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Abstract

While neural network-based models have achieved impressive
performance on a large body of NLP tasks, the generaliza-
tion behavior of different models remains poorly understood:
Does this excellent performance imply a perfect generalization
model, or are there still some limitations? In this paper, we
take the NER task as a testbed to analyze the generalization
behavior of existing models from different perspectives and
characterize the differences of their generalization abilities
through the lens of our proposed measures, which guides us to
better design models and training methods. Experiments with
in-depth analyses diagnose the bottleneck of existing neural
NER models in terms of breakdown performance analysis, an-
notation errors, dataset bias, and category relationships, which
suggest directions for improvement. We have released the
datasets: (ReCoNLL, PLONER) for the future research at
our project page: http://pfliu.com/InterpretNER/.

1 Introduction

Neural network-based models have achieved great suc-
cess on a wide range of NLP tasks (Devlin et al. 2018;
Bahdanau, Cho, and Bengio 2014). However, the generaliza-
tion behaviors of neural networks remain largely unexplained.
Recently, some researchers are beginning to realize this prob-
lem and attempt to understand the generalization behavior of
neural networks in terms of network architectures or optimiza-
tion procedure (Zhang et al. 2016; Baluja and Fischer 2017;
Schmidt et al. 2018). However, it is incomplete to ignore the
characteristics of tasks and datasets for generalization analy-
sis since it not only depends on the model’s architectures but
on the data itself (Arpit et al. 2017).

In NLP, there is a massive gap between the growing task
performance and the understanding of model generalization
behavior. Many tasks have reached a plateau in the perfor-
mance on a particular dataset (Rajpurkar, Jia, and Liang 2018;
Devlin et al. 2018), which calls for a data-dependent under-
standing of models’ generalization behavior.

In this paper, we take a step further towards diagnosing and
characterizing generalization in the context of a specific task.
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Concretely, we take named entity recognition (NER) task as
a study case and investigate three crucial yet rarely raised
questions through entity- and class-centric generalization
analyses.

Q1: Does our model really have generalization ability, or it
just pretends to understand and make some shallow template
matches as observed in (Jia and Liang 2017)? We devise a
measure, which can break down the test set into different
interpretable groups, helping us diagnosing inadequacies in
the generalization of NER models (Sec. 4.1). Furthermore,
this measure makes it easier to find human annotation errors,
which cover the actual generalization ability of the existing
models (Sec. 4.1). Q2: What factor of a dataset can distin-
guish neural networks that generalize well from those that
don’t? We introduce two metrics to quantify the dataset bias
in a cross-dataset experimental setting, enabling us to better
understand how the dataset bias influences the models’ gen-
eralization ability (Sec. 4.2). Q3: How does the relationship
between entity categories influence the difficulty of model
learning? Our class-centric analysis shows that if two cate-
gories, e.g. C1 and C2, have overlaps (i.e. sharing a subset of
entities), then most of the errors on C1 made by the model
are due to mistakenly predicting C1 as C2 (Sec. 4.3). Our
experiment results show the prospects for further gains for
these problems from novel architecture design and knowl-
edge pre-training seem quite limited (Sec. 4.3). Tab. 1 shows
the framework of our experimental designs.

Main Contributions This paper understands the gener-
alization behavior from multiple novel angles, which con-
tributes from the following two perspectives: 1) For the task
itself, we identify the bottleneck of existing methods on the
NER task in terms of breakdown performance analysis, anno-
tation errors, dataset bias, and category relationships, which
suggest directions for improvement and can drive the progress
of this area. 2) Other tasks can benefit from the research evi-
dence found in this study. For example, this paper not only
shows that utilizing less but more relevant data can achieve
better performance, but also provides an effective and princi-
pled way to select more relevant training samples.

Observations Our findings are summarized as follows: (1)
The fine-grained evaluation based on our proposed measure
reveals that the performance of existing models (including
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Views Questions Measures Applications

Entity
Q1 (Sec. 4.1) Entity Coverage Ratio

(Exp I) Breaking down the test set
(Exp-II) Annotation errors detecting and fixing

Q2 (Sec. 4.2)
Expectation of Coverage Ratio (Exp-III) Cross-dataset generalization
Contextual Coverage Ratio (Exp-IV) Order matters for data augmentation

Category Q3 (Sec. 4.3) Consistency (Exp V) Probing inter-category relationships
(Exp-VI) Exploring the errors of hard cases

Table 1: Outline of our experiment designs. Q1: Does our model really have generalization? Q2: What factor of a dataset can
distinguish neural networks that generalize well from those that don’t? Q3: How does the relationship between entity categories
influence the difficulty of model learning?

the state-of-the-art model) heavily influenced by the degree
to which test entities have been seen in training set with the
same label (Exp-I in Sec. 4.1). (2) The proposed measure
enables us to detect human annotation errors, which cover
the actual generalization ability of the existing model. We
observe that once these errors are fixed, previous models
can achieve new state-of-the-art results, 93.78 F1-score on
CoNLL2003, which refers to Exp-II in Sec. 4.1. (3) We in-
troduce two measures to characterize the data bias and the
cross-dataset generalization experiment shows that the per-
formance of NER systems is influenced not only by whether
the test entity has been seen in the training set but also by
whether the context of the test entity has been observed (Exp-
III in Sec. 4.2). (4) Providing more training samples is not
a guarantee of better results. A targeted increase in training
samples will make it more profitable, which refers to Exp-IV
in Sec. 4.2. (5) The relationship between entity categories
influences the difficulty of model learning, which leads to
some hard test samples that are difficult to solve using com-
mon learning methods, which refer to Exp-V and Exp-VI in
Sec. 4.3.

2 Related Work

Our work can be uniquely positioned in the context of the
following two aspects.

Neural Network-based Models for NER Some re-
searchers design different architectures which vary in word
encoder (Chiu and Nichols 2016; Ma and Hovy 2016), sen-
tence encoder (Huang, Xu, and Yu 2015; Ma and Hovy 2016;
Chiu and Nichols 2016) and decoder (CRF) (Huang, Xu, and
Yu 2015). Some works explore how to transfer learned pa-
rameters from the source domain to a new domain (Chen and
Moschitti 2019; Lin and Lu 2018; Cao et al. 2018). Recently,
(Yang, Liang, and Zhang 2018; Reimers and Gurevych 2017)
systematically analyze neural NER models to provide useful
guidelines for NLP practitioners. Different from the above
works, instead of exploring the possibility for a new state-of-
the-art in this paper, we aim to bridge the gap between the
growing task performance and the understanding of model
generalization behavior.

Analyzing Generalization Ability of Neural Networks
Most existing works have analyzed the generalization power
of DNNs by quantifying how the number of parameters, noise
label, regularization, influence training process on a set of

simple classification tasks. (Fort, Nowak, and Narayanan
2019) investigate neural network training and generaliza-
tion by introducing a measure and study how it varies with
training iteration and learning rate. (Zhang et al. 2016;
Arpit et al. 2017) explore the generalization of the neural
network by showing how the impact of representational ca-
pacity changes with varying noise levels and regularization.
The goal of this paper is to study in the light of a specific
NLP task, discussing how neural networks achieve linguistic
generalization abilities.

3 Task, Methods, and Datasets

3.1 Task Description

Named entity recognition (NER) is usually formulated as
a sequence labeling problem (Borthwick et al. 1998). For-
mally, let X = {x1, x2, . . . , xT } be an input sequence and
Y = {y1, y2, . . . , yT } be the output tags. The goal of this
task is to estimate the conditional probability: P (Y |X) =
P (yt|X, y1, · · · , yt−1)

Why do We Choose the NER Task? The goal of this pa-
per is to study how neural networks achieve linguistic-level
generalization abilities via the lens of a well-chosen NLP
task. Compared with other general classification tasks, the
NER task is particularly suitable here because 1) it contains
more category labels; 2) different categories contain a num-
ber of training samples, which provides an ideal testbed for
us to observe the generalization behavior of neural networks.
Although our focus is on NER tasks, our solution can be
ported to the other tagging problems.

3.2 Neural Network-based Methods for NER

To evaluate the importance of different components of the
NER systems, we varied our models mainly in terms of three
aspects: different choices of character-, word-, and sentence-
level encoders and decoders. Fig.1 illustrates the models
we have studied in this paper. Specifically, for Exp-I, we
mainly focus on how different choices of pre-trained models
(Mikolov et al. 2013; Peters et al. 2018; Devlin et al. 2018)
influence systems’ generalization abilities. All models adopt
LSTM as sentence encoder and CRF as the decoder. For
Exp-III and Exp-IV, we use CnoneWrandlstmCrf model to
achieve cross-dataset generalization evaluation.
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Figure 1: Neural NER systems with different architectures
and pre-trained knowledge, which we studied in this paper.
Sent. and Dec. denotes Sentence and Decoder, respectively.

For Exp-V, we adopt CcnnWglovelstmMLP architecture
since MLP decoder is easy to compute the measure Consis-
tency. For Exp-VI, detailed choices of evaluated models are
listed in Fig.6.

3.3 NER Datasets for Evaluation

We conduct experiments on three benchmark datasets: the
CoNLL2003 NER dataset, the WNUT16 dataset, an d
OntoNotes 5.0 dataset. The CoNLL2003 NER dataset (Sang
and De Meulder 2003) is based on Reuters data (Collobert et
al. 2011). WNUT16 dataset is provided by the second shared
task at WNUT-2016. The OntoNotes 5.0 dataset (Weischedel
et al. 2013) is collected from telephone conversations (TC),
newswire (NW), newsgroups, broadcast news (BN), broad-
cast conversation (BC) and weblogs (WB), pivot text (PT)
and magazine genre (MZ). Due to the lack of NER labels
of PT and the insufficient amount of data of TC, we only
evaluate the other five domains.

4 Experiment and Analysis

4.1 Diagnosing Generalization with Entity
Coverage Ratio

The generalization ability of neural models is often evaluated
based on a holistic metric over the whole test set. For example,
the performance of the NER system is commonly measured
by the F1 score. Despite its effectiveness, this holistic metric
fails to provide fine-grained analysis and as a result, we
are not clear about what the strengths and weaknesses of a
specific NER system are.

Driven by Q1, we propose to shift the focus of evaluation
from a holistic way to fine-grained way, navigating directly to
the parts which influence the generalization ability of neural
NER models. We approach the above end by introducing the
notion of entity coverage ratio (ECR) for each test entity,
by which the test set will be divided into different sub-sets,
and the overall performance could be broken down into inter-
pretable categories.

ρ(e) Interpretation

ρ = 1 Entity e appears in train set with only label k
ρ ∈ (0, 1) Entity e appears in train set with diverse labels
ρ = 0∧C �= 0 Entity e appears in train set without label k
ρ = 0∧C = 0 Entity e doesn’t appear in train set

Table 2: Interpretation of ρ with different values.

Entity Coverage Ratio (ECR) The measure entity cover-
age ratio is used to describe the degree to which entities in
the test set have been seen in the training set with the same
category. Specifically, we refer to ei as a test entity, whose
coverage ratio is defined as:

ρ(ei) =

{
0 C = 0

(
∑K

k=1
#(etr,ki )

Ctr #̇(ete,ki ))/Cte otherwise
(1)

where etr,ki is the entity ei in the training set with ground
truth label k, ete,ki is the entity ei in the test set with ground
truth label k, Ctr =

∑K
k=1 #(etr,ki ), Cte =

∑K
k=1 #(ete,ki ),

and # denotes the counting operation.
For example, in the training set, “chelsea” is labeled

as the category Person 6 times, and Organization 4
times, while in the test set, labeled as Person 3 times and
Organization 2 times, so ρ (“chelsea”) = (0.6× 3 +
0.4 × 2)/5 = 0.52. According to Eq.1, we can investigate
the relationship between the coverage ratio of the entity ei
and model’s generalization ability on this entity. The possible
values of ρ(ei) and their corresponding interpretation can be
found in Tab. 2.

Exp-I: Breaking Down the Test Set

Instead of utilizing a holistic metric on the whole dataset,
we break down the test set into interpretable regions by the
measure ρ and then observe how the generalization ability of
the NER models varies with it.

Results Based on Tab. 3 and driven by Q1, our observa-
tions are: 1) In general, the part of test entities with high
performance are usually the ones that appear in the training
set. By contrast, if the test entity is unseen, it will achieve
a lower performance. 2) No matter what level (character
or word) pre-trained embeddings are introduced, the perfor-
mances of unseen entities are largely improved. 3) Compar-
ing two different levels of pre-trained methods, ELMo and
FLAIR achieve better performances on unseen entities but
have not shown significant gain on seen entities. 4) Com-
pared to Rand, CNN shows its superior performance on the
prediction of unseen entities. 5) For different parts of the test
set, we find C �= 0 is the most challenging part (even for
the state-of-the-art model), followed by C = 0 and (0, 0.5].
Interestingly, on the CoNLL dataset, we find that if the test
entity is labeled as a different category in the training set, it
will be more difficult to learn compared with entities which
have not been seen in the training set. 6) We find that the
character- and the word-level pre-trained embeddings are
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Datasets

Embed-layer Entity Coverage Rate

Char Word Overall 1 (0.5, 1) (0, 0.5] C �= 0 C = 0

CoNLL

CNN - 76.42 79.94 86.99 78.84 69.74 77.61
FLAIR - 89.98 95.30 95.58 82.39 72.16 90.39
ELMo - 91.79 97.61 95.98 85.15 71.43 92.22
BERT - 91.34 97.72 95.17 86.66 77.83 92.37
- Rand 78.43 95.05 94.75 73.54 37.97 66.40
- GloVe 89.10 98.44 96.31 81.34 57.80 87.23
CNN Rand 82.88 94.13 94.48 74.25 47.78 78.91
CNN GloVe 90.33 98.32 95.94 80.33 59.67 89.74
ELMo GloVe 92.46 98.08 96.46 86.14 69.79 93.08
FLAIR GloVe 93.03 98.56 96.38 87.07 73.58 93.42

WNUT

CNN - 20.88 45.99 67.01 40.25 19.14 19.74
FLAIR - 41.49 81.15 88.14 54.36 39.56 43.44
ELMo - 43.70 88.72 90.83 55.56 44.19 43.32
BERT - 44.08 77.75 81.61 49.74 34.65 41.92
- Rand 14.97 60.62 83.84 50.00 3.90 4.77
- GloVe 37.28 89.29 92.62 45.65 35.34 35.15
CNN Rand 22.29 48.88 71.43 39.08 16.75 18.83
CNN GloVe 40.72 86.12 92.24 49.74 26.67 40.06
ELMo GloVe 45.33 90.38 89.92 56.57 37.8 46.58
FLAIR GloVe 45.96 90.52 89.92 61.69 42.07 48.38

Table 3: The breakdown performance on CoNLL and WNUT datasets with different pre-training strategies, which is based on
the LSTM as sentence encoder and CRF as the decoder. “Rand” represents the word representations are randomly initialized.
“Overall” denotes the F1 score on the whole test set and the names of the last five columns correspond to ρ definition in Tab.2.

complementary to each other. Combining these two types of
pre-trained knowledge will further improve the performance
by a considerable margin.

Exp-II: Annotation Errors Detecting and Fixing

For each test entity with tag k, the measure ECR quantifies
its label ambiguity: the proportion that this entity is labeled
as k in the training set. Its intriguing property could help us
find the annotation errors of the dataset.

Detecting Errors Specifically, since ρ measures the degree
to which entities in the test set have been seen in the training
set with the same label, the value of ρ within some ranges
suggests that corresponding entities are more prone to an-
notation errors, such as ρ = 0, C �= 0 (entity ek appeared
in train set but without label k) and ρ ∈ (0, 0.5] (entity ek

appeared in train set with diverse labels).

Fixing Errors While researchers have been aware of anno-
tation errors, such as on the tasks of Part-of-Speech (Manning
2011) and Chinese word segmentation (Ma, Ganchev, and
Weiss 2018), yet few attempts have been made to fix them.
The significance of correcting annotation errors for tagging
tasks has been originally mentioned by (Manning 2011). In
this paper, we argue that fixing annotation errors can not only
boost the NER performance, but can reflect the true general-
ization ability of the existing models, making it possible to

identify the real weaknesses of current systems.

Evaluation on Revised CoNLL (ReCoNLL) Many errors
and inconsistencies in NER datasets are quite non-systematic
and are hard to fix by deterministic rules. Therefore, we
manually fixed errors with the instruction of the measure ECR
(entity coverage ratio). Finally, we corrected 65 sentences in
the test set, and 14 sentences in training set. When the revised
dataset is ready, we re-train several typical NER models and
make a comparison to the original ones.

The results are shown in Tab. 4. We find that once these
errors are fixed, the performance of all these models has
been improved, which indicates that human annotation errors
cover the actual generalization ability of the existing model.
Notably, the NER model FLAIR has driven the state-of-the-
art result to a new level.

4.2 Measuring Dataset Bias

To answer the question Q2: “what factor of a dataset can
distinguish neural networks that generalize well from those
that don’t”, in this section, we introduce two measures, which
can quantify the relationship of entities between training
and test sets from dataset-level and help us understand the
generalization behavior.

Expectation of Entity Coverage Ratio (EECR) Here, we
define the expectation of the coverage ratio over all entities
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Model CoNLL ReCoNLL

(Devlin et al. 2018) 92.80 -
(Peters et al. 2018) 92.22 -
(Akbik, Blythe, and Vollgraf 2018) 93.09 -
(Akbik, Bergmann, and Vollgraf ) 93.18 -

Our Implementation

GloVe 89.10 89.85
ELMo 91.79 92.65
BERT 91.34 92.16
FLAIR 93.03 93.78

Table 4: The test performance (F1 score) on CoNLL 2003
and its revised version.

in test data as Eρ(e) as follows:

Eρ(e) =
∑
i∈Ne

ρ(ei) ∗ freq(ei) (2)

in which Ne denotes the number of unique test entities and
freq(ei) represents the frequency of the test entity ei.

This index measures the degree to which the test entities
have been seen in the training set. A higher value is suggestive
of a larger proportion of entities with high coverage ratio.

Contextual Coverage Ratio (CCR) We introduce a no-
tion of η to measure the contextual similarity of entities
belonging to the same category but from the training and the
test sets, respectively.

ηk(Dtr, Dte) =
∑

fi∈φk
te

∑
fj∈φk

tr

pfipfjSim(vfi , vfj ) (3)

where k denotes the category of an entity. Dtr and Dte rep-
resents the training and test sets. φk

tr denotes a set of the
high-frequency contextual patterns in which entities in train-
ing set reside in. We set the window size to 3, and choose 30
bigrams and 20 trigrams, then we obtain their vector repre-
sentation vf∗ of each word span using BERT followed by a
mean operation. Sim(·) is a cosine-similarity function. pfi
is the probability of the contextual pattern fi, which is using
the frequency of the contextual pattern divided by the total
contextual patterns’ frequency.

Exp-III: Cross-dataset Generalization

The Expectation of Entity Coverage Ratio and Contextual
Coverage Ratio can measure the similarity between training
and test set from a different perspective. Next, we show how
these two measures correlate with the model’s performance
by a cross-dataset generalization experiment.

Data Construction: PLONER We re-purpose a dataset for
cross-domain generalization evaluation, in which three types
of entities (PERSON, LOCATION, ORGANIZATION) from dif-
ferent domains are involved, therefore named “PLONER”

Figure 2: Illustration of F1 score, EECR, and CCR on
cross-dataset setting. P-row and P-col represent row- and
column-wise Pearson correlation coefficient. Green, Pink
and Yellow regions denote the correlation between MF1

and Mρ+Mφ, Mρ, Mφ respectively. The Blue is the overall
correlation coefficient.

dataset. Specifically, we pick a set of representative NER
datasets including: WNUT16, CoNLL03, OntoNotes-bn,
OntoNotes-wb, OntoNotes-mz, OntoNotes-nw,
and OntoNotes-bc. These datasets use disparate entity
classification schemes, which makes it hard to conduct zero-
shot transfer. We collapse types into standard categories used
in the MUC (Grishman and Sundheim 1996) competitions
(PERSON, LOCATION, ORGANIZATION) and the other cat-
egories are dropped. 1 To be fair, we limited the number of
samples in each dataset to the same 2,500.

Results Fig. 2 shows the cross-dataset expectation of cover-
age ratio (Mρ), contextual coverage ratio (Mφ), and F1 score
(MF1). Each column corresponds to the performance when
testing on one dataset and training on each of other datasets.
We detail our findings as follows:

1) The diagonal elements of the MF1 achieve the highest
values, which suggests that models generalize poorly on the
samples from different distributions (domains).

2) The highest values are also achieved on the diagonal
in Mρ and Mφ. Additionally, from the values of Pearson

1We have released the dataset.
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Figure 3: Changes of F1-score as more source domains are
introduced in three different orders: descending order (red),
ascending order (orange) and random order (blue) of EECR
scores.

coefficient, we could find the two measures: expectation of
coverage ratio (Mρ), contextual coverage ratio (Mφ) correlate
closely with F1-score Mρ.

3) Column-wisely, given a test dataset, ρ, φ, and F1 can
usually achieve the highest values on the same training set,
which suggests we can select the most useful training sets
through the measures ρ and φ when the distribution to be
tested is given and we have some samples from it as the
validation set.

4) Given a test set, the training set with higher EECR
(Expectation of Entity Coverage Ratio) value could also ob-
tain a lower F1 score, since entity coverage ratio is not the
only factor that effects generalization and the contextual
coverage ratio also matters.

A significant case can be found in Fig. 2 (numbers in
boxes), taking the WB as a test set, we observe that WNUT and
CoNLL have higher EECR(ρ) value than MZ while obtaining
lower F1 score. We can speculate the reason from the φ-
M , that the contextual coverage ratio between WB and MZ is
much higher than utilizing WNUT and CoNLL as training sets.
The above results show that the generalization ability of NER
models is influenced not only by whether the test entity has
been seen in the training set but also by whether the context
of the test entity has been seen.

Exp-IV: Order Matters for Data Augmentation

The measure EECR can be used to quantify the importance
of different source domains, therefore allowing us to select
suitable ones for data augmentation. Next we will show how
to utilize the EECR metric to make better choices of source
domains from the seven candidates: WNUT16, CoNLL03,
OntoNotes-bn, OntoNotes-wb, OntoNotes-mz,
OntoNotes-nw, and OntoNotes-bc. We take WNUT as
the tested object and continuously increase the training sam-
ples of above seven datasets in three ways: 1) random order
of EECR scores; 2) descending order of EECR scores; 3)
ascending order of EECR scores;

Results Fig. 3 shows the results and we can find that it is
not that the more training data we have, the better perfor-

Algorithm 1 Consistency calculation and evaluation for
Named Entity Recognition

Require: Training dataset Dtr and multiple subsets of validation
dataDval

1 , · · · ,Dval
K ⊂ Dval. � K is the number of categories

Require: Parameters of the model θ ← θ0

1: Train the model using Dtr: θ ← θ̂
2: for p ∈ {1 · · ·K} do
3: for q ∈ {1 · · ·K} do
4: Compute class-level consistency: δ(p, q) =

1
|Dval

p ||Dval
q |

∑|Dval
p |

i

∑|Dval
q |

j Cs(gp
ei ,g

q
ej ) � Eq.4

5: end for

6: end forreturn A consistency matrix M ∈ RK×K

mance we will obtain. When we introduce multiple training
sets for data augmentation, the order of the distance between
training sets and validation sets can help us select the most
useful training sets.

4.3 Diagnosing Generalization with Consistency

Above entity-centric analyses encourage us to find inter-
pretable factors that affect the model’s generalization ability.
We can also understand the models’ generalization behavior
from the perspective of the category of each entity. To an-
swer the question Q3, we propose to use a proxy measure
consistency via the angle of gradients to investigate how the
relationship between entity categories influence the difficulty
of model learning.

The core idea behind the measure consistency is to quantify
the effect of different test samples on the trained parameters
in NER models. Formally, given a training sample x and its
ground truth label y, we refer to f(x, θ) as the parameterized
neural network. Generally, the loss function L(f(x, θ), y)
shows the difference between model’s output and ground
truth label. And the gradients of the loss with respect to θ
can be formulated as: g = ∇θL(f(x, θ), y) Here, we pro-
pose to characterize the generalization ability of neural net-
works by observing the gradients’ behaviors of test samples.
Specifically, given any two samples, the measure consistency
Cs can be defined as the cosine angle of their gradients:
Cs(g1,g2) = g1·g2

|g1||g2| , where |v| denotes the L2-norm of
vector v. g1 and g2 represent two gradient vectors derived
from two samples. The idea of utilizing the angle of gradients
induced by two test examples has been originally explored
on image classification (Fort, Nowak, and Narayanan 2019).
Here, we extend this idea to NLP tasks.

Consistency Evaluation for NER Formally, given an en-
tity ek and its label yk, we refer to gk

e = ∇θL(f(x, θ), yk)
as its generated gradient vector, where x is the input sample
containing entity ek. Then, for any two samples that con-
tain two entities (ei and ej) with different categories (p and
q), we introduce the measure δ(p, q) to quantify the differ-
ence between two directions along which the parameters are
updated.
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δ(p, q) =
1

CpCq

Cp∑
i

Cq∑
j

Cs(gp
ei ,g

q
ej ) (4)

where p and q denote different entity categories. Cp rep-
resents the number of test entities with category p. Alg. 1
illustrates the process for consistency calculation and evalua-
tion.

Exp-V: Probing Inter-category Relationships via Consis-
tency

Given an NER model, we can understand its generaliza-
tion ability by calculating the consistency matrix based on
Alg. 1. As shown in Fig. 5, the sub-figure (a) illustrates the
consistency matrice of two NER models trained on CoNLL
As expected, the on-diagonal elements of Mp,q (p = q) usu-
ally stay high, since it is easier for the model to find shared
features between different entities within the same category.
Algorithmically speaking, a gradient step taken with respect
to one test entity can reduce the loss on another test entity.

Additionally, a larger value of off-diagonal elements indi-
cates that the two categories share more common properties.
As a result, a correct judgment of one category is useful for
another. For example, Percent category and Ordinal
category shared a common property of “digit”. We name this
relationship between them as Sibling Categories, shown in
Fig. 4b.

However, if the off-diagonal elements are negative, it sug-
gests that a gradient step taken with respect to one test entity
would increase loss on another test entity with different cate-
gories, which we define as Overlapping Categories, shown
in Fig. 4b. This phenomenon usually occurs when two cat-
egories have some overlapped entities. For instance, “New
York University” is usually a Location name, but when “New
York University” represents as the “New York University
football team”, “New York University” is an Organization
name.

Particularly, if the off-diagonal elements are close to zero,
it means the features of two categories tend to be orthogonal:
they share few entities or common properties. We name the
relationship of these categories as Orthogonal Categories,
shown in Fig. 4b.

Exp-VI: Exploring the Errors of Hard Cases

As shown in Fig. 5, the two sub-figure (a-b) illustrate the
consistency and error matrices of the NER model trained
on CoNLL. In the error matrix, the off-diagonal elements
of Erp,q (p �= q) is computed as the number of entity be-
longing to category p predicted as category q, divided by
the total number of prediction errors of the category p. The
on-diagonal elements of Erp,q (p = q) is the accuracy of
the category p. Notably, we find that the consistency val-
ues correlate closely with error ratios based on the Pearson
coefficient in Fig. 5-(c). Taking the marked positions in sub-
figures (a-b) for example, We find that if two categories have

(a) The concept of consistency Cs

(b) Entity categories relationship

Figure 4: Illustration of the concept of consistency Cs and
entity categories relationship. gpe and gqe represents the gra-
dient of entity belongs to category p and q, respectively. e
and f are the collection of entities and features overlapped
by categories p and q, respectively.

Figure 5: The alignment between consistency Cs and the
error ratio. Sub-figure (a) is the category-membership depen-
dence of consistency Cs. Sub-figure (b) is the cross-category
error ratios. Sub-figure (c) denotes the Pearson coefficients
between consistency values and error values. The change in
color from blue to red represents the change in value from
negative to positive.

low consistency, the model tends to have difficulty distin-
guishing them, and it is easy to mis-predict each other.
This observation demonstrates that relationships between en-
tity categories influence model’s generalization ability. We
additionally find the prospects for further gains from archi-
tecture design and knowledge pre-training seem quite limited
based Fig.6. To address these issues, more contextual knowl-
edge or prior linguistic knowledge is needed.
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