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Abstract

Reinforcement learning (RL) has been widely used to aid
training in language generation. This is achieved by en-
hancing standard maximum likelihood objectives with user-
specified reward functions that encourage global semantic
consistency. We propose a principled approach to address the
difficulties associated with RL-based solutions, namely, high-
variance gradients, uninformative rewards and brittle train-
ing. By leveraging the optimal transport distance, we intro-
duce a regularizer that significantly alleviates the above is-
sues. Our formulation emphasizes the preservation of seman-
tic features, enabling end-to-end training instead of ad-hoc
fine-tuning, and when combined with RL, it controls the ex-
ploration space for more efficient model updates. To validate
the effectiveness of the proposed solution, we perform a com-
prehensive evaluation covering a wide variety of NLP tasks:
machine translation, abstractive text summarization and im-
age caption, with consistent improvements over competing
solutions.

Introduction

Sequence generation is one of the central research topics
in natural language processing (NLP) studies, covering a
broad spectrum of applications including machine transla-
tion (Sutskever, Vinyals, and Le, 2014; Cho et al., 2014;
Bahdanau, Cho, and Bengio, 2015), abstractive summariza-
tion (Rush, Chopra, and Weston, 2015; Chopra, Auli, and
Rush, 2016), image captioning (Vinyals et al., 2015; Xu et
al., 2015), and style transfer (Shen et al., 2017; Prabhumoye
etal., 2018).

Maximum likelihood estimation (MLE) is employed
widely for training a sequence generation model. Specifi-
cally, given the sequential nature of language, MLE train-
ing follows an autoregressive design that maximizes the ex-
pected log-likelihood of a word conditioned on its previ-
ous context, i.e., the information encoded by the already ob-
served input sequence Cho et al. (2014). This practice leads
to the well-known exposure bias issue, where the lack of ex-
posure of the model to generated sequences during the train-
ing phase leads to the fast degeneration of semantic consis-
tency for long sequences at test time (Bengio et al., 2015).
This has motivated development of regularization schemes
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that involve the model-generated sequence at training time,
resulting in marked performance gains (Ranzato et al., 2016;
Norouzi et al., 2016; Rennie et al., 2017).

Among various empirical attempts to regularize MLE, the
use of reinforcement learning (RL) techniques has been in-
vestigated extensively (Ranzato et al., 2016; Norouzi et al.,
2016; Rennie et al., 2017; Paulus, Xiong, and Socher, 2018;
Wu et al., 2016). RL leverages a set of principled learn-
ing algorithms, such as REINFORCE Williams (1992) and
TRPO Schulman et al. (2015), to optimize the model over
desirable but often non-differentiable performance metrics.
In RL-based approaches these metrics are termed reward
functions. Relative to the likelihood, reward functions allow
the model to be informed by specilized performance metrics
that can be understood as regularizers to the standard MLE
objective Tan et al. (2018).

Crucial to the success of RL-regularized training is the
choice of the reward function. Current practice largely
falls into two categories: ) static rewards, such as phrase-
matching-based metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) and CIDEr Vedantam, Lawrence Zit-
nick, and Parikh (2015), routinely used in the evaluation of
language models; and more recently, i2) dynamic rewards
that track changes of the model in feature space during train-
ing, and are typically implemented via adversarial learn-
ing (Yu et al., 2017; Chen et al., 2018).

Despite encouraging results Rennie et al. (2017); Paulus,
Xiong, and Socher (2018), limitations of both types of re-
wards have been widely recognized. Static rewards usually
serve as imperfect proxies for human evaluation, resulting
in undesirable biases (Wang et al., 2018). While being more
objective, adversarial supervision in dynamic rewards re-
lies on the delicate balance of a mini-max objective, which
can be easily undermined in practice Arjovsky and Bot-
tou (2017); Zhang et al. (2017); Chen et al. (2018). Both
types of rewards can incur destabilization when training,
manifested as mode-dropping and gradient-vanishing. Con-
sequently, careful fine tuning is often required in the training
of RL-regularized NLP models.

Optimal transport (OT) has emerged recently as a power-
ful learning framework, demonstrating success on some of
the frontier challenges in machine learning, such as natural
image generation Salimans et al. (2018) and graph learn-
ing Xu et al. (2019). OT-based learning generally reformu-



Figure 1: Effective exploration space for different training
objectives. Black dots represent reference words, blue ar-
eas represent the effective exploration space, and the white
background is the potential exploration space. Left: Explo-
ration space in MLE, that only searches for words similar
to the references. Middle: Optimal transport distance that
tries to match words dynamically regardless of positioning
in the sentence, so the exploration space is a set containing
all reference words. Right: RL further pushes the exploration
boundary via more flexible objectives.

lates problems into a cost-dependent (discrete) distribution-
matching problem, which can be solved efficiently by iter-
ative schemes like the Sinkhorn algorithm Cuturi (2013) or
adversarial updates Arjovsky, Chintala, and Bottou (2017b).
Applications of OT approaches in the context of NLP were
pioneered by the work of Kusner et al. (2015) in document
classification, and more recently Chen et al. (2019) demon-
strated its effectiveness and robustness for sequence genera-
tion tasks through dynamic 1-gram matching.

Motivated by their success, this work presents a new
training strategy that fuses the best aspects of RL- and
OT-based learning for sequence modeling. Empirical evi-
dence suggests that RL-learning poses negative influence
early in training, a direct consequence of the uninforma-
tive and sparse reward it receives, resulting in a blind
exploration performed in an enormous (discrete) policy
space Tan et al. (2018). The gains of RL only manifest after
a long burn-in period, thus yielding steady and gradual im-
provements during the fine-tuning stage. Alternatively, OT-
regularization leads to swift convergence, i.e., model per-
formance increases quickly and plateaus after a short burn-
in period Chen et al. (2018). Such complementary learning
dynamics motivates us to take full advantage of both ap-
proaches via a carefully designed scheduled learning plan,
that systematically explores the policy space in a cost-
effective fashion (see Figure 1).

The proposed optimal-transport-enhanced RL (OTRL)
framework features the following contributions: ¢) Analy-
sis of the different regimes of RL and OT learning, moti-
vating an annealed-schedule learning strategy that integrates
RL and OT regularizations. :z) Demonstration of how the
additional OT loss serves to adaptively regularize the RL ex-
ploration in policy space, leading to stabilized training dy-
namics. i¢) Extensive experiments demonstrating the supe-
riority of the proposed OTRL framework compared to strong
baselines that leverage RL and OT separately.
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RL for Sequence Generation

Reinforcement learning (RL) can be used as a means for
evaluating and optimizing model parameters over flexible
performance metrics in NLP tasks. Examples of these met-
rics are BLEU, ROUGE and CIDEr. Any dynamic (autore-
gressive) generative model for sequence generation can be
viewed as an agent that interacts with an environment, i.e.,
word (token) sequences. Well-known examples of these gen-
erative models are the long-short term memory (LSTM) cell
Hochreiter and Schmidhuber (1997) and the Transformer
Vaswani et al. (2017).

Predictions from the agent that result in the (unobserved)
next word of the sequence constitute the action of an exe-
cuted policy pg, where 6 denotes the parameters of the agent,
i.e., the generative model, M (-, §). During training, once the
agent has reached the end of the sequence, a reward is is-
sued. The reward function r(-), e.g., an evaluation metric
such as BLEU Papineni et al. (2002), is calculated by com-
paring the sequence generated by the model with a refer-
ence, i.e., the ground-truth sequence. The loss function in
RL-based training can be written as

LrL(0) = —Eymp, [r(y,y")],

where y is the sequence sampled from py, y
ence, and the expectation is wrt policy py.

In scenarios where either sequence sampling or the reward
function are not differentiable, we can use the REINFORCE
algorithm (Williams, 1992) to approximate the gradient of
(1). Specifically, we can approximate the gradient of Lgy, ()
as:

(D

is the refer-

*

VoLrL(0) = —Eyp,[r(y,y")Vologpe(y)], (2)

where the expectation is approximated by Monte Carlo sam-
pling from pg, i.e., the probability of each generated word,
resulting in actions manifested as each word of sequence y.

To decrease the variance of the gradient of (1), a base-
line (function) to the reward can be added to (2), while pre-
serving the unbiasedness of the gradient estimation Paisley,
Blei, and Jordan (2012). This baseline may be an arbitrary
function depending on the history of y not its future, i.e., a
parameterized value-function whose purpose is to estimate
the unbiased future reward Ranzato et al. (2016). The self-
critic sequence training algorithm Rennie et al. (2017), con-
siders the baseline function b(, -) as the reward collected at
test time, which implies b £ 7(y, ), where g is the greed-
ily decoded sequence whose elements are obtained from the
generator at step ¢ via §; = arg maxy, pg(y:|y<:). Note the
baseline is obtained at the end of the generating process and
is not dependent of y* (the ground-truth sequence). Aided
by the baseline, we can re-formulate (2) as

V9L(9) = _Epre [(T‘(y, y*) - b(y))VG 10gp9(y)] , (3

where r(+, -) and b(+, -) compare the generated sequence with
the reference and greedily decoded sequence, respectively.
As a result, we seek to maximize the reward and at the same
time minimize the difference between the most likely, greed-
ily decoded sequence, and samples from py. Intuitively, if
the evaluation metric value of the sampled sentence y is



larger than that of the greedily decoded sentence ¥y, mini-
mizing the loss is equivalent to maximizing the probability
of the greedily chosen words Rennie et al. (2017).

OT for Semantic Matching

Optimal transport (OT) can provide a dynamic (independent
of position) 1-gram matching scheme for semantic match-
ing Chen et al. (2019). In a nutshell, it computes the moving
distance between two distributions, under an optimal trans-
port plan, which can be learned. Below we consider lever-
aging OT as a means of expanding the exploration space for
sequence generation tasks, thus improving the performance
of generative models relative to their MLE counterparts.

In an optimal transport approach for sequence generation,
we need to evaluate distances between words, that here we
perform in word embedding space, to learn both the param-
eters of the model # and the embedding matrix E. In partic-
ular, we use the word embeddings predicted by the model,
given by Z, = ETw,, where E € RV *¢ is the word em-
bedding matrix, V' is the vocabulary size, d is the dimen-
sionality of the embedding vector, and wy is the word gener-
ated by the model by sampling from a Gumbel-softmax de-
sign (Jang, Gu, and Poole, 2016; Maddison, Mnih, and Teh,
2017). Under Gumbel-softmax, outputs from the sequence
generation model v; produce w; = softmax(@), where 7
is the temperature parameter, and elements of g are sampled
i.i.d. from Gumbel(0, 1) (Maddison, Mnih, and Teh, 2017;
Jang, Gu, and Poole, 2016).

This Gumbel-softmax formulation is used for con-
venience since directly applying the non-differentiable
arg max operator to obtain (discrete) one-hot represented to-
kens, as above in the RL case, results in the inability to back-
propagate gradients through the model to obtain parameter
updates (Zhang et al., 2017; Yu et al., 2017). By applying the
Gumbel-softmax trick, we can collect embeddings for the
entire predicted sequence Z, = {2;}7_,. Similarly we de-
note the reference sequence embeddings as Z, = {z;}7",
but using the ground-truth one-hot-encoded input sequence
y* = {w,}",. Here n and m denote the lengths of the em-
bedded sequences Z, and Z,, respectively. Using Z, and
Z,, we can compute the sequence-level optimal transport
loss between the reference (ground-truth) and model predic-
tions using the inexact proximal point method for optimal
transport (IPOT) algorithm (Xie et al., 2018). We use the
cosine similarity as the cost function: Cj; = C(2;,2;) =

ST , . .

1— % The optimal transport distance is then formu-
i J

lated as:

n m
EOT = min E E TijCij 5
Ty

i=1 j=1

subjectto Y Ty =d;, Vj € [1,m] 4)
ZTU = di, Vi € [].,TL] y
J
where T;; is the transport matrix, d; = E“—L%, a; is the

number of times the ¢-th word appears in the generated sen-
tence, and similarly for d; and ground-truth sequence. The
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Algorithm 1 [POT algorithm.
1: Input: Embeddings Z, = {z;}}, Z, = {z;}}" and
generalized step size 1/0.
o=211,;TO =1,1,"
- Ci;
Cij = C(zi, z}); Aij = exp (77)
fort=1,2,3...do
Q= A o TW //® is the Hadamard product
fork=1,...,K do// K = 11in practice
d = 1 . o= 1
nQo’ mQTé
end for
T+ = diag(8)Qdiag(o)
end for
Return T, C = {C;;}

TRV UL hE WD

—_—

loss in (4) can be optimized with the IPOT algorithm Xie
et al. (2018), outlined in Algorithm 1. Note that an itera-
tive algorithm can be problematic for building the computa-
tional graph in modern deep learning frameworks; however,
it can be proved by the envelope algorithm that the gradient
flow through the transport matrix T';; can be ignored Carter
(2001). Therefore, this algorithm can be executed efficiently
as gradients only depend on the cost function C(-, -) (cosine
similarity).

Optimal-Transport-Enhanced RL

OT-only sequence modeling solution considered in Chen et
al. (2019) basically describes a dynamic 1-gram matching
scheme, whose training is generally stable. However, the di-
versity of natural language largely comes from the composi-
tional complexity of k-grams, which simple 1-gram cannot
capture. It is challenging to extended OT to dynamic k-gram
matching. Specifically, we will have (}) x () distinct com-
binations of k-gram pairs to match between two sentences of
length n and m. On the other hand, RL-only solutions suffer
weak learning signals due to high gradient variance, though
it is capable of matching long phrases, i.e., k-grams for ar-
bitrary k.

So motivated, we combine OT and RL to improve models
for sequence generation. OT helps stabilizing training while
encouraging semantic consistency, while RL helps to cap-
ture consistency in long phrases. The proposed OT-enhanced
RL (OTRL) approach is constructed as a hybrid algorithm.
The complete loss function for the model is written as:

L = Lwig + A2Lor + A3LrL, )

where Ly, denotes the standard maximum likelihood ob-
jective of the sequence generation model of choice.

In practice, the sequence generation model will be first
trained with the most restrictive loss, i.e., Lyig, to get a
good initial starting point. Then we gradually expand the
exploration space by introducing the optimal transport loss
Lor. This allows the model to search words during the
generation process that account for both dynamic position
matching and key word preservation. Finally we add the RL-
based self-critic loss Lgy, to fine-tune the model. This pro-
cedure can be implemented by parameter annealing. For in-



Algorithm 2 OTRL for Seq2Seq learning.

1: Input: batch size (B), paired input and output se-
quences (X,Y), hyper-parameters (A1, A, A3)

2: Build Seq2Seq model M(+;0) and embedding matrix
E.

3: for iteration = 1, ... MaxlIter do
4 1y A5, b = AnnealingScheme(A1, A2, A3)
5: fori=1,...,Bdo
6: Draw x;,y; ~ (X,Y) as:
7 x; = { Wi}, y; = {wi}
8: /I Compute output vectors from model:
9: {'Ui,t} == M((L‘i; 9)
10: /I Encode model belief:
11: w; ; = Gumbel-softmax(v; ;)
12: /I Compute embedding vectors:
13: ZT',i = {ET’LUZ‘,t}, Zg,i = {ET’IIJZ‘ﬂg}
14: /I Decode greedily (test time):
15: v; = M(x;,0)
16: /I Convert model outputs to words:
17: Y, = argmax[softmax(v])]
18: y; = argmax [softmax (v; )]
19: end for
20: // Update M (-; 0) by optimizing:
21: ZZ} N Lwie(xi, vis0) + NoLor(ZryinZygi) +

/\gERL(yia yz)}
22: end for

stance, we can decrease \; and increase A2 and A3 gradually
when training. A similar annealing strategy is also employed
in MIXER (Ranzato et al., 2016). Detailed discussion about
the choice of the hyper-parameters is provided in Section .

Related Work

RL in sequence generation A variety of RL approaches
have been proposed to further improve sequence generation
over MLE-based learning. Ranzato et al. (2016) used the
REINFORCE algorithm (Williams, 1992) and Bahdanau et
al. (2017) applied the actor-critic algorithm. These two ap-
proaches only use a RL-inspired loss to fine-tune the model
pre-trained via MLE. In Ding and Soricut (2017), they pro-
posed the softmax policy gradient (SPG) algorithm to allow
for end-to-end training without a pre-training phase. Fur-
ther, the reward augmented maximum algorithm likelihood
(RAML) (Norouzi et al., 2016) is a hybrid RL method bor-
rowing ideas from MLE and policy gradient. All these algo-
rithms can be understood as some special cases of entropy-
regularized policy optimization (ERPO) (Tan et al., 2018).
To improve the performance of RL-based methods, recent
work revisits traditional variance-reduction techniques, i.e.,
offsetting the reward with a greedy roll-out baseline (2). Our
work considers a new framework that seeks to execute sys-
tematic policy exploration space via OT, to decrease the vari-
ance of the policy optimization.

GAN in sequence generation The generative adversarial
network (GAN) (Goodfellow et al., 2014) has achieved suc-
cess in many computer vision tasks. Several works in NLP
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have also tried to incorporate GAN-inspired losses for text
generation Yu et al. (2017); Zhang et al. (2017); Chen et
al. (2018). Specifically, a discriminator is designed to com-
pare the generated sequences with references to tell which
ones are real or synthesized. This implies that the feed-
back from the discriminator into the generator is a sequence-
based (global) loss. However, the discriminator of GAN is
often hard to train for discrete observations. This happens
because it is very easy for the discriminator to differenti-
ate between real and synthetic sequences, and consequently
the gradient from the discriminator can easily vanish. Fur-
ther, there is still no principled way to avoid the so called
mode-collapsing problem in GAN training (Arjovsky, Chin-
tala, and Bottou, 2017a). Alternatively, our framework, un-
like GAN, is robust to misspecification and does not require
an additional design for the discriminator.

Optimal transport in NLP Optimal transport has been
widely applied in computer vision applications (Rubner,
Tomasi, and Guibas, 2000), and recently it has been applied
to NLP tasks. In Kusner et al. (2015), the authors propose
word mover’s distance (WMD) for document classification
and word embedding refinement, while in Alvarez-Melis
and Jaakkola (2018) there is a goal of aligning the word em-
bedding space with Gromov-Wasserstein distance (Mémoli,
2011) in an unsupervised way. Most recently, Chen et al.
(2019) used OT as a sequence-level loss for sequence gener-
ation, as a regularization term in MLE-based learning. Here,
optimal transport is used initially to refine word embeddings
and capture key phrases, and later to regularize the RL ob-
jective.

Experiments
Datasets and setup

We consider three tasks to evaluate our model: 7) Machine
translation: the commonly used English-German trans-
lation dataset and English-Vietnamese translation dataset,
IWSLT 2014 (Cettolo et al., 2014), which was also ap-
plied in Ranzato et al. (2016); Norouzi et al. (2016);
Chen et al. (2019). We employ the same pre-processing
in Ranzato et al. (2016); Norouzi et al. (2016). The EN-
DE dataset has 146K/7K/7K paired sentences for train-
ing/validation/testing, respectively. The vocabulary size for
English is 23K, and 32K for German. For EN-VI dataset,
we train the model on IWSLT15 with 133K paired sen-
tences, and test on IWSLT 2012 news dataset (NT12) and
2013 news dataset (NT13) following the same setup as
Chen et al. (2019). 7z) Abstractive summarization: two
different datasets are employed for the summarization task,
English gigawords (Graff et al., 2003) and CNN/Daily-
mail Hermann et al. (2015); Nallapati et al. (2016), which
are standard summarization benchmarks. The English giga-
words corpus consists of 200K/8K/2K source and target sen-
tence pairs in training/validation/testing, respectively. The
CNN/Daily-mail dataset has 287,113 training pairs, 13,368
validation pairs and 11,490 testing pairs. 77¢) Image cap-
tioning: we also consider an image captioning task with the
COCO dataset (Lin et al., 2014), which contains 123,287



Method ROUGE-1 ROUGE-2 ROUGE-L
SummaRuNNer (Nallapati, Zhai, and Zhou, 2017) 39.6 16.2 353
Pointer-Generator See, Liu, and Manning (2017) 36.44 15.66 33.42
Pointer-Generator + Coverage See, Liu, and Manning (2017) 39.53 17.28 36.38
Saliency + Entailment rewardPasunuru and Bansal (2018) 40.43 18.00 37.10
Key information guide network Li et al. (2018) 38.95 17.12 35.68
Sentence Rewriting Chen and Bansal (2018) 40.88 17.80 38.54
Inconsistency loss Hsu et al. (2018) 40.68 17.97 37.13
ML + RL Paulus, Xiong, and Socher (2018) 39.87 15.82 36.90
ML + Intra-Attention Paulus, Xiong, and Socher (2018) 38.30 14.81 35.49
Pointer-Generator 36.25 16.17 33.41
Pointer-Generator + Coverage Penalty 39.12 17.35 36.12
Transformer + Copy + Coverage Penalty 39.25 17.54 36.45
Bottom-Up Summarization 41.22 18.68 38.34
Pointer-Generator + OT 39.75 17.87 38.22
Pointer-Generator + Coverage Penalty + OT 40.28 18.17 38.51
Pointer-Generator+ Coverage Penalty + OTRL 41.40 18.22 38.86

Table 1: Results of abstractive summarization on CNN/Daily-mail. First section is the MLE-training baseline with Seq2Seq
model. Models in the second section are results trained using OpenNMT codebase Gehrmann, Deng, and Rush (2018). The last

section shows the results of our baselines and the proposed model.

Method CIDEr BLEU-4 BLUE-3 BLEU-2 BLEU-1 ROUGE METEOR
Soft Attention (Xu et al., 2015) - 243 344 49.2 70.7 - 23.9
Hard Attention (Xu et al., 2015) - 25.0 35.7 50.4 71.8 - 23.0
Show & Tell (Vinyals et al., 2015) 85.5 27.7 - - - - 23.7
ATT-FCN (You et al., 2016) - 30.4 40.2 53.7 70.9 - 243
SCN-LSTM (Gan et al., 2017) 101.2 33.0 433 56.6 72.8 - 25.7
Adaptive Attention (Lu et al., 2017)  108.5 33.2 439 58.0 74.2 - 26.6
MLE 106.3 343 45.3 59.3 75.6 55.2 26.2
MLE+OT 107.9 34.8 46.1 60.1 76.2 55.6 26.5
MLE+SC 110.4 334 45.8 61.4 79.5 56.0 26.6
MLE+OTRL 111.8 34.4 46.6 61.8 79.3 56.2 26.8

Table 2: Results on the testing set on COCO-caption dataset on the model with the best evaluation loss. The first section are
results from previous image caption models. The second section are results of our baselines and the proposed model.

images in total and each image is annotated with at least 5
captions. Following the split method proposed in (Karpathy
and Fei-Fei, 2015), 113,287 images are used for training and
5,000 images are used for validation and testing.

For fair comparison, we use Texar Hu et al. (2018) as our
codebase to implement all proposed methods and baselines,
and to compared models for IWSLT 2014 and gigawords.
The performance of our implementation is at least compara-
ble with the reported results. Both encoder and decoder are
one-layer LSTMs with 256 hidden states. The word embed-
ding dimension is also set to 256. Dropout is also applied
with rate 0.2. We use Adam optimization with learning rate
0.001 and batch size = 64 for training.

For the CNN/Daily-mail experiment, we preprocess the
data using the same method proposed in See, Liu, and Man-
ning (2017). We use the most recent extractor-abstractor
framework Chen and Bansal (2018); Gehrmann, Deng, and
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Rush (2018), consisting of two parts, extractor and ab-
stractor. We implement the extractor following the structure
from Chen and Bansal (2018), and modify the abstractor us-
ing our OTRL loss function without changing the network
architecture, in comparison to the OpenNMT implementa-
tion Klein et al.. The word embedding size is set to 128. The
encoder and decoder are also both one-layer LSTMs with
256 hidden states.

The image captioning experiment is implemented based
on a public! Pytorch implementation (Paszke et al., 2017).
We pre-train the image feature extractor using the bottom-
up attention model (Anderson et al., 2018). The setup of the
caption decoder is the same as self-critic model (Rennie et
al., 2017), where the image feature is fed into a one-layer
LSTM. For the LSTM, the hidden state dimension and the
dimension of word vectors are both set to 512. All experi-

"https://github.com/ruotianluo/self-critical pytorch



ments are performed on one NVIDIA TITAN X GPU.

Neural machine translation

The commonly applied metric BLEU score Papineni et al.
(2002) is used to evaluate the performance of different mod-
els. To assess variation, we test each model 5 times with
different random seeds and calculate the mean and standard
deviation for each test run. The results in Table 3 show that
our model results in consistent improvement over the base-
lines, across all three datasets.

Abstractive summarization

ROUGE-1, -2 and -L scores Lin (2004) are employed to
evaluate the performance of the abstractive summarization
model.

English gigawords Table 4 shows performance compar-
isons of seven baselines and our model. We implement all
baseline models on Texar Hu et al. (2018) under the same
setup as ours. Our model achieves the highest score on the
test dataset on ROUGE-1, -2, -L metrics consistently. Gen-
erated examples are found in the Appendix.

CNN/Daily-mail We also run our model on the large sum-
marization dataset CNN/Daily-mail. Table 1 shows ROUGE
score results on different models. We compare our model
with the most recent works, e.g., Gehrmann, Deng, and
Rush (2018); Chen and Bansal (2018). Our OTRL frame-
work achieves better ROUGE-1 and ROUGE-L score on this
dataset, indicating that our model’s predictions can better
capture the semantic meaning from the source paragraph.

Image captioning

For the image caption task, the OT loss between the gener-
ated sentences and the ground truth sentences is employed
to regularize training. Image features are extracted from fast
R-CNN Ren et al. (2015) following the same setup as (An-
derson et al., 2018), which is denoted as bottom-up features.
We perform our comparisons based on two different sce-
narios: teacher-forcing MLE objective with attention mech-
anism and the self-critic RL objective. In the teacher-forcing
setup, we select the checkpoint which has the minimal loss
on the validation set from each model. In the self-critic
setup, we select the checkpoint with the largest evalua-
tion CIDEr score Vedantam, Lawrence Zitnick, and Parikh
(2015) from each model. We then evaluate all models using
different metrics on the testing set. The split of the training,
evaluation and test set is the same as in Karpathy and Fei-
Fei (2015), for fair comparison, and the detailed results are
shown in Table 2. We report BLEU-£ (k from 1 to 4) (Pap-
ineni et al., 2002), CIDEr (Vedantam, Lawrence Zitnick, and
Parikh, 2015), and METEOR (Banerjee and Lavie, 2005)
scores. It is observed that by employing optimal transport,
under two different setups, our OTRL framework consis-
tently outperforms all baselines and compared methods.
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Analysis
Hyper-parameter setup

For hyper-parameters A1, Ao, A3, we use parameter grid-
search to find the best setup for different tasks. In machine
translation and abstractive summarization, We set \;
0.9, A2 = 0.1, A3 = 0 as our initialization. Then we grad-
ually decrease A; to 0.7, and increase A3 to 0.2. This an-
nealing process starts after the 7-th epoch. Note that the an-
nealing process is implemented as a linear decay function
provided in Tensorflow (Abadi et al., 2016)/Pytorch (Paszke
et al., 2017). For the image-captioning task, the training is
divided into two phases. In the first phase, we set \; =
0.9,A2 = 0.1, \3 = 0 and choose the best on the eval-
uation set as the initializer for the second phase, where
A1 = 0, 2 = 0.1, A3 = 1. The annealing trace plot is pro-
vided in the Appendix.
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Figure 2: Convergence curve of validation ROUGE-1 F1
score vs. training epochs on English gigawords dataset.
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training iterations on MS-COCO dataset. The number of
epochs is 50.



Model EN-DE EN-VINT12  EN-VINTI13

MLE 26.44 £0.18 23.76 £0.17 26.10 £0.07

Scheduled Sampling Bengio et al. (2015) 24.11 +0.10 23.711+£0.14 26.11 £0.12

RAML Norouzi et al. (2016) 27.22 +0.14 24.24 +0.16 26.42 +0.17

MIXER Ranzato et al. (2016)  26.53 +0.11 23.81 £0.18 26.33 £0.17

SPG Ding and Soricut (2017)  26.62 £ 0.05 24.27+0.11 26.51 £ 0.09

ERPO Tan et al. (2018) 27.82 4+0.11 24.56 +0.21 26.88 +£0.13

Seq2Seq-OT Chen et al. (2019) 27.79 £ 0.12 24.46 +0.11 26.91£0.13
MLE+OTRL 28.134+0.11 24.85+0.13 27.11+0.18

Table 3: Results of machine translation for EN-DE and EN-VI.

Method ROUGE-1 ROUGE-2 ROUGE-L

MLE 36.11+0.21 16.39+0.16 32.32£0.19

RAMLNorouzi et al. (2016) 36.30 £0.04  16.69 &+ 0.20 32.49£0.17

SPG Ding and Soricut (2017) 36.48 £0.24  16.84 +0.26 32.79 £+ 0.26

MIXERRanzato et al. (2016) 36.34 £0.23  16.61 £0.25 32.57£0.15

Scheduled Sampling Bengio et al. (2015) 36.59 £0.12  16.79 4+ 0.22 32.77£0.17

ERPOTan et al. (2018) 36.72+£0.29 16.99+0.17 32.95£0.33

Seq2Seq-OT Chen et al. (2019) 36.82 £0.25 17.22£0.16 33.15£0.23
MLE+OTRL 37.24+0.19 17.63+0.15 33.76 +0.13

Table 4: Results of text summarization on gigawords dataset.

Ablation study

To evaluate the stability of different frameworks, in Fig-
ure 2 we show the convergence curve of the ROUGE-1
F1 score on the testing dataset for each training epoch.
We test different methods on the English gigawords dataset
with the same sequence generation architecture. The num-
ber of training epochs is set to 18. For the MLE baseline
model, the ROUGE score gradually decays, presumably due
to over-fitting. OT training is more stable and the ROUGE is
smoothly improved. However, MLE+OT does not perform
well, probably because the exploration space for OT+MLE
is still limited. The implementation of the RL+MLE model
is based on Texar’s ERPO (Tan et al., 2018). This training
method converges fast but suffers from over-fitting. This in-
dicate that after approximately 12 epochs, MLE eventually
dominates the training procedure since the RL signal can no
longer provide any useful information but just overfits the
training data. With the help of both OT and RL, our OTRL
is stable and has the best performance among other base-
lines, and the testing ROUGE-1 improvement curve is still
smooth.

Exploration space analysis

Since it is difficult to directly visualize the changing of the
exploration space, here we conduct an experiment on im-
age captioning, to show how the CIDEr score changes on
the validation dataset with respect to the loss switching in
training objective. As shown in the Figure 3, we initialize
both experiments (red and blue) by training with the same
MLE objective. Note that training under the MLE objective
has converged according to the validation loss. The red line
experiment then switches the training loss from MLE to self-
critic (SC). Consequently, its CIDEr score on the validation
set drops significantly, indicating the exploration space be-
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comes larger , so that the performance drops dramatically af-
ter the switching. For the blue line experiment, the objective
is regularized with OT. When the MLE+OT loss switched
to OTRL, the performance does not drop significantly, and
the blue line converges faster than the red line with the same
hyper-parameter setup. This phenomenon implies that the
exploration space of the blue line is presumably controlled
with the help of OT, resulting in a smaller variance than the
red line, thus a more efficient training.

Conclusions

We have presented a new framework to control (regularize)
the exploration space of policy optimization. This also pro-
vides a new way to reduce the variance of RL approaches
in NLP tasks, so that RL-based sequence generation mod-
els can be further improved. We evaluate our new sequence
level loss on three NLP tasks. The consistent improvement
in machine translation, abstractive summarization and image
captioning strongly support our motivations.
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