Experiments show our model
leveraging multi-token entities can significantly improve the
recognition quality.

The main contributions of this paper are:

• We propose a novel attention-based document-level NER
model that leverages global context features across sen-
tences as supplements to local context features.

• We take advantage of multi-token entities in the document
to guide NER. Multi-token entities are detected by an aux-
iliary sequence tagging task.

• Experimental results confirm the effectiveness of the pro-
posed method over the state-of-the-art sentence-level and
document-level NER models.

Related Work

Sentence-level NER

There are many statistical models successfully applied in
sentence-level NER, like HMM (Leek 1997) and CRF (Laf-
ferty, McCallum, and Pereira 2001). In recent years, many
neural network based methods (Huang, Xu, and Yu 2015;
Lample et al. 2016; Chiu and Nichols 2016; Ma and Hovy
2016) encoded sentences with LSTM for its advantages of
modeling sequence data. Besides, some work (Collobert et
al. 2011; Yao et al. 2015; Strubell et al. 2017; Wu et al.
2015; Yang, Liang, and Zhang 2018) explored using CNN-
based neural networks to encode sentences. Furthermore,
many studies (Chiu and Nichols 2016; Lample et al. 2016;
Kuru, Can, and Yuret 2016; Gridach 2017; Rei, Crichton,
and Pyysalo 2016; dos Santos and Guimarães 2015) pro-
posed to encode character-level features with neural net-
work, such as CNN and LSTM. In this paper, we use the
BiLSTM-CNNS-CRF model (Ma and Hovy 2016), a truly
end-to-end sequence labeling model, as the basis and focus
more on document-level NER.

Document-level NER

Document-level NER models used global information in a
document to help entity recognition. Some manually de-
signed non-local features (Chieu and Ng 2003; Finkel,
Grenager, and Manning 2005; Krishnan and Manning 2006)
were introduced to statistic-based methods and obtained
promising results. Context aggregation feature (Ratinov and
Roth 2009) was defined as aggregated tokens around occur-
rences of a particular token, which had higher coverage than
manually designed non-local features. Recently, neural net-
works were employed to automatically learn document-level
information. Some work (Strubell et al. 2017; Luo et al.
2017) concatenated sentences within a document and used
the CNN based neural network or the attention mechanism
to encode the whole long sequence. Attention-based mod-
els (Luo et al. 2017; Zhang et al. 2018; Xu, Wang, and He
2018) found supporting document-level context information
according to weights calculated from local contextual fea-
ture vectors. Attention weights calculated from contextual
feature vectors are hard for us humans to understand what
they represents. In this paper, our model pays more atten-
tion to occurrences belonging multi-token entity, which is
more clear and interpretable. The most relevant work to ours
is GlobalAtt (Zhang et al. 2018). GlobalAtt applied a BiL-
STM to independently encode each sentence. It then uti-
lized a self-attention mechanism among local contextual fea-
tures of other occurrences of the same token to generate the
global feature. There are two main differences between their
model and ours. First and foremost, our attention mecha-
nism takes care of occurrences belonging multi-token enti-
ties, which can provide useful hints to disambiguate NER in
many cases, as we explained earlier. Second, they applied a
gate mechanism and a BiLSTM to control the influence of
document-level features, and we achieve comparable perfor-
mance with a single MLP layer.
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Figure 2: The overall architecture of our model. Sentence-
level BiLSTM generates local contextual features hi =
(hi1, hi2, ..., hik). Multi-token Entity Classification mod-
ule identifies multi-token entities and outputs correspond-
ing ME features ei = (ei1, ei2, ..., eik). Document-level
module takes in (hi, ei) and returns document-level features
di = (di1, di2, ..., dik).

Multi-task Learning

Multi-task learning is widely used in natural language pro-
cessing, such as jointly learning Chinese word segmenta-
tion and named entity recognition (Peng and Dredze 2017),
jointly performing aspect detection and sentiment classifi-
cation (Wang et al. 2019), jointly extracting named enti-
ties and relation (Zheng et al. 2017). Semantic role labeling
model LISA (Strubell et al. 2018) simultaneously learned
dependency parsing and used a syntactically-informed self-
attention mechanism to attend to each token’s syntactic
parse parent. Inspired by this strategy, to find and attend to
tokens belonging to multi-token entities within a document,
we design an auxiliary task to classify whether a token is a
part of a multi-token entity.

Our Document-level Model: MEID

Task Definition

In Document-level NER, each document D is represented as
a sequence of sentences (x1, x2, ..., xs), where xi(1 ≤ i ≤
s) is represented as a sequence of tokens (w1, w2, ..., wl).
For each sentence x, our goal is to use context information
of both the sentence and the whole document to predict a
tag sequence y = (y1, y2, .., yl), where yi(1 ≤ i ≤ l) ∈ Y .
Y is the set of tags following the BIOES tagging scheme.
Except ‘O’, each tag in Y is composed of the boundary of
the entity and the entity type. For example, ‘B-PER’ denotes
the beginning token of a person name and ‘S-LOC’ denotes
a single-token location name.

Model Overview

Our model applies a fusion attention mechanism to focus
more on multi-token entities that provide useful information
to other ambiguous occurrences. Whether an occurrence be-
longs to a multi-token entity is not included in the inputs of
the NER task and it can only be known after a preliminary
recognition. So, in this paper, we introduce a ‘Multi-token
Entity Classification’(MEC) task without extra annotation to
predict whether an occurrence belongs to a multi-token en-
tity. We use multi-task learning to jointly perform MEC and
document-level NER.

The overall architecture of our proposed model is shown
in Figure 2. In this model, we first encode sentences of a
document independently by a sentence-level BiLSTM layer.
Then a Multi-token Entity Classification module is used
to judge whether a token belongs to a multi-token entity.
For a particular token, local contextual features and Multi-
token Entity Classification results of its occurrences are fed
to a document-level representation learning module. The
document-level module returns a document-level feature for
each occurrence. We then use a MLP layer to fuse the local
contextual features and the document-level features. Finally,
we apply a CRF layer at the sentence level to decode the
final label sequences. We will describe the details of each
component in the remaining parts of this section.

Character-level Representation

Previous studies (Chiu and Nichols 2016; Lample et al.
2016; Yang, Liang, and Zhang 2018) have shown character
information such as capitalization can significantly improve
sequence labeling models. Besides, experiments in (Yang,
Liang, and Zhang 2018) showed that there was no significant
difference in using CNN or LSTM to extract character fea-
tures. Therefore, in this paper, we use character-level CNN
(Ma and Hovy 2016) to extract morphological information
of a given word.

Sentence-level Context Representation

In this paper, we apply the Long Short-Term Memory Net-
work (Hochreiter and Schmidhuber 1997) (LSTM) to en-
code the token sequences within each sentence. LSTM is
developed from recurrent neural network (RNN) and is bet-
ter to handle long-term dependencies. To take into account
context information before and after, BiLSTM concatenates
two LSTMs in forward direction

−→
ht and in backward direc-

tion
←−
ht . The state of each token is represented by:

ht = [
−→
ht ,
←−
ht ]. (1)

In this paper, we call ht produced by sentence-level BiL-
STM as local/sentence-level contextual representation. For
each token wi, we record location information of its all oc-
currences within a document as :

ui = {(si1, oi1), (si2, oi2), ..., (sik, oik)},
where k is the count of occurrences for token wi, (sit, oit)
means the tth occurrence is the oit

th token in the sit
th sen-

tence of a document. Then, according to these location infor-
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mation of all occurrences for wi, we obtain a list of sentence-
level BiLSTM outputs for ui:

hi = (hi1, hi2, ..., hik), (2)

where hit(1 ≤ t ≤ k) is obtained by Eq. (1), which is
the sentence-level contextual representation of the tth occur-
rence of token wi; hi is one of the inputs for the document-
level module for token wi.

Multi-token Entity Classification

In this paper, we use Multi-token Entity (ME) information
to refer to whether an occurrence belongs to a multi-token
entity. To inform the model accurate ME information of
each occurrence, we add an auxiliary supervised task called
Multi-token Entity Classification(MEC) based on the origi-
nal NER task. In BIOES tagging scheme used in the NER
task, ‘B-’,‘I-’, ‘E-’ refer to the ‘Begin’, ‘Inside’ and ‘End’
of an entity, ‘S-’ refers to a single-token entity, ‘O’ refers
to non-entity token. So, if a token is labeled as ‘B-’,‘I-’ or
‘E-’, it belongs to a multi-token entity and we label it as
‘SUB’ (sub token of an entity) in ME classification task. If
a token is labeled as ‘S-’, it is a single-token entity and we
label it as ‘NSUB’. ‘O’ tags are retained from the NER task.
Thus, the ME classification task is a simple three-class clas-
sification task. We share the parameters of sentence-level
BiLSTM layers in our model for the MEC task and NER
task. For the MEC task, we concatenate the previous and the
next sentence-level contextual representation with the tar-
get sentence-level contextual representation as ht. We set
the window size to 3 because 98.33% and 85.31% of en-
tities have fewer than 4 tokens in CoNLL-2003 dataset and
OntoNotesnbm dataset respectively. Then we feed ht to MLP
to predict ME tags:

ht = [ht−1, ht, ht+1], (3)

et = Softmax(MLP(ht)), (4)

where et is the predicted probability distribution after the
softmax layer. Given a sentence x = (w1, w2, ..., wl), the
cross-entropy loss for MEC task is defined as:

lossM = −
l∑

t=1

e′t log(et), (5)

where e′t (one-hot vector) is the true distribution for wt.
To assist document-level NER, we obtain a list of ME rep-

resentations for ui :

ei = (ei1, ei2, ..., eik), (6)

where eit(1 ≤ t ≤ k) is obtained by Eq. (4). ei is sent to the
document-level module, together with hi defined in Eq. (2).

Document-level Representation Learning

After getting local contextual representations and ME rep-
resentation of occurrences for each token, we apply a
document-level module to learn the relation between these
occurrences and yield the final document-level representa-
tion. The architecture of the module is shown in Figure 3.

...

SELF-ATTENTION

...

SELF-ATTENTION

ME Att Map

ME-informed Att Map

...

Semantic Att Map

0.8 0.1 0.1 0.2 0.7 0.1 0.5 0.3 0.2

weighted 

summation

Figure 3: ME-informed Attention in the document-level
module. α2

i is the distribution of ME-informed attention
weight for ui2 (the 2nd occurrence of token wi). di2 is the
document-level representation for ui2.

ME-informed Attention It is difficult for neural network
to learn the complex relation between occurrences of a par-
ticular token on its own. Besides, the distributions of atten-
tion weights completely computed by semantic features are
hard for us humans to understand. In this paper, we propose
to focus more on occurrences belonging to multi-token enti-
ties based on our investigation. To achieve this target, we add
a weak guide when generating document-level features by a
fusion attention mechanism called ME-informed attention.
Besides semantic self-attention, we apply another attention
mechanism on ME representations ei to attend more to oc-
currences belonging to multi-token entities. The semantic at-
tention score and ME attention score are calculated as the
attention mechanism (Bahdanau, Cho, and Bengio 2015):

smin = v�s tanh(Ws1him +Ws2hin + bs)(him, hin ∈ hi),

um
in = v�u tanh(Wu1eim +Wu2ein + bu)(eim, ein ∈ ei),

where hi and ei is obtained by Eq. (2) and Eq. (6); smin and
um
in are respectively the semantic attention score and ME

attention score of the nth occurrence for the mth occurrence
of token wi. Then we fuse these two attention scores and
weight local contextual features for each occurrence:

αm
in = Softmax(smin + um

in),

αm
i = (αm

i1, α
m
i2, ..., α

m
ik),

dim =

k∑

n=1

αm
inhin, (α

m
in ∈ αm

i , hin ∈ hi)

where αm
in is the ME-informed attention weight. dim is the

document-level representation for the mth occurrence.

Tag Prediction

We apply the Condition Random Fields (CRF) (Lafferty,
McCallum, and Pereira 2001) for the tag prediction step.
CRF has proven to be very effective in sequence label-
ing tasks, because it considered the correlations between
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labels in neighborhoods and decoded the best label se-
quence rather than a single best label. For a sentence x =
(w1, w2, ..., wl), after concatenating sentence-level contex-
tual representations and document-level representations, we
get new hidden states ĥx = (ĥ1, ĥ2, ..., ĥl). Before the CRF
layer, we apply an MLP layer to reduce the dimension of
vectors in ĥx to e, where e is the number of distinct tags.

For any possible predicted sequence y = (y1, y2, .., yl),
its score is defined as:

s(x,y) =
l∑

i=0

Ayi,yi+1
+

l∑

i=1

Pi,yi
,

where A is a transition matrix, whose element Ai,j repre-
sents the transition score from tag i to tag j; Pi,yi

refers to
the score of the yi tag of the ith token in the sentence. Then
a softmax is used to compute the probability of sequence y:

p(y|x) = exp s(x,y)∑
ỹ∈Yx

exp s(x, ỹ)
,

where Yx is a set of all possible tag sequences. During
training, we maximize the log-probability of the true tag se-
quence. The loss function for the NER task is defined as:

lossN = − log(p(ŷ|x)),
where ŷ is the true tag sequence. Given lossN and lossM
(the ME classification loss defined in Eq. (5)), the overall
loss of MEID, which is a joint loss of the NER and the ME
classification task, is defined as:

loss = lossM + lossN .

While decoding, we predict the NER tag sequence which
obtains the maximum score:

y∗ = argmax
ỹ∈Yx

s(x, ỹ)

Experiments

Dataset and Settings

We conduct experiments on the CoNLL-2003 and
OntoNotesnbm dataset. CoNLL-2003 dataset (Sang
and Meulder 2003) is part of the Reuters Corpus comprised
of news stories between August 1996 and August 1997.
It contains named entities of 4 different types: persons
(PER), organizations (ORG), locations (LOC), and miscel-
laneous names (MISC). We build OntoNotesnbm dataset
by combining newswire (nw), broadcast news (bn) and
magazine (mz) parts of OntoNotes 5.0 (Hovy et al. 2006).
Documents in telephone conversation (TC), web data
(WB) and pivot text (PT) parts of OntoNotes 5.0 may not
contain global relevance like news stories. Thus we think
these three parts are inappropriate for document-level NER
and drop them in our experiments. OntoNotesnbm dataset
contains 18 named entity types. As for tagging scheme,
we choose the BIOES, which has been proven better
than BIO2 by previous studies (Ratinov and Roth 2009;
Lample et al. 2016). The statistics of the two datasets are
shown in Table 1.

In this paper, we use the standard F1-score (F1) as the
evaluation metrics. Due to the small size of CoNLL-2003
dataset, we conduct each experiment 5 times on it with dif-
ferent random seeds and report its mean. For OntoNotesnbm,
we run each model once. We use traditional GloVe em-
bedding (Pennington, Socher, and Manning 2014) as our
default word embedding. To compare with state-of-the-art
pre-trained language models, we also experiment with bert-
base (Devlin et al. 2019) and flair (Akbik, Blythe, and Voll-
graf 2018) as initialized word embedding.

Baselines

We compare our model with several state-of-the-art NER
models using no external knowledge, such as lexicons.
These models can be categorized into sentence-level models
and document-level models. Besides, we experiment with
some variants of MEID to show the effectiveness of our fu-
sion attention mechanism.

Sentence-level models

• LSTM+CRF (Lample et al. 2016), which extracts the
character-level features with a BiLSTM layer and encodes
sentences with another BiLSTM layer.
• BiLSTM+CNNS+CRF (Ma and Hovy 2016), which ex-

tracts morphological features from characters of word
with a CNN and encodes sentences with a BiLSTM layer.
• ParallelRNNs (Gregoric, Bachrach, and Coope 2018),

which splits a single LSTM to multiple equal-sized
smaller ones to reduce parameters and concatenates their
outputs before decoding.
• HSCRFs(JNT) (Ye and Ling 2018), which designs a Hy-

brid semi-Markov CRF and jointly decodes labels using
CRFs and HSCRFs.

Document-level models

• Att+BiLSTM+CRF (Luo et al. 2017), which applies a
global attention mechanism among all tokens within a
document to extract the document-level feature.
• IDCNN (Strubell et al. 2017), which encodes the long se-

quence concatenated by sentences of a document by iter-
atively applying a stack of dilated convolutions.
• GlobalAtt (Zhang et al. 2018), which calculates semantic

attention weights among occurrences of an identical token
and uses a gate and a BiLSTM to control the influence of
document-level features.

Other baselines

• SENT, which is the basic sentence-level model in MEID.
It has the same architecture as BiLSTM-CNNS-CRF. The
difference between SENT and BiLSTM-CNNS-CRF is
the training strategy. The former feeds an entire docu-
ment as a batch like MEID, and the latter feeds several
sentences that may come from different documents.
• MEID-ME, which drops the ME part in our model. The

one difference between MEID-ME and GlobalAtt is that
the former only uses a MLP to fuse sentence-level and
document-level features, whereas the latter uses a gate
mechanism and a BiLSTM layer.
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Dataset #doc #sent #token

CoNLL-2003
Train 946 14,987 20,3621
Dev 216 3,466 51,362
Test 231 3,684 46,435

Ontonotesnbm
Train 3,276 54,971 1,249,399
Dev 469 8,187 188,654
Test 284 4,718 105,056

Table 1: Statistics of CoNLL-2003 and OntoNotesnbm
dataset. #doc, #sent and #token refer to counts of document,
sentence and token respectively.

Model CoNLL-2003 OntoNotesnbm

LSTM+CRF 90.94 87.57
BiLSTM+CNNS+CRF 91.21 88.42
ParallelRNNs 91.48 85.54
HSCRFs(JNT) 91.38 87.74

Att+BiLSTM+CRF 90.49 88.88
IDCNN 90.65 85.24
GlobalAtt 91.43 88.78

SENT 90.92 88.64
MEID-SEM 91.71 88.71
MEID-ME 91.78 88.84
MEID 91.92 89.16

Table 2: F1-scores of different models with traditional word
embedding (e.g. glove) on CoNLL-2003 and OntoNotesnbm.

Dataset Model glove bert-base flair

CoNLL-2003 SENT 90.92 90.66 92.59
MEID 91.92 91.47 93.09

OntoNotesnbm
SENT 88.64 88.41 89.89
MEID 89.16 88.96 90.29

Table 3: F1 scores of our approaches using different
word embedding on CoNLL-2003 and OntoNotesnbm.
glove refers to conventional glove embedding (Pennington,
Socher, and Manning 2014). flair means stacking embed-
ding concatenated by glove embedding and contextual string
embedding (Akbik, Blythe, and Vollgraf 2018). bert-base
refers to embeddings produced by bert-base model (Devlin
et al. 2019).

• MEID-SEM, which drops the semantic attention in our
document-level module and only uses ME attention to
weight local contextual features.

Overall Results

To verify the effectiveness of MEID, we compare our
model with state-of-the-art sentence-level and document-
level NER models. Experimental results are shown in Table
2 and Table 3. We find:

(1) As shown in Table 2, MEID outperforms exist-
ing sentence-level models and document-level models at

the condition of using conventional word representations
like Glove embedding. SENT achieves comparable per-
formance with BiLSTM-CNNS-CRF. It proves that for the
sentence-level model, there is no obvious difference between
shuffling all sentences and shuffling documents during train-
ing. Thus, the improvement in F1 has nothing to do with our
training strategies. Adding our document-level representa-
tion on the basis of the sentence-level model can indeed im-
prove the NER quality.

(2) MEID outperforms MEID-ME and GlobalAtt on
both two datasets. MEID-ME achieves comparable perfor-
mance with GlobalAtt. It indicates that using a gate mech-
anism and a BiLSTM to control the influence of document-
level information may be redundant. After introducing the
ME part, MEID performs better than MEID-ME. It proves
that the ME-informed attention mechanism indeed helps find
more reliable contextual information across sentences.

(3) MEID outperforms MEID-SEM. This shows that
only ME attention may not be able to fit complex rela-
tionships between occurrences across sentences very well.
Combining the semantic attention and the ME attention can
achieve better performance than using either of them alone.

(4) As shown in Table 3, whether using bert-base or
flair as initialized word embedding, MEID outperforms
SENT. This indicates that our document-level representa-
tion can further increase the F1 score at the base of word
representations produced by state-of-the-art pre-trained lan-
guage models.

To explore whether the improvement given by ME is uni-
form for all entity types, we compared f1 scores of each
entity type between MEID and MEID-ME on the both
two datasets. It turns out that on the CoNLL-2003, MEID
achieves better results than MEID-ME on 100%(4/4) entity
types. On the Ontonotesnbm, MEID achieves better results
than MEID-ME on 72%(13/18) entity types. Therefore, we
think the improvements given by contexts of multi-token en-
tities are suitable for most of the entity types.

Besides, to see whether our model will work on other
types of documents besides news articles, we build the
Ontonotesc dataset by combining broadcast conversation
(bc) and telephone conversation (tc) parts of OntoNotes5.0.
It turns out that MEID-ME (scores 75.17) achieve better re-
sults than MEID (scores 74.89). Thus, our proposal doesn’t
seem to work well on the conversation dataset where docu-
ments may not contain global relevance like news articles.

About the computation cost, compared with the sentence-
level model BiLSTM-CNNS-CRF, the average time for pro-
cessing the whole CoNLL-2003 test data increases from
0.496 minutes to 0.523 minutes. The average time for pro-
cessing OntoNotesnbm test data increases from 0.979 min-
utes to 1.173 minutes. We think this is acceptable.

ME Classification

For the MEC task we described in Section Multi-token En-
tity Classification, our end-to-end MEID model achieves
96.20 F1 score and 92.84 F1 score on the CoNLL-2003 and
OntoNotesnbm test dataset respectively. We also experiment
with the separate MEC task without the multi-task learning
with the NER. It gets 95.89 F1 score and 91.99 F1 score
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respectively, either of which is lower than the correspond-
ing F1 score of multi-task learning. This shows that the joint
learning can help improve ME classification.

Case Analysis

To show how ME works, we select two typical cases from
the test set of CoNLL-2003. Figure 4 compares the tags
given by MEID-ME and MEID. Figure 5 shows semantic
attention maps given by MEID-ME and ME-informed at-
tention maps given by MEID.

In the first example, all occurrences of ‘Matsushita’ re-
fer to a person’s name ‘Yasuo Matsushita’ and only the first
mention of ‘Matsushita’ is part of a multi-token entity ‘Ya-
suo Matsushita’. The second occurrence of ‘Matsushita’ is
wrongly predicted as ‘S-ORG’ by MEID-ME. Figure 5a
shows MEID-ME already pays attention to the first ‘Mat-
sushita’ to collect document-level contextual information for
the second ‘Matsushita’, but the attention weight doesn’t
seem to be big enough to trust the first ‘Matsushita’. Af-
ter informed ME features, MEID pays much more attention
to the first ‘Matsushita’ and correctly classifies the second
occurrence as ‘S-PER’, as shown in Figure 5b.

In the second example, the first and second ‘zimbabwe’
belong to the multi-token entity ‘zimbabwe open’, which is
an open championship. The local contextual information of
the first ‘zimbabwe’ is weak because it appears in a short
title. Figure 5c shows that when collecting document-level
contextual information for the first ‘ZIMBABWE’, MEID-
ME pays more attention to the last three ‘Zimbabwe’, which
refer to location names. Therefore, MEID-ME wrongly pre-
dicts the first ‘ZIMBABWE’ as ‘B-LOC’. After informed
ME features, MEID pays much more attention to the second
‘Zimbabwe’ and corrects ‘B-LOC’ to ‘B-MISC’. Besides,
for the last three ‘Zimbabwe’, MEID pays much attention
to the first and second occurrence, but document-level fea-
tures do not mislead the final prediction. We think this is be-
cause their local contextual features play a bigger role than
the global features in this case. This is why we need to lever-
age both the global and the local features, but not just rely
on one of them.

In these two examples, it’s hard for us to understand
the semantic attention map. But the distributions of ME-
informed attention weight meet our expectations and are
more interpretable.

Conclusion

In this paper, we propose a novel neural network designed
for document-level NER that takes into account whether oc-
currences belong to multi-token entities. It doesn’t rely on
any manually designed non-local features or need extra an-
notation. We first apply a BiLSTM layer to encode sentences
within a document independently. Then we introduce a MLP
based module to judge whether a token belongs to a multi-
token entity. Meanwhile, we design a document-level mod-
ule to generate document-level representations from local
contextual representations of all occurrences of a particu-
lar token. In the document-level module, we apply a ME-
informed attention to attend more to multi-token entities.

1 In a rare expression of a view on currencies by the Bank 
of Japan ( BOJ ) governor , Yasuo Matsushita E-PER was 
quoted in Japan 's leading economic daily on Friday as ... 
2 ... was BOJ governor Matsushita S-ORG S-PER ‘s remark .
3) ..." Matsushita S-PER said in an interview with the ...

1 GLF – ZIMBABWE B-LOC B-MISC OPEN SECND RUND 
SCRES .
2) Leading second round scores in the Zimbabwe B-MISC
Open at the par-72 Chapman Golf Club on Friday :  132 Des 
Terblanche 65 67 133 Mark McNulty ( Zimbabwe S-LOC ) 72 
61 134 Steve van Vuuren 65 69 136 Nick Price ( Zimbabwe S-
LOC ) 68 68 , Justin Hobday 71 61
3) Andrew Pitts ( U.S. ) 69 67 138 Mark Cayeux ( Zimbabwe S-
LOC ) 69 69 , ...

Sentences in a Document

Figure 4: Sample NER results. Blue tags mean correct tags
predicted by both MEID-ME and MEID. Red tags mean
wrong tags predicted by MEID-ME. Green tags mean cor-
rect tags predicted by MEID.

(a) Ma* Semantic ATT (b) Ma* ME-informed ATT

(c) ZI* Semantic ATT (d) ZI* ME-informed ATT

Figure 5: Attention Maps for ’Matsushita’(Ma*) and ’ZIM-
BABWE’(ZI*). occ i means the ith occurrence.

Our model MEID achieves state-of-the-art results on the
CoNLL-2003 English dataset and OntoNotesnbm dataset.
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