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Abstract

Question answering (QA) based on machine reading compre-
hension has been a recent surge in popularity, yet most work
has focused on extractive methods. We instead address a more
challenging QA problem of generating a well-formed answer
by reading and summarizing the paragraph for a given ques-
tion.
For the generative QA task, we introduce a new neural archi-
tecture, LatentQA, in which a novel stochastic selector net-
work composes a well-formed answer with words selected
from the question, the paragraph and the global vocabulary,
based on a sequence of discrete latent variables. Bayesian
inference for the latent variables is performed to train the
LatentQA model. The experiments on public datasets of nat-
ural answer generation confirm the effectiveness of LatentQA
in generating high-quality well-formed answers.

Introduction

Question answering (QA) is an essential problem in natu-
ral language understanding and a major milestone towards
human-level machine intelligence. Machine reading com-
prehension, which enables machines to answer questions af-
ter reading documents, has become a popular and attractive
solution to question answering in recent years (Rajpurkar
et al. 2016; Rajpurkar, Jia, and Liang 2018; Nguyen et al.
2016). Existing techniques for machine reading comprehen-
sion fall primarily into the category of extractive methods,
which extract a piece of text from a contextual paragraph as
an answer to a given question. The extractive answer com-
prised of a few words is restricted to be an exact sub-span in
the paragraph.

In real-world applications, however, a span of text is often
insufficient to answer a question, such as How/Why ques-
tions that lead to long answers. Generating an abstractive
answer is needed instead, which requires a QA system to
summarize the content in the paragraph that is relevant to
the question. Moreover, users prefer answers that can be read
in a standalone fashion. Such well-formed answers not only
address the questions, but also provide supporting informa-
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tion or explanation, so that users make sense of the answers
without the need for perfect context.

Generating well-formed answers can be beneficial to a va-
riety of QA applications. For example, digital agents, such
as Siri, Google Assistant, Cortana and Alexa, are designed to
respond to a question by reading out the well-formed answer
in natural language. In this scenario, the answers need to be
standalone and self-contained, as users are not expected to
understand full context.

In this paper, we present a new neural architecture,
LatentQA, which generates well-formed answers to given
questions by reading contextual paragraphs. Unlike existing
answer generation models which add a decoder on top of
extractive models, LatentQA neither relies on extraction re-
sults, nor needs labels of answer spans for training. Instead,
LatentQA resorts to a novel stochastic selector network that
selects words to form a final answer directly from the mod-
eled relationship between the question and the paragraph. In
the stochastic selector network, a sequence of discrete la-
tent variables is introduced to indicate which source to look
at to produce every answer word. A word in a well-formed
answer comes from one of three sources: the question, the
paragraph or the global vocabulary. To train LatentQA, we
perform Bayesian inference for the latent variables, and de-
rive the posterior probabilities.

With the stochastic mechanism, LatentQA is able to
model the ambiguity inherent in questions and paragraphs,
and to generate final answers based on the interpretations.
Furthermore, LatentQA is more robust against overfitting
than deterministic models, by marginalizing over the latent
variables. We conduct experiments on two public datasets
of natural answer generation, MARCO and DuReader. The
empirical evaluation confirms the effectiveness of LatentQA
in generating high-quality answers.

Related Work

Machine Reading Comprehension. Machine reading has
made rapid progress in recent years. such as SQuAD (Ra-
jpurkar et al. 2016; Rajpurkar, Jia, and Liang 2018). The
majority of studies treat reading comprehension as answer
span extraction from a given paragraph, which is normally
achieved by predicting the start and end position of an an-
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swer. Seo et al. (2017) proposed BiDAF that represents
context at different levels of granularity and uses the bi-
directional attention flow mechanism for answer extraction.
SLQA (Wang, Yan, and Wu 2018) improves answer qual-
ity with a hierarchical attention fusion network in which
attention and fusion are conducted horizontally and verti-
cally across layers between the question and the paragraph.
Recently, we see emerging BERT-based models (Devlin et
al. 2018) which are proven effective for reading compre-
hension. Multi-paragraph reading comprehension has also
attracted interest from the academic (Yan et al. 2019) and
industrial community (He et al. 2018).

Sequence-to-sequence QA. The sequence-to-sequence
architecture has been broadly used in a variety of QA
tasks without reading contextual paragarphs. GenQA (Yin
et al. 2016) combines knowledge retrieval and sequence-
to-sequence learning to produce fluent answers, but it only
deals with simple questions containing one single fact.
COREQA (He et al. 2017) extends it with a copy mecha-
nism, and can answer an information inquired question (i.e.,
a factual question containing one or more topic entities).
In contrast, Fu and Feng (2018) introduced a new attention
mechanism that explores heterogeneous memory for answer
sentence generation. The new attention encourages the de-
coder to actively interact with the memory in the memory-
augmented encoder-decoder framework. Moreover, Tao et
al. (2018) proposed a multi-head attention mechanism to
capture multiple semantic aspects of a given query and gen-
erate an informative response in a dialogue system.

Natural Answer Generation. There have been several
attempts at using machine reading to generate natural an-
swers. Tan et al. (2018) took a generative approach where
they added a decoder on top of their extractive model to
leverage the extracted evidence for answer synthesis. How-
ever, this model still relies heavily on the extraction to per-
form the generation and thus needs to have start and end
labels (a span) for every QA pair. Mitra (2017) proposed a
seq2seq-based model that learns alignment between a ques-
tion and passage words to produce rich question-aware pas-
sage representation by which it directly decodes an answer.
Gao et al. (2019) focused on product-aware answer gener-
ation based on large-scale unlabeled e-commerce reviews
and product attributes. Furthermore, natural answer gener-
ation can be reformulated as query-focused summarization
(QFS) which is addressed by Nema et al. (2017) as well as
Hasselqvist, Helmertz, and Kågebäck (2017). Recently, the
Masque model from Nishida et al. (2019) explored the idea
of copying words from questions to answers with a mixture
of multiple distributions. Our model differs from Masque in
that LatentQA models inherent uncertainty with a stochas-
tic mechanism and integrates a dedicated selector network
to exploit all three information sources for well-formed an-
swer generation. Pre-trained contextualized representations,
such as ELMo (Peters et al. 2018) used in Masque, can be
readily plugged into the stochastic selector networks for fur-
ther improvement.

Paragraph

Bake sirloin steaks in the oven at
425 degrees Fahrenheit for 30
minutes until they are cooked to
your desired taste. Baking sirloin
steaks decreases the moisture
available in the steaks. The oven
tends to dry the meat out if you
do not take the time to marinate
appropriately.

Question How long to cook sirloin steak?

Well-formed
Answer

It takes 30 minutes to cook
sirloin steak in the oven at 425
degrees Fahrenheit.

Table 1: A sample well-formed answer with words in green
from the vocabulary, words in red from the paragraph, and
words in blue from the question.

Well-formed Answer Generation

Well-formed answer generation is a question answering
paradigm where a QA model is expected to answer a given
question in a way that is understood without perfect context.
More formally, let (q, a, p) denote an instance from a QA
dataset of N instances, where q denotes a question, a de-
notes an answer, and p denotes a paragraph. Well-formed an-
swer generation aims to produce an abstractive answer a to a
given question q based on the content in paragraph p. Differ-
ent from extractive QA, generated answer a does not have to
be a sub-span in paragraph p. Instead, answer a is supposed
to be formed in natural language, and to make sense without
the context of either question q or paragraph p.

LatentQA

In composing a well-formed answer a, our QA model,
LatentQA, recurrently selects words at the decoding stage.
Traditional QFS and answer generation models select words
from either vocabulary v alone (Tan et al. 2018; Nema et
al. 2017) or a combination of vocabulary v and paragraph
p (Mitra 2017). However, when it comes to generating well-
formed answers, the two sources v and p are often insuffi-
cient to provide the answers with proper context.

In contrast, LatentQA employs a novel stochastic selec-
tor network for answer composition, which allows answer
words to come from three different sources: question q, para-
graph p, and vocabulary v. Table 1 shows a specific exam-
ple of a well-formed answer generated by selecting words
from the three sources. An overview of the architecture of
LatentQA is depicted in Figure 1.

Sequence-to-sequence model

LatentQA is built upon an extension of the sequence-to-
sequence model (Bahdanau, Cho, and Bengio 2015; Nalla-
pati et al. 2016; See, Liu, and Manning 2017). The words
of question q and paragraph p are fed one-by-one into two
different encoders, respectively. Each of the two encoders,
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Figure 1: An overview of the architecture of LatentQA
(best viewed in color). A question and a paragraph both go
through an extension of the sequence-to-sequence model.
The outcomes are then fed into the stochastic selector net-
work to generate a well-formed answer.

which are both bidirectional LSTMs, produces a sequence
of encoder hidden states (Eq for question q, and Ep for para-
graph p). In each timestep t, the decoder, which is a unidi-
rectional LSTM, takes an answer word as input, and outputs
a decoder state sat .

We calculate attention distributions aqt and apt on the ques-
tion and the paragraph, respectively, as in (Bahdanau, Cho,
and Bengio 2015):

aqt =softmax(gqᵀtanh(WqEq +Uqsrt + bq)), (1)

apt =softmax(gpᵀtanh(WpEp +Upsrt +Vpcq + bp)),

(2)

where gq , Wq , Uq , bq , gp, Wp, Up and bp are learn-
able parameters. The attention distributions can be viewed as
probability distributions over source words, which tells the
decoder where to look to generate the next word. The cover-
age mechanism is added to the attentions to avoid generating
repetitive text (See, Liu, and Manning 2017). In Equation 2,
we introduce cq , a context vector for the question, to make
the paragraph attention aware of the question context. cq for
the question and cp for the paragraph are calculated as fol-
lows:

cqt =
∑
i

aqti · e
q
i , cpt =

∑
i

apti · e
p
i , (3)

where eqi and epi are an encoder hidden state for question q
and paragraph p, respectively. The context vectors (cqt and
cpt ) together with the attention distributions (aqt and apt ) and
the decoder state (sat ) will be used downstream to determine
the next word in composing a final answer.
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Figure 2: An overview of the stochastic selector network in
timestep t. It takes the outputs of the preceding components
in LatentQA, and produces the next word in the answer to
be generated. Best viewed in color.

Stochastic Selector Networks

Figure 2 illustrates how the stochastic selector network
works in one timestep during decoding. In each timestep t,
a stochastic selector network is used as a three-way switch
to select a word from one of the three distributions: 1. At-
tention distribution aqt ∈ R

Nq over question words (Equa-
tion 1), where Nq denotes the number of distinct words in
the question. 2. Attention distribution apt ∈ R

Np over para-
graph words (Equation 2), where Np denotes the number of
distinct words in the paragraph. 3. Conditional vocabulary
distribution Pv(w|cqt , c

p
t , s

a
t ) over all words in the vocabu-

lary, which is obtained by:

Pv(w|cqt , c
p
t , s

a
t ) = softmax(Wv · [cqt , c

p
t , s

a
t ] + bv), (4)

where cqt and cpt are context vectors, and sat is a decoder
state. Wv and bv are learnable parameters.

To determine which of the three distributions a new word
wt+1 is selected from, we introduce a discrete latent vari-
able yt ∈ {1, 2, 3} as an indicator. The word wt+1 is then
generated from the distribution P (wt+1|yt) given by:

P (wt+1|yt) =

⎧⎪⎨
⎪⎩
∑

i:wi=wt+1
aqti yt = 1∑

i:wi=wt+1
apti yt = 2

Pv(w|cqt , c
p
t , s

a
t ) yt = 3.

(5)
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The random variable yt follows a distribution P (yt|ht) con-
ditioned on the latent representation ht ∈ R

Nh that models
the interactions among question q, paragraph p and decoding
word wt as a stochastic vector.

In the LatentQA model, we choose the form of ht to be a
parameterized isotropic Gaussian:

ht|vt ∼ N (ht|μθ(vt),σ
2
θ(vt)), (6)

vt = [cqt , c
p
t , s

a
t ,x

a
t ], (7)

μθ(vt) = SLPθ1(vt), logσθ(vt) = SLPθ2(vt), (8)

where xa
t is the embedding of the answer word in timestep

t. SLPθ1(·) and SLPθ2(·) are two single-layer perceptrons
with the tanh activation.

Compared with its deterministic counterpart vt, the
stochastic representation ht models the uncertainty inherent
in questions, paragraphs and answers. For example, a single
question can have multiple interpretations, and thus two in-
dividuals can provide very different answers to this question.
In addition to subjective interpretations, uncertainty comes
from the fact of answers being abstractions that summarize
relevant and prominent information by leaving out less im-
portant message.

Moreover, by marginalizing over discrete variable yt and
continuous vector ht, the stochastic selector network has
a natural safeguard against overfitting. This robustness en-
ables the LatentQA model to perform well on a small QA
training dataset.

Unlike prior QFS models which need source labels
for training (Hasselqvist, Helmertz, and Kågebäck 2017),
LatentQA models the sources of words as latent variables,
and thus learns from data to infer their values. In this way,
the sources can be determined dynamically based on gener-
ation states. The inferred values reveal the source of every
word in a generated answer, and thus allow us to visualize
where every answer word comes from.

Learning Model Parameters

Objective

To learn the parameters θ in LatentQA with latent variables,
we maximize the marginal log-likelihood of words in all an-
swers:

logPθ(w
(1),w(2), · · · ,w(N)) =

N∑
i=1

logPθ(w
(i)). (9)

Unfortunately, direct optimization of this marginal is in-
tractable, so we approximate it by variational inference (Jor-
dan et al. 1999), and use the variational lower bound as
the maximization objective. For the ith instance, the lower
bound is given as: (superscript ·(i) is omitted for simplicity.)

logPθ(w)

≥ EQφ
[logPθ(w|h)]− KL(Qφ(h|v,w′)||Pθ(h|v))

:= L, (10)

where Qφ(h|v,w′) is an approximate posterior distribution
parameterized by φ, which avoids having to solve the in-
tractable true posterior. w′ denotes the sequence of answer

words that the decoder targets in each timestep, meaning that
each word in w′ is one step ahead of the corresponding one
in w: w′

t = wt+1. The KL-divergence term encourages the
approximate posterior Qφ(h|v,w′) to be close to the prior
Pθ(h|v) defined in Equation 6.

The posterior Qφ(ht|vt, wt+1) in timestep t, analogously
to Pθ(ht|vt), is defined as another isotropic Gaussian distri-
bution parameterized by two different single-layer percep-
trons:

Qφ(ht|vt, wt+1) =

N (ht|μφ(vt, wt+1),σ
2
φ(vt, wt+1)), (11)

rt = linearφ(one hot(wt+1)), (12)
μφ(vt, wt+1) = SLPφ3([vt, rt]), (13)
logσφ(vt, wt+1) = SLPφ4([vt, rt]), (14)

where rt is a linear transformation of the one-hot represen-
tation of target word wt+1. Parameterizing Qφ(ht|vt, wt+1)
by rt gives the posterior distribution conditioned on the tar-
get label, which enables Bayesian inference of the LatentQA
model.

In the lower bound (10), we analytically integrate the KL-
divergence between two non-standard isotropic Gaussians,
which gives:

KL(Qφ(h|v,w′)||Pθ(h|v))

=

Na∑
t

Nh∑
j

{
log

σθtj
σφtj

+
1

2

[
(μφtj − μθtj)

2

σ2
θtj

+
σ2
φtj

σ2
θtj

− 1

]}
,

(15)

where Na is the number of answer words, and Nh is the
dimensionality of latent representation h. Our derivation of
the KL-divergence is detailed in the Appendix.

To estimate the expectation term EQφ
in the lower bound

(10), we use the reparameterization trick for variational
Bayesian methods (Kingma and Welling 2014), and repa-
rameterize ht = μt + σt · εt, where εt ∼ N (0, I), for the
gradients w.r.t. both θ and φ. This trick reduces the variance
in stochastic estimation.

Inferring Discrete Latent Variables

The LatentQA model contains discrete latent variables y,
which presents a challenge to backpropagation through sam-
ples from the conditional distribution P (yt|ht). To address
this problem, we create a differentiable estimator for discrete
random variables with the Gumbel-Softmax trick (Jang, Gu,
and Poole 2017).

In particular, we first compute the discrete distribution
P (yt|ht) with three class probabilities π1, π2, π3 by:

P (yt|ht) = softmax(linear(ht)). (16)

The Gumbel-Max trick (Gumbel 1954) allows us to draw
samples from the discrete distribution P (yt|ht) by calcu-
lating one hot(argmaxi[gi + log πi]), where g1, g2, g3 are
i.i.d. samples drawn from the Gumbel(0, 1) distribution. For
the inference of a discrete variable yt, we approximate the
Gumbel-Max trick by the continuous softmax function (in
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place of argmax) with temperature τ to generate a sample
vector ŷt:

ŷti =
exp((log(πi) + gi)/τ)∑3

j=1 exp((log(πj) + gj)/τ)
. (17)

When τ approaches zero, the generated sample ŷt becomes
a one-hot vector. τ is gradually annealed over the course of
training.

This new differentiable estimator allows us to backpropa-
gate through yt ∼ P (yt|ht) for gradient estimation of every
single sample. In our experiments, we train LatentQA using
Adagrad (Duchi, Hazan, and Singer 2011) with a learning
rate of 0.15 and an initial accumulator value of 0.1.

Experiments

In our experiments, we compare LatentQA with the state-
of-the-art models that generate abstractive answers, as well
as the ablations of LatentQA. In addition, we illustrate
how well-formed answers are generated by LatentQA. Fi-
nally, we analyze a couple of sample answers generated by
LatentQA.

Datasets and Evaluation Metrics

We conduct our experiments on two public benchmark
datasets of natural answer generation, MARCO (Nguyen et
al. 2016) and DuReader (He et al. 2018).

In the latest MARCO V2.1 dataset, the questions are user
queries issued to the Bing search engine and the contextual
paragraphs are from real web documents. The data has been
split into a training set (154K QA pairs), a dev set (12K QA
pairs) and a test set (101K questions with unpublished an-
swers). DuReader is the largest Chinese document reading
comprehension dataset, which contains 272K QA pairs in
the training set, 10K QA pairs in the dev set and 20K ques-
tions in the test set. In both benchmark datasets, the well-
formed answers are used for training. Since true well-formed
answers are not available in the test sets of both bench-
marks, we hold out the dev sets for evaluation in our exper-
iments, and test models for each question on its associated
paragraphs by concatenating them all together. We tune the
hyper-parameters by cross-validation on the training sets.

The answers in the datasets are human-generated and not
necessarily sub-spans of the paragraphs. We use the official
evaluation tools of MARCO and DuReader, which compute
metrics BLEU-1 (Papineni et al. 2002) and ROUGE-L (Lin
2004) for MARCO, and compute BLEU-4 and ROUGE-L
for DuReader.

Implementation Details

In LatentQA, we use 300-dimensional pre-trained Glove
word embeddings (Pennington, Socher, and Manning 2014)
for initialization with update during training. The dimension
of hidden states is set to 256 for every LSTM. The latent rep-
resentation ht has Nh = 100 dimensions. We use a vocabu-
lary of 50K words (filtered by frequency). Note that stochas-
tic selector networks enables LatentQA to handle out-of-
vocabulary words by allowing an answer word to come from
the paragraph or the question.

Model Rouge-L Bleu-1

BiDAF 19.42 13.03
BiDAF+Seq2Seq 34.15 29.68
S-Net 42.71 36.19
S-Net+Seq2Seq 46.83 39.74
gQA 45.75 41.10
QFS 40.58 39.96
VNET 45.93 41.02
LatentQA 50.97 45.48

Table 2: Metrics of LatentQA and state-of-the-art QA mod-
els on the MARCO dataset.

At both training and test stages, we truncate a paragraph
to 800 words, and limit the length of an answer to 120 words.
We train on a single Tesla M40 GPU with the batch size of
16. At test time, answers are generated using beam search
with the beam size of 4.

Comparison with State-of-the-Art QA Models

We compare LatentQA with the following state-of-the-art
QA models:
1. BiDAF (Seo et al. 2017): A multi-stage hierarchical pro-

cess that represents context at different levels of granular-
ity, and using the bi-directional attention flow mechanism
for answer extraction.

2. BiDAF+Seq2Seq: A BiDAF model followed by an ad-
ditional sequence-to-sequence model for answer genera-
tion.

3. S-Net (Tan et al. 2018): An extraction-then-synthesis
framework to synthesize answers from extracted evi-
dences.

4. S-Net+Seq2Seq: An S-Net model followed by an ad-
ditional sequence-to-sequence model for answer gener-
ation.

5. gQA (Mitra 2017): A generative approach to question an-
swering by incorporating the copying mechanism (from
paragraphs only) and the coverage vector.

6. QFS (Nema et al. 2017): A model that adapts the query-
focused summarization model to answer generation.

7. VNET (Wang et al. 2018): An MRC model that enables
answer candidates from different paragraphs to verify
each other based on their content representations.

Table 2 shows the comparison of QA models in Rouge-
L and Bleu-1. Abstractive QA models (e.g., LatentQA) are
superior to extractive models (e.g., BiDAF) in answer qual-
ity according to the table. As an example, BiDAF answers
a question with a short span of text extracted from the para-
graph. Such an answer extraction model is unable to produce
a long enough summary as an answer. BiDAF+Seq2Seq pro-
duces better answers than extractive BiDAF does by incor-
porating an additional sequence-to-sequence model for an-
swer generation. LatentQA outperforms all the other QA
models by a large margin without the need to build the ex-
traction model as BiDAF+Seq2Seq and S-Net+Seq2Seq do.
Instead, the LatentQA model generates natural answers with
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Model Syntactic Correct Well-formed

BiDAF 4.31 3.68 2.66
BiDAF+Seq2Seq 3.84 3.15 3.22
S-Net 3.90 3.87 2.73
S-Net+Seq2Seq 3.98 3.22 3.50
gQA 3.78 3.54 3.13
QFS 3.65 3.39 2.87
VNET 4.16 3.72 3.11
LatentQA 4.22 4.09 4.61

Table 3: Human evaluation of LatentQA and state-of-the-art
QA models on the MARCO dataset. Scores range in [1, 5].

some words selected from questions, beyond the capability
of the other models.

Since neither Rouge-L nor Bleu-1 can measure the qual-
ity of generated answers in terms of their correctness and ac-
curacy, we also conduct human evaluation on Amazon Me-
chanical Turk. The evaluation assesses the answer quality on
grammaticality, correctness and well-formedness. We ran-
domly select 100 questions from the MARCO dev set, and
ask turkers for ratings in a Likert scale (∈ [1, 5]) on the gen-
erated answers.

Table 3 reports the human evaluation scores of LatentQA
and compared models. The LatentQA model outperforms all
the others in generating correct and well-formed answers. In
particular, extractive models, such as BiDAF, are inferior in
well-formedness, since the answers are often short pieces of
text extracted from paragraphs. On the other hand, BiDAF
performs the best among all the models in syntactic correct-
ness. This is not surprising, as it is easier to make short an-
swers grammatically correct. Nevertheless, LatentQA still
beats the rest of baselines in terms of having better gram-
mar.

Table 4 reflects the comparison results on the DuReader
dataset in Rouge-L and Bleu-4. LatentQA performs bet-
ter than all the others do, as shown in this table. The su-
periority of LatentQA on DuReader confirms not only the
effectiveness of LatentQA’s extension to the sequence-to-
sequence model and its stochastic selector networks, but also
LatentQA’s generalizability to a language other than English
(i.e., Chinese) in generating high-quality well-formed an-
swers.

Model Rouge-L Bleu-4

BiDAF 27.22 21.53
BiDAF+Seq2Seq 32.89 28.67
S-Net 41.60 38.32
S-Net+Seq2Seq 45.84 43.35
gQA 45.73 43.91
QFS 38.87 36.43
VNET 46.09 43.56
LatentQA 49.16 47.20

Table 4: Metrics of LatentQA and state-of-the-art QA mod-
els on the DuReader dataset.

Ablation Rouge-L Bleu-1

Full LatentQA 50.97 45.48

� question source 48.76 43.02
� stochastic representation 48.51 42.87
� 3-way discrete switch 48.29 43.04
� full selector network 47.36 40.61

Table 5: Ablation tests of LatentQA on the MARCO dataset.

Ablation Studies

We conduct ablation studies to assess the individual contri-
bution of every component in LatentQA. Table 5 reports the
performance of the full LatentQA model and its ablations on
the MARCO dataset.

We evaluate how much selecting words from a question
contributes to well-formed answer constitution by remov-
ing the question source from the three-way selector, and re-
taining the paragraph and vocabulary sources. The question
source turns out to play an important role in generating well-
formed answers, with a drop to 48.76 on Rouge-L after the
question source is removed. For ablating the stochastic rep-
resentation, we replace it with the deterministic representa-
tion. The stochastic representation proves to be critical with
a drop of about 5% on both metrics after the replacement.

The three-way discrete switch accounts for over 5% of
performance degradation from full LatentQA, which clearly
demonstrates the superiority of the discrete module over the
continuous counterpart and the power of discrete Bayesian
inference and the three-way selection. Finally, we ablate full
stochastic selector networks, which effectively leads to a
sequence-to-sequence model with the copying mechanism
from paragraphs and questions (pointer-generator). This ab-
lation results in a significant drop in Rouge-L to 47.36, con-
firming the superiority of stochastic selector networks over
vanilla pointer-generator in leveraging the question source
to generate well-formed answers.

Visualization

The stochastic selector networks allow us to visualize how
every word in an answer is generated from one of the sources
of the question, paragraph and vocabulary, which gives us
insights about how LatentQA works.

Table 6 visualizes the sample answers generated by
LatentQA and the source every answer word is selected
from. The first question leads to a Yes/No answer. This
type of question goes beyond the questions that an extrac-
tive model can handle, since the paragraph may not con-
tain the word Yes/No to be extracted. In contrast, by reading
through and summarizing the paragraph, LatentQA gives a
Yes answer correctly, and generates a well-formed answer
with supplementary context. In generating the answer, it
first picks word Yes from the vocabulary for its high source
probability (dark cyan). The model then completes the well-
formed answer with a supplementary sentence (e.g., words
kill someone underwater obtained from the question), which
clearly demonstrates the significant contribution of words
selected from questions in making natural answers.
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Question 1

Can bullets kill someone underwater?
Answer with source probabilities

Question src
Yes, bullets can kill someone
underwater.

Paragraph src
Yes, bullets can kill someone
underwater.

Vocabulary src
Yes, bullets can kill someone
underwater.

Answer colored by source

Yes, bullets can kill someone underwater.

Question 2

What are causes of insomnia in women?
Answer with source probabilities

Question
Fatigue and stress are the causes
of insomnia in women.

Paragraph
Fatigue and stress are the causes
of insomnia in women.

Vocabulary
Fatigue and stress are the causes
of insomnia in women.

Answer colored by source

Fatigue and stress are the causes of insomnia in
women.

Table 6: Visualizations of sample answers and the source of
individual words in the answers. The Answer with source
probabilities section displays a heatmap on answer words
selected from the question, paragraph and vocabulary, re-
spectively. A slot with a higher source probability is high-
lighted in darker cyan. The Answer colored by source sec-
tion shows the answer in which every word is colored based
on the source it was actually selected from. Words in blue
come from the question, words in red come from the para-
graph, and words in green come from the vocabulary. The
visualizations are best viewed in color.

Different from the first question, the second one is an
open-ended question. To answer this question, LatentQA se-
lects some words from every source based on their selection
probabilities. From the table, it can be seen that in the an-
swer the keywords fatigue and stress come from the para-
graph source. This results from reading comprehension of
the model on the paragraph. By contrast, the question source
has the other content words causes, insomnia and women
with high source probabilities, which leads the model to
form the answer with the content words from the question.
To make a complete sentence, the model selects the filler
words and, are, the, of and in from the vocabulary. This
leads to a final answer in good form, which is both semanti-
cally correct and comprehensive.

Conclusion and Future Work

This paper introduces a new neural model LatentQA that is
designed for well-formed answer generation. With stochas-
tic selector networks, the model determines which of the
question, paragraph and vocabulary to select every word
from based on its selection probability in generating an an-
swer. The LatentQA model can also be extended to integrate
external knowledge by generating answer words from extra
sources, such as knowledge bases, which we will explore
further in future research.

Appendix
The KL-divergence between the two non-standard isotropic
Gaussians Qφ(h|v,w′) and Pθ(h|v) is given by:

KL(Qφ(h|v,w′)||Pθ(h|v))

=
∑
t

∫
(logQφt − logPθt)Qφt dht

=
∑
t

∫
1

2

[
log

|Σθt|
|Σφt|

− (ht − μφt)
ᵀΣ−1

φt (ht − μφt)

+(ht − μθt)
ᵀΣ−1

θt (ht − μθt)
]
Qφt dht

=
∑
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2

{
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|Σφt|

− tr
{

E
[
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}
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[
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]}
=
∑
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1
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,

where Σt = diag(σ2
t ) is a square diagonal matrix with ele-

ments of vector σ2
t on the diagonal.
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