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Abstract

Dialogue state tracking (DST) aims at estimating the current
dialogue state given all the preceding conversation. For multi-
domain DST, the data sparsity problem is also a major obsta-
cle due to the increased number of state candidates. Exist-
ing approaches generally predict the value for each slot inde-
pendently and do not consider slot relations, which may ag-
gravate the data sparsity problem. In this paper, we propose
a Schema-guided multi-domain dialogue State Tracker with
graph attention networks (SST) that predicts dialogue states
from dialogue utterances and schema graphs which contain
slot relations in edges. We also introduce a graph attention
matching network to fuse information from utterances and
graphs, and a recurrent graph attention network to control
state updating. Experiment results show that our approach ob-
tains new state-of-the-art performance on both MultiWOZ 2.0
and MultiWOZ 2.1 benchmarks.

1 Introduction

Dialogue state tracking (DST) is a key component in task-
oriented dialogue systems which cover certain narrow do-
mains, such as booking restaurant and travel planning. The
goal of DST is to extract user goals or intents hidden in
human-machine conversation and represent them as a com-
pact dialogue state, i.e. a set of slots and their correspond-
ing values. For example, as illustrated in Fig. 1, (slot, value)
pairs like (area, west) are extracted from the dialogue. High-
qualified DST is essential for dialogue management (Young
et al. 2013; Yu et al. 2014), where dialogue state determines
the next machine action and system reply.

Recently, motivated by commercial applications like Ap-
ple Siri, Microsoft Cortana, Amazon Alexa, or Google As-
sistant, there is significant interest in adding numerous do-
mains to these dialogue systems. Therefore, multi-domain
based DST becomes crucial.

However, most traditional state tracking approaches fo-
cus on a single domain. They extract value for each slot
predefined in the domain (Williams et al. 2013; Hender-
son, Thomson, and Williams 2014a; 2014b). These meth-
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ods can be directly adapted to multi/mixed-domain conver-
sations by replacing slots in a single domain with domain-
slot pairs (i.e. domain-specific slots) predefined (Ramadan,
Budzianowski, and Gasic 2018; Gao et al. 2019; Wu et
al. 2019). Despite its simplicity, this approach for multi-
domain DST suffers from two major drawbacks: 1) Rela-
tions among domain-specific slots are not considered, e.g.,
hotel-price range and restaurant-price range are actually
the same and domain-independent. The slot relations may
also consist of whether two slots are from the same do-
main and whether two slots have the same value type (e.g.
location, day, date, time, number, bool etc.). 2) The ap-
proach extracts value for each slot independently, which may
fail to capture features from slot co-occurrences. For ex-
ample, hotels with higher stars are usually more expensive
(price range). These may aggravate the data sparsity prob-
lem.

To tackle these challenges, we emphasize that DST mod-
els should incorporate slot relations and support informa-
tion interactions among different slots. To consider relations
among domain-specific slots, we introduce schema graphs.
In the graph, each node is a slot, and each edge between
two slots means that they are from the same domain, or they
have the same value type. To encode the graph and make in-
formation interactions among different slots, we adopt graph
attention networks (GATs).

In this paper, we propose a schema-guided multi-domain
dialogue state tracker with GATs. It is elegant to utilize
GATs to extract schema information. Our approaches are
evaluated on MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks
with extensive experiments. Contributions in this work are
summarized as:
• We are the first to incorporate slot relations and model

slot interactions in multi-domain DST to the best of our
knowledge. This is also the first time that graph neural
networks are exploited in DST.

• To fully encode the schema graph and dialogue context
(user and system utterances), graph attention matching
networks (GAMTs) are introduced in this paper, which
include internal and external attention mechanisms.

• To exploit previous states in conversations, a novel recur-
rent GAT (RGAT) is proposed with gated recurrent units
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Figure 1: An example of multi-domain dialogues. Utter-
ances at the left and the right sides are from system and user,
respectively. The belief state of each domain is represented
as a set of (slot, value) pairs. A dialogue state tracker should
be able to track all the slot values mentioned previously or
changed during the conversation.

(GRUs), which learn to keep or forget history.
• Experimental results show that our approach achieves

new state-of-the-art performance (joint goal accuracy)
on both MultiWOZ 2.0 (+2.57%) and MultiWOZ 2.1
(+9.63%) benchmarks. Our ablation studies also confirm
that the schema graph is important.

2 Background
In this section, we introduce graph attention networks
(GATs), which are the basis of our proposed DST models
in the next section.

GAT is a special type of graph neural networks (GNNs).
GNN is a deep neural network associated with a graph
(Scarselli et al. 2009). We first give some notations before
describing the details of GNN and GAT. We denote the graph
as G = (V,E), where V and E are the set of nodes xi and
the set of edges eij respectively. N (xi) denotes the neigh-
bors of node xi. N+(xi) is the set including xi and all neigh-
bors of xi, i.e. N+(xi) = N (xi) ∪ {xi}.

For each node xi in the graph, there is an input feature xi.
GNN takes xi as the initial embedding h0

i for node xi, then
updates its embedding from one step (or layer) to the next
with following operations.
Sending Messages At l-th step, each node xi will send a
message ml

i to all nodes xj ∈ N+(xi):

ml
i = f l

msg(h
l−1
i ), (1)

where f l
msg(·) is a message function for each node at l-th

step. For simplicity, in GNN a linear transformation f l
msg(·)

is often used: f l
msg(h

l−1
i ) = Wl

mhl−1
i , where Wl

m is a
weight matrix for optimization.

Aggregating Messages After sending messages, each node
xi will aggregate messages from its neighbors and itself,

eli = f l
agg({ml

j |xj ∈ N+(xi)}), (2)

where the function f l
agg(·) is the aggregation function for

every node at l-th step. The biggest difference between GAT
and traditional GNNs is that they have different aggrega-
tion functions. In traditional GNNs, all received messages
are treated equally, i.e.

eli = f l
agg({ml

j |xj ∈ N+(xi)}) = 1

Ni

∑

vj∈N+(xi)

ml
j , (3)

where Ni is the number of nodes in N+(xi). However,
in practice, some messages are more important than oth-
ers. Similar to self-attention model for machine translation
(Vaswani et al. 2017), different weights alij are specified to
different messages ml

j in GAT. Here alij is the normalized
similarity of the embedding between the two nodes xi and
xj in an unified space, i.e.

alij =
ef

l
sim(hl−1

i ,hl−1
j )

∑
xk∈N+(xi)

ef
l
sim(hl−1

i ,hl−1
k )

, (4)

where f l
sim(·) is the similarity function,

f l
sim(hl−1

i ,hl−1
j ) = (Wl

a1h
l−1
i )T(Wl

a2h
l−1
j ), (5)

where Wl
a1 and Wl

a2 are learnable weights for projections.
Once obtained, these normalized attention coefficients alij
are used to compute a linear combination of messages,

eli = f l
agg({ml

j |xj ∈ N+(xi)}) =
∑

xj∈N+(xi)

alijm
l
j . (6)

Note that, in the above equation, alij is a scalar, which
means that all dimensions in ml

j are treated equally. This
may limit the capacity to model complex dependencies.
Multi-dimensional (multi-dim) attention is a natural exten-
sion of vanilla attention. It has been shown that multi-dim
attention can handle context variation and polysemy prob-
lems in many NLP tasks (Shen et al. 2018). In this paper,
we utilize it as the message aggregating function f l

agg(·).
Instead of computing a single scalar score for each mes-
sage ml

j as shown in Eq.(4), multi-dim attention computes
a feature-wise score vector âlj for each ml

j ,

âlij = f l
sim(hl−1

i ,hl−1
j ) + f l

md(h
l−1
j ), (7)

where f l
sim(·) is a scalar and f l

md(·) is a vector. The addi-
tion in the equation means the scalar will be added to every
element of the vector. f l

sim(·) is used to model the pairwise
dependency as shown in Eq.(5), and f l

md(·) is used to esti-
mate the contribution of each feature dimension of ml

j . It
can be a MLP with one hidden layer,

f l
md(h

l−1
j ) = Wl

md2σ(W
l
md1h

l−1
j + bl

md1) + bl
md2, (8)

where Wl
md1, Wl

md2, bl
md1 and bl

md2 are learnable param-
eters, and σ(·) is an activation function, e.g. ReLU.
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Figure 2: The architecture of the proposed SST model, which includes an embedding layer, a schema-utterance GAMT for
context encoding, and a recurrent GAT for state updating. Two different schema graphs at token and slot levels are utilized in
the model (see examples in Fig. 3).

Once obtained, âlij will be normalized with a feature-
wised multi-dimensional softmax (MD-softmax) function,
which results in a categorical distribution alij at feature level.
Accordingly, Eq. (6) will be revised as follows,

eli = f l
agg({ml

j |xj ∈ N+(xi)}) =
∑

xj∈N+(xi)

alij �ml
j ,

(9)
where � represents element-wise product of two vectors.
Updating Embedding After aggregating messages, each
node will update its embedding from hl−1

i to hl
i,

hl
i = f l

ue(e
l
i,h

l−1
i ). (10)

The updating function f l
ue(·) can be a MLP function,

f l
ue(e

l
i,h

l−1
i ) = Wl

ue2σ(W
l
ue1e

l
i + bl

ue1) + bl
ue2, (11)

where Wl
ue1, Wl

ue2, bl
ue1 and bl

ue2 are learnable parame-
ters. It’s notable that hl−1

i is not directly used in above MLP
function, because eli has already included message from xi

itself. In order to make training stable, we employ a resid-
ual connection around two steps/layers, followed by layer
normalization, i.e. LayerNorm(hl

i + hl−1
i ).

After updating node embedding L steps, we will obtain
the context-aware embedding hL

i for each node xi.

3 Method

In a multi-domain dialogue system, there are a set of do-
mains D that users and the system can converse about. For
each domain d ∈ D, there are nd slots. Each slot s cor-
responds to a specific aspect of the user intent (e.g. price)
and can take a value (e.g. cheap) from a candidate value
set defined by a domain ontology. The dialogue state S can
be defined as a set of slot-value pairs, e.g. {price=cheap,
area=west}.

Figure 3: Two different schema graphs at token and slot lev-
els.

At t-th dialogue turn, the dialogue state is St, which is
used as a constraint to frame a database query. Based on the
results of database query and St, the systems give a response
Usys
t+1 to the user. Then the user inputs a new sentence Uusr

t+1 .
A state tracker then updates the dialogue state from St to
St+1 according to Usys

t+1 and Uusr
t+1 . The whole dialogue pro-

cess can be represented as {S0, Usys
1 , Uusr

1 , S1, Usys
2 , Uusr

2 ,
S2, · · · , ST−1, Usys

T , Uusr
T , ST }.

Traditionally, lots of DST models predict dialogue state
according to the whole dialogue context up to date. They
do not explicitly model the dialogue state update process.
In contrast, our proposed SST model explicitly updates di-
alogue state from St to St+1 depending on Usys

t+1 and Uusr
t+1 ,

i.e.
St+1 = fsst(St, U

sys
t+1, U

usr
t+1). (12)

Our SST model consists of two modules: ontology schema
and utterance matching module and state updating module.
As shown in Fig. 2, the first module learns the context rep-
resentation for each token in domain schema and utterance
and harvests useful information from each other. The second
module updates dialogue state from St to St+1 according to
slot-specified information obtained by the first module.
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3.1 Ontology Schema and Utterance Matching
with GAMT

In previous work, ontology schema information is not fully
utilized in learning dialogue utterance representation. Here
we propose graph attention matching networks (GAMTs) to
learn the representations of ontology schema and dialogue
utterance simultaneously.

We first define a token-level schema graph G1 =
(V 1, E1) according to the original ontology scheme. An ex-
ample is shown in Fig. 3(a). The graph nodes consist of
all domain tokens, e.g. taxi, hotel, restaurant, and all slot
tokens, e.g. name, food, destination. There are edges be-
tween slots and the domain which the slots belong to. If
some slots/domain is described with more then one word,
e.g. book people, it will be divided into single tokens, e.g.
book, people, and there is an edge between them.

We define another graph G2 = (V 2, E2) according
to the dialogue utterance. The graph nodes consist of all
words in the latest system response and user utterance pair
(Usys

t+1, U
usr
t+1). All nodes in the graph are connected.

In GAMT, for each node xk
i ∈ V k(k = 1, 2), the em-

bedding hk,l
i is updated at each step to take into account not

only the aggregated messages from its neighbors but also
the cross-graph messages from another graph. The input fea-
ture of each node in G1 is the corresponding token embed-
ding, and the input feature of each node in G2 is the sum
of the token embedding, the segmentation embedding, and
the position embedding as shown in Fig. 2. Here we use pre-
trained word-embedding as the token embedding and ran-
dom initialized embedding as the segmentation embedding.
They are updated during the training process. We use sine
and cosine functions of different frequencies as the position
embedding (Vaswani et al. 2017). Compared with GAT, here
the process of updating node embedding is revised as fol-
lows. Without loss of generality, we will use nodes in G1

to describe the update process, and the update process for
nodes in G2 is similar.
Sending Messages At l-th step, each node x1

i in graph G1

will not only send a message m1→1,l
i to all nodes x1

j ∈
N 1

+(x
1
i ),

m1→1,l
i = fself,l

msg (h1,l−1
i ), (13)

but also send a message to all nodes in graph G2:

m1→2,l
i = f cross,l

msg (h1,l−1
i ), (14)

where the functions fself,l
msg (·) and f cross,l

msg (·) are different
linear transformations.
Aggregating Messages After sending messages, each node
x1
i will aggregate messages from N 1

+(x
1
i ) and V 2 respec-

tively,

e1→1,l
i = fself,l

agg ({m1→1,l
j |x1

j ∈ N 1
+(x

1
i )}),

e2→1,l
i = f cross,l

agg ({m2→1,l
j |x2

j ∈ V 2}).
(15)

Here we also use mutli-dim attention (Eq. 9) as the aggre-
gating functions fself,l

agg (·) and f cross,l
agg (·). The parameters of

two functions are different.

Updating Embedding After aggregating messages, each
node will update its embedding from hl−1

i to hl
i,

hl
i = f l

ue([e
1→1,l
i , e2→1,l

i ],hl−1
i ), (16)

where [·, ·] is the concatenation of two vectors. The function
f l
ue(·) is a MLP as shown in Eq. (11).

After updating node embedding L1 steps with GAMT, we
can obtain contextual representations h1,L1

i for each node x1
i

in G1 and h2,L1

j for each node x2
j in G2. h1,L1

i includes not
only information from the related tokens (i.e. neighbors) in
ontology schema, but also useful information from dialogue
utterance. Similarly, h2,L1

j includes not only contextual in-
formation in dialogue utterance, but also useful information
from ontology schema.

We then obtain slot representation vector gs based on
h1,L1 for each slot s. Assuming a slot consists of one or
more tokens in G1, a feature-wised score vector is calcu-
lated with an MLP for each token, and then normalized with
MD-softmax. Finally, the node embeddings h1,L1

i for these
tokens are weighted with the normalized scores to obtain gs.

3.2 Dialogue State Updating with RGAT

The state updating module takes gsi as input, and updates
the dialogue state for each slot si. As introduced in Section
1, there may be underlying relations between slots in multi-
domain dialogue state tracking. In order to capture the inter-
action between slots, we propose to use recurrent attention
graph neural networks (RGAT) for state updating.

We first define a domain-specific slot-level schema graph
G. Fig. 3(b) is an example. The nodes of G consist of all
slots, e.g. hotel-name, taxi-destination. There is an edge be-
tween two slots if they belong to the same domain. If two
slots belong to different domains but some of their candidate
values are the same, there is also an edge between them. For
example, in Fig. 3(b), there is edge between hotel-name and
taxi-destination, because the taxi destination may be a hotel.

The input feature of each node xi is the embedding vector
vi of value for the corresponding slot si at t-th turn. RGAT
takes vi as the initial embedding h0

i for node xi (i.e. slot si),
then updates its embedding from one step to the next similar
to GAT. However, the most significant difference between
GAT and RGAT is that the parameters of RGAT in all steps
are shared, and their node embedding updating functions are
different.
Sending Messages At l-th step, each node xi will send its
embedding hl−1

i as a message ml
i to its neighbours xj ∈

N (xi),
ml

i = hl−1
i . (17)

Aggregating Messages After sending messages, each node
xi will aggregate messages from all neighbours xj ∈ N (xi),

eli = fagg({ml
j |xj ∈ N (xi)}). (18)

Here the multi-dim attention (Eq. 9) is used as the aggregat-
ing function fagg(·). Different from that in GAT and GAMT,
the parameters of the function are shared across all steps.
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Updating Embedding After aggregating messages, each
node will update its embedding from hl−1

i to hl
i,

hl
i = fue(e

l
i,h

l−1
i ,gsi), (19)

where the function fue(·) is an improved GRU cell:

ẑli,1 = Wz,1[e
l
i,h

l−1
i ,gsi ] + bz,1,

ẑli,2 = Wz,2[e
l
i,h

l−1
i ,gsi ] + bz,2,

ẑli,3 = Wz,3[e
l
i,h

l−1
i ,gsi ] + bz,3,

zli,1, z
l
i,2, z

l
i,3 = MD-softmax(ẑli,1, ẑ

l
i,2, ẑ

l
i,3),

r̂li,1 = sigmoid(Wr,1[e
l
i,h

l−1
i ,gsi ] + br,1),

rli,2 = sigmoid(Wr,2[e
l
i,h

l−1
i ,gsi ] + br,2),

h̃l
i = tanh(Wh[gsi , r

l
i,1 � eli, r

l
i,2 � hl−1

i ]),

hl
i = zli,1 � h̃l

i + zli,2 � hl−1
i + zli,3 � eli,

(20)

where MD-softmax is the feature-wise multi-dimension
softmax function. zi,1, zi,2, and zi,3 are three gates that con-
trol information flow. In particular, zi,1 controls information
from the latest dialogue context. If zi,1 is 1, then the value of
corresponding slot si will change to new value. zi,2 controls
information from its last dialogue state. If zi,2 is 1, then the
value of corresponding slot si will remain unchanged. zi,3
controls information from its neighbours. If zi,3 is 1, then
the value of corresponding slot si will be copied from some
value of its neighbours. All parameters W and b are shared
across steps.

After updating node embedding L2 steps, we will obtain
the embedding hL2

i for each node xi. It is the new hidden
state of slot si. We calculate the dot product between the
hidden vector and each of the embedding vectors of the can-
didate values. The softmax function is performed with the
results to give a distribution of probabilities pt+1,i for all
candidate values, i.e.

pt+1,i = softmax(Evh
L2
i ), (21)

where Ev is the value embedding matrix. Each row corre-
sponds to an embedding vector for a candidate value. Ev is
initialized with pre-trained word embedding. If a slot value
consists of more than one word, the initialized embedding
is the concatenation of the mean-pooling and max-pooling
of all words. The embedding matrix is updated during train-
ing. When training the whole DST model, we minimize the
cross-Entropy (CE) loss between the predicted probabilities
and the given label for all slots.

3.3 General SST models

In previous sections, our SST model only takes dialogue
context in the latest turn (i.e. latest user utterance and system
response) into consideration for each time. It can be natu-
rally extended to encode dialogue context with more turns,
i.e. the DST formula in Eq. (12) can be reformed as follows,

St = fsst-k(St−k, U
sys
t−k+1, U

usr
t−k+1, · · · , Usys

t , Uusr
t ),

(22)
where k is the number of selected dialogue turns, and the
corresponding SST model is refered to SST-k.

4 Experiments

4.1 Setup

Data We choose MultiWOZ 2.0 (Budzianowski et al.
2018) and MultiWOZ 2.1 (Eric et al. 2019) as our training
and evaluation datasets, both of which are task-oriented cor-
pora comprised of dialogues between human and human.

Unlike some common datasets such as DSTC2 which
merely focuses on the restaurant search domain, there are
35 slots in MultiWOZ 2.0 with nearly 2000 candidate val-
ues over seven domains. Following previous work TRADE
(Wu et al. 2019), we only use five of them since the other
two domains barely appear, and they are neither in the de-
velopment set nor in the test set. Besides, it is worth men-
tioning that there are a certain number of error annotations
in this dataset. Firstly, the values in the ontology and the
dialog context are not always the same. For example, the
value in the context is eastern but ontology uses east instead.
Secondly, delayed markups can sometimes be found in the
process of dialog state updates, which exert an influence on
model training.

To alleviate the problems mentioned above, MultiWOZ
2.1 is released recently. More than 32% of state annotations
have been modified, especially in name slots. It contains
55718 turn-level training samples from 8133 dialogues (only
five domains) with 7368 turns of the test set.

Hyperparameters We use pretrained GloVe embeddings
(Pennington, Socher, and Manning 2014) and character em-
beddings (Hashimoto et al. 2017) to represent words both in
the dialogue turns and the slot tokens. Then a dense layer
with the output size of 180 has been adopted, and the size of
all hidden layers is 180. The number of GAMT steps/layers
L1 is three on both datasets. Each model is trained by RM-
SProp with a learning rate of 0.0001 and a batch size of 32.

4.2 Main Results

Table 1 shows our results on both MultiWOZ 2.0 and Mul-
tiWOZ 2.1 test sets. Here joint goal accuracy is used as the
evaluation metric. We compare our model with several pre-
vious baselines.

The existing models can be divided into two categories,
the classification-based models and the generative mod-
els. The classification-based ones include: MDBT (Ra-
madan, Budzianowski, and Gasic 2018), which uses mul-
tiple bi-LSTMs to encode utterances of system and user;
GLAD (Zhong, Xiong, and Socher 2018), a global-local
self-attention model; GCE (Nouri and Hosseini-Asl 2018),
a global-conditioned encoder; HJST (Eric et al. 2019) and
FJST (Eric et al. 2019), which refer to the Flat Joint State
Tracker and the Hierarchical Joint State Tracker respec-
tively. and SUMBT (Lee, Lee, and Kim 2019), a slot-
utterance matching belief tracker. To break through the re-
straint of ontology values, some generative models are pro-
posed. For example, Neural Reading DST model (Gao et al.
2019), which utilizes an attention-based neural network to
point to the slot values in the utterances; HyST (Goel, Paul,
and Hakkani-Tür 2019), a hybrid joint state tracking model
learning the optimal method for each slot type, and TRADE
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Table 1: Joint goal accuracy on MultiWOZ 2.1 and Multi-
WOZ 2.0 test set vs. various approaches as reported in the
literature.

DST Models
Joint Acc.

MultiWOZ 2.1
Joint Acc.

MultiWOZ 2.0

MDBT - 15.57
GLAD - 35.57
GCE - 36.27
HJST 35.55 38.4
FJST 38.0 40.2

SUMBT - 46.65
Neural Reading DST 36.40 39.41

HyST 38.1 42.33
TRADE 45.6 48.6
SST-1 52.55 47.59
SST-2 55.23 51.17
SST-3 54.22 49.29

(Wu et al. 2019), a transferable dialogue state generator us-
ing a copy mechanism.

Our SSTs belong to classification-based models. Here
SST-1, SST-2, and SST-3 are compared with these baselines.
From the results, we can find that our best model SST-2 out-
performs all baseline models and achieves the new state-of-
the-art on both datasets.

Among our models, SST-2 performs best on both datasets.
Especially, SST-2 and SST-3 perform much better than SST-
1 on MultiWOZ 2.0. The reason is that there are some errors
in labels, and one of the most common error types is delayed
markup, i.e. slot values were annotated one or more turns
after the value appeared in the user utterances. For SST-1,
when delayed markup appears, SST-1 can’t find the value
in the last utterance. Therefore, using more dialogue context
(e.g. SST-2, SST-3) will benefit training and prediction.

4.3 Analysis

Ablation Analysis Table 2 illustrates the ablation exper-
iment for our SST-2 model. We find a ∼2% drop of per-
formance when the graph relation is removed in RGAT. It
shows that information exchange between slots is necessary.
In Table 3, we present an example to show the effect of the
graph in RGAT. We can see that the model with the graph
correctly gets the dialogue state, even though the user does
not offer hotel-book day directly. The model makes the ac-
curate reference of the phrase “for the same day” through the
context, and the value of train-day is copied as the value of
hotel-book day. However, the model without graph can not
predict the correct value of hotel-book day.

We also investigate the effect of interaction between the
ontology graph and the utterance. We remove the cross at-
tention between them in all steps except the last step in
GAMT and find a ∼1% drop of performance. It indicates
that multiple times of interaction can make better alignment
between ontology and utterance.

For the steps in RGAT, we tried the number from one to
six to observe the change of model performance. We find
that SST-2 with 2 and 4 steps achieves the best performance
on MultiWOZ 2.0 and MultiWOZ 2.1, respectively. The re-

Table 2: Ablation study.

Model
Joint Acc.

MultiWOZ 2.1
Joint Acc.

MultiWOZ 2.0

SST-2 55.23 51.17
- Graph in RGAT 52.84 49.67
- Interaction in GAMT 53.85 50.26

Figure 4: Results of different number of steps in RGAT on
MultiWOZ 2.0 test set.

sult on MultiWOZ 2.0 is presented in Figure 4. It indicates
that more than 1 step is needed for fusing the history state
and the useful information in the current utterance.

Error Analysis Domain-specific slot accuracy of SST-2
and TRADE 1 on MultiWOZ 2.0 test set is shown in Ta-
ble 4. We find that our model can achieve higher accuracy
than TRADE for most of the slots. However, in the taxi do-
main, the accuracy for most slots in this domain is lower
than TRADE. The reason may be that the values of slots in
the taxi domain are much longer (e.g. address, name), which
are more suitable for generative models like TRADE.

5 Related Work

Dialogue State Tracking Traditional dialogue state track-
ing models rely on semantics extracted by natural language
understanding to predict the current dialogue states (Young
et al. 2013; Williams et al. 2013; Henderson, Thomson, and
Williams 2014b; Yu et al. 2015; Sun et al. 2014b; 2014a;
Xie et al. 2015; Yu et al. 2016), or jointly learn language
understanding in an end-to-end way (Henderson, Thomson,
and Young 2014a; 2014b). These methods heavily rely on
hand-crafted features and complex domain-specific lexicons
for delexicalisation, which are difficult to extend and scale
to new domains.

Recently, most works about DST focus on encoding di-
alogue context with deep neural networks (such as CNN,
RNN, LSTM-RNN, etc.) and predicting a value for each
possible slot (Mrkšić et al. 2017; Xu and Hu 2018; Zhong,
Xiong, and Socher 2018; Ren et al. 2018; Xie et al. 2018).
For multi-domain DST, slot-value pairs are extended to

1The official code https://github.com/jasonwu0731/trade-dst is
used.
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Table 3: An example of coreference in multi-domain dialogue.

utterances dialogue state
last dialogue state predicted state (w/o graph) predicted state (with graph)

sys: would you like to book a
room at the acorn guest house ?
user: yes please book it for
5 people and 4 nights starting
from the same day .

train-destination: cambridge
train-day: monday
train-departure: stansted airport
train-leaveat: 11:15
hotel-name: acorn guest house

hotel-book stay: 4
hotel-book day: saturday
hotel-book people: 5
train-destination: cambridge
train-day: monday
train-departure: stansted airport
train-leaveat: 11:15
hotel-name: acorn guest house

hotel-book stay: 4
hotel-book day: monday
hotel-book people: 5
train-destination: cambridge
train-day: monday
train-departure: stansted airport
train-leaveat: 11:15
hotel-name: acorn guest house

Table 4: Domain-specific slot accuracy.
Domain-slot name SST-2 TRADE Vocab size Domain-slot name SST-2 TRADE Vocab size
hotel-pricerange 0.9851 0.9753 5 attraction-area 0.9767 0.9765 7
hotel-type 0.9435 0.9370 3 attraction-name 0.9313 0.9221 158
hotel-parking 0.9761 0.9693 4 attraction-type 0.9741 0.9638 17
hotel-book stay 0.9852 0.9885 9 restaurant-food 0.9775 0.9744 105
hotel-book day 0.9851 0.9851 7 restaurant-pricerange 0.9726 0.9696 4
hotel-book people 0.9819 0.9834 10 restaurant-area 0.9730 0.9699 6
hotel-area 0.9779 0.9719 14 restaurant-name 0.9133 0.9116 197
hotel-stars 0.9857 0.9800 7 restaurant-book time 0.9837 0.9849 68
hotel-internet 0.9868 0.9695 3 restaurant-book day 0.9879 0.9860 10
hotel-name 0.9213 0.9344 100 restaurant-book people 0.9887 0.9885 8
train-destination 0.9776 0.9761 33 taxi-leaveat 0.9845 0.9844 129
train-day 0.9849 0.9774 11 taxi-destination 0.9473 0.9686 299
train-departure 0.9738 0.9758 42 taxi-departure 0.9530 0.9682 288
train-arriveby 0.9841 0.9761 120 taxi-arriveby 0.9829 0.9885 106
train-book people 0.9746 0.9764 13 train-leaveat 0.9673 0.9623 157

domain-slot-value pairs for target (Ramadan, Budzianowski,
and Gasic 2018; Gao et al. 2019; Wu et al. 2019). However,
they do not explicitly consider slot relations, which may mit-
igate the data sparsity problem. They also predict the value
for each slot independently, which can not capture label de-
pendency. Beyond DST, relations and similarities between
slots are also utilized in language understanding (Zhu and
Yu 2018; Zhao, Zhu, and Yu 2019b), while it lacks an inter-
action mechanism between slots and utterances.

Graph Neural Network Recently, there has been a surge
of interest in Graph Neural Network (GNN) approaches
for representation learning of graphs (Scarselli et al. 2009;
Veličković et al. 2018). They can aggregate information
from graph structure and encode node features, which can
be exploited to learn to reason and introduce unordered
structure information. Many GNN variants are proposed and
also applied in various NLP tasks, such as text classification
(Yao, Mao, and Luo 2019), machine translation (Marcheg-
giani, Bastings, and Titov 2018), dialogue policy optimiza-
tion (Chen et al. 2018b; 2019; 2018a) etc. We are the first to
introduce GNN in DST to the best of our knowledge.

6 Conclusion

We introduce a schema-guided multi-domain dialogue state
tracker with graph attention networks, which involves slot
relations and learns deep feature representations for each
slot dependently. All slots from different domains and

their relations organized as schema graphs. Graph attention
matching network and recurrent graph attention network
are proposed to fully encode dialogue utterances, schema
graphs, and previous dialogue states. Our approach achieves
state-of-the-art joint goal accuracy on both MultiWOZ 2.0
and 2.1 benchmarks. In this paper, the schema is automat-
ically constructed according to onology. In the future, we
will investigate to use more complex schema (Rastogi et al.
2019). We will also exploit generative models for value pre-
diction, which could enable the tracker to generate values
out of domain ontology. To overcome the data sparsity prob-
lem, we would like to try data augmentation methods (Zhao,
Zhu, and Yu 2019a; Cao et al. 2019).
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