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Abstract

While Reinforcement Learning (RL) approaches lead to sig-
nificant achievements in a variety of areas in recent history,
natural language tasks remained mostly unaffected, due to the
compositional and combinatorial nature that makes them no-
toriously hard to optimize. With the emerging field of Text-
Based Games (TBGs), researchers try to bridge this gap. In-
spired by the success of RL algorithms on Atari games, the
idea is to develop new methods in a restricted game world and
then gradually move to more complex environments. Previ-
ous work in the area of TBGs has mainly focused on solv-
ing individual games. We, however, consider the task of de-
signing an agent that not just succeeds in a single game,
but performs well across a whole family of games, shar-
ing the same theme. In this work, we present our deep RL
agent—LeDeepChef —that shows generalization capabilities
to never-before-seen games of the same family with different
environments and task descriptions. The agent participated in
Microsoft Research's First TextWorld Problems: A Language
and Reinforcement Learning Challenge and outperformed all
but one competitor on the final test set. The games from the
challenge all share the same theme, namely cooking in a mod-
ern house environment, but differ significantly in the arrange-
ment of the rooms, the presented objects, and the specific
goal (recipe to cook). To build an agent that achieves high
scores across a whole family of games, we use an actor-critic
framework and prune the action-space by using ideas from
hierarchical reinforcement learning and a specialized module
trained on a recipe database.

Introduction

”You are hungry! Let’s cook a delicious meal. Check the
cookbook in the kitchen for the recipe. Once done, enjoy
your meal!”, that’s the starting instruction of every game
in Microsoft’s First TextWorld Problems: A Language
and Reinforcement Learning Challenge; a competition
that evaluates an agent on a family of unique and unseen
text-based games (TBGs). While all the games share a
similar theme—cooking in a modern house environment—
they differ in multiple aspects like the number of rooms,
connection, and arrangement of rooms, the goal of the
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game (i.e., different recipes), as well as actions and tools
needed to succeed. TBGs are computer games where the
sole modality of interaction is text. In an iterative process,
the player issues commands in natural language and, in
return, is presented a (partial) textual description of the
environment. The player works towards goals that may or
may not be specified explicitly and receives rewards upon
completion. To frame it more formally, both the observation
and action-space are comprised of natural language and,
thus, inherit its combinatorial and compositional properties
(Côté et al. 2018). Training an agent to succeed in such
games requires overcoming several common research
challenges in reinforcement learning (RL), such as partial
observability, large and sparse state-, and action-space and
long term credit assignment. Moreover, the agent needs
several human-like abilities including understanding the
environment’s feedback (e.g., realize that some command
had no effect on the game’s state), and common sense
reasoning (e.g., extracting affordance verbs to an object in
the game) (Fulda et al. 2017).

While TBGs reached their peak of popularity in the 1980s
with games like Zork (Infocom 1980), they provide an in-
teresting test-bed for AI agents today. Due to the dialog-
like structure of the game and the goal to find a policy that
maximizes the player’s reward, they show great similarity
to real-world tasks like question answering and open dia-
logue generation. Games like Zork are usually contained
in a single environment that requires a variety of complex
problem-solving abilities. The TextWorld framework (Côté
et al. 2018) instead, generates a family of games with differ-
ent worlds and properties but with straightforward and, most
importantly, similar tasks. One can argue, that it is, there-
fore, more similar to human skill acquisition: once learned,
a skill can easily be performed even in a slightly different
environment or with new objects (Yin and May 2019b). Re-
cent research has mainly focused on either learning a single
TBG to high accuracy (Narasimhan, Kulkarni, and Barzi-
lay 2015; He et al. 2015; Ammanabrolu and Riedl 2018) or
generalization to a completely new family of games (Kostka
et al. 2017) with only very poor performance. Microsoft’s
First TextWorld Problems: A Language and Reinforcement
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Learning Challenge aims to cover a new research direction,
that is in-between the two extremes of the single game and
the general game setting. To succeed here, an agent needs
to have generalization capabilities that allow it to transfer its
learned cooking skills to never-before-seen recipes in unfa-
miliar house environments.
In this work, we present our final agent—LeDeepChef —
that achieved the high score on the (hidden) validation
games and was ranked second in the overall competition.
The code to train the agent, as well as an exemplary walk-
through of the game (with the agent ranking next moves),
can be found on GitHub1. In order to design a successful
agent, we make the following contributions:

• We design an architecture that uses different parts of the
context to rank a set of commands, that is trained within
an actor-critic framework. Through recurrency over time-
steps, we construct a model that is aware of the past con-
text and its previous decisions.

• We improve generalization to unseen environments by ab-
stracting away standard to ”high-level” commands similar
to feudal learning approaches (Dayan and Hinton 1993).
We show that this reduces the action-space and therefore
accelerates and stabilizes the optimization procedure.

• We incorporate a task-specific module that predicts the
missing steps to complete the task. We train it supervised
on a dataset based on TextWorld recipes augmented with
a list of the most common food items found in freebase to
make it resilient to unseen recipes and ingredients.

The paper is organized as follows. Section ”Related Work”
gives an overview of the current state of research in the field
of TBGs. In section ”Gameplay”, we explain the TextWorld
challenge in more detail and provide an exemplary walk-
through. The architecture, as well as the RL training proce-
dure of our final agent, is described in section ”Agent”. Sec-
tion ”Command Generation” presents our command gener-
ation approach. Finally, the section ”Results” compares the
performance of our agent to several reasonable baselines.

Related Work

Since the pioneering work of (Mnih et al. 2013) that com-
bines deep neural networks with reinforcement learning
techniques to successfully play Atari games, there has been
an increasing interest to modify these algorithms to a va-
riety of problems. However, due to the combinatorial and
compositional property of natural language, resulting in
huge action- and state-spaces, no major improvements have
been made in this area. Text-based games are regarded as
a good testbed for research at the intersection of RL and
NLP (Côté et al. 2018). Even though they heavily sim-
plify the environment—compared to, e.g., a real-world open
dialogue—they present a broad spectrum of challenges for
learning algorithms.

Deep RL for TBGs To solve TBGs, (Narasimhan, Kulka-
rni, and Barzilay 2015) developed a deep RL model that

1https://github.com/leox1v/FirstTextWorldProblems

utilizes the representational power of the hidden state of
Long Short-Term Memory (Hochreiter and Schmidhuber
1997) to learn a Q-function. An adaption of this approach
by He et al. (2015), uses two separate models to encode the
context and commands individually, and then uses a pair-
wise interaction function between them to compute the Q-
values. Since then, a variety of researchers (Ammanabrolu
and Riedl 2018; Yin and May 2019b; Yin and May 2019a)
used some form of DQN to solve TBGs; however, we find
that an advantage-actor-critic approach (Mnih et al. 2016)
helps to improve performance and speeds up convergence.
Using Narasimhan, Kulkarni, and Barzilay (2015)’s LSTM-
DQN or He et al. (2015)’s adjusted DRRN on the family of
games of the TextWorld challenge leads to extremely slow
convergence due to the huge combinatorial action-space that
arises from games with different objects and the combina-
torial nature of natural language (Ammanabrolu and Riedl
2018).

Large action-space Text-based games can be divided by
their type of input-interaction: (i) parser-based, where the
agent issues commands in free form and (ii) choice-based,
where the agent is presented a set of admissible commands
at every turn. Assuming a fixed maximum length of the com-
mands as well as a fixed-size vocabulary, a parser-based
game is a special instance of a choice-based game with the
set of all possible combinations of words in the vocabu-
lary as the set of admissible commands. This illustrates the
problem arising from combinatorial action spaces: they re-
sult in a huge set of possible options for the agent, which
it cannot possibly explore in a reasonable amount of time.
Hence, the major challenge is the generation of a small set
of reasonable commands for a given context. Using a su-
pervised learning approach with a pointer-softmax model
Vinyals, Fortunato, and Jaitly (2015), Tao et al. (2018) as
well as Yuan et al. (2018b) are able to generate admissible
commands given a context for a specific TBG. A more gen-
eral approach by (Fulda et al. 2017) learns to map nouns
to affordant verbs by extracting replacement vectors from
word embeddings using canonical examples. Zahavy et al.
(2018), on the other hand, start from an over-complete set
of actions and learn a binary action-elimination network by
using the feedback provided by the game engine. Similarly,
Ammanabrolu and Riedl (2018) also prune the available ac-
tions but using a fixed scoring function on top of a graph
representation of the game’s state. As far as we know, our
model is the first in the area of TBGs to consider grouping
commands together to ’high-level’ actions as a way to re-
duce the action-space.

Gameplay

This section provides an overview of the structure of the
games in the TextWorld challenge and explains the problems
an agent needs to overcome to succeed. Figure 1 shows an
example of a straightforward game which helps understand
the basic structure. The agent starts at a random room around
the house with the instruction to find the cookbook and pre-
pare the meal therein. The initial description of the surround-
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Figure 1:Simple game that shows the basic structure of the
task. The player’s commands are highlighted in yellow.

ing exemplifies one of the key challenges, namely filtering
the vital information from the text: sentence like you hear
a noise behind you and spin around, ... or This is the worst
thing that could possibly happen, ever! provide no useful in-
formation for the game and make it harder to understand the
context.
Once the agent finds the room with the cookbook (in the
example in Figure 1, it is in the starting room already), the
examine recipe reveals the recipe. It consists of two parts:
the ingredients, and the directions. While the ingredients
part lists the items that need to be collected, the directions
give information about the status they need to be in to pre-
pare the meal. In our example, the pepper needs to be sliced
and fried. Here, the agent needs to be careful, because the
initial description of the surrounding states that the pepper
is already sliced and fried and additional frying, for exam-
ple, would lead to burning the pepper and hence losing the
game. The agent, therefore, needs to remember and recog-
nize states of ingredients mentioned in the context. With the
inventory command the agent can list all items it is currently

carrying. Once all ingredients, in their correct state, are in
the inventory, the agent can prepare and then eat the meal.

Agent

We train an agent to select, at every step in the game,
the most promising command (in terms of discounted fu-
ture score) from a list of possible commands, given the ob-
served context. Building a successful agent—not just for
TBGs but for a wide range of sequential decision-making
applications—is primarily determined by the presented set
of choices at each time-step. Therefore, one of the most cru-
cial questions is about how to generate the list of possible
commands. The smaller this set is, the less time and ef-
fort the agent wastes in its exploratory phase on ”useless”
strategies. To effectively reduce the size of the action-space,
we use an approach inspired by hierarchical reinforcement
learning, that we explain in the next section about ”Com-
mand Generation”. In the current section, we outline the ar-
chitecture and training procedure of the agent, acting on a
given set of commands.

Model

Model context We build a textual context as an approxi-
mation for the (non-observable) game’s state. It consists of
the following text-based features:

1. Observation: The response from the game engine at the
current time-step. It can either be a description of what
the agent sees in this room or a direct response to its last
command.

2. Missing items: The list of items that are in the recipe but
not yet in the inventory. This information is constructed
using the neural recipe model described in Section ”Com-
mand Generation”.

3. Unnecessary items: The list of items that are in the inven-
tory but are not needed to execute the recipe. We extract
this information from the last response to the inventory
command.

4. Description: The description of the current room. It is the
output of the last look command.

5. Previous commands: The list of the ten previously exe-
cuted commands.

6. Required utilities: The list of kitchen appliances needed
for the recipe, e.g., knife or stove. This list is a result of
the prediction by the recipe model described in Section
”Command Generation”.

7. Discovered locations: The list of previously visited loca-
tions.

8. Location: The name of the current location, extracted
from the last observation (if it included a location).

The architecture of the model is shown in Figure 2. It con-
sists of four building blocks: context encoding, commands
encoding, computation of the value of the current state, and
the command scoring.
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Figure 2:Illustration of the model. From a textual description of the context together with k different possible commands, it
computes a categorical distribution over the commands as well as a scalar representing the value of the current game state.

Context Encoding The input to the context encoding are
the eight text-based features described above. Each of them
is a sequence of words that we embed using a trainable 100-
dimensional word embedding, initialized with pre-trained
GloVe (Pennington, Socher, and Manning 2014). This re-
sults in eight matrices of shape (seqleni × 100 for i =
1, . . . , 8) that are fed into eight separate bi-directional GRUs
(GRUfi). Using the last hidden vector of each GRU, we con-
struct a fixed size encoding of size 32 for every feature input
sequence. By concatenating the individual vectors, we ob-
tain a representation for the full context with a fixed size of
256. To obtain the final context encoding h∗, we pass this
representation into another GRU (GRUs) that has its recur-
rency over time, i.e., it takes as hidden state the context en-
coding from the previous time-step (Yuan et al. 2018a).

Commands Encoding At every time-step, the model has
a set with varying length kt of different possible commands
to choose from. Each command is embedded using the same
embedding matrix as the context, resulting in a set of k ma-
trices of size (cmdleni × 100)2. A single GRU (GRUc) is
used to encode the k different commands individually to
fixed-size representations ci ∈ R

32 for i = 1, . . . , k.

Value Computation As described in more detail in the
upcoming subsection, we use an advantage-actor-critic ap-
proach to train the agent. This approach requires a critic
function that determines the value of the current state. In
our model, we compute this scalar value by passing the en-
coded context h∗ through an MLP with a single hidden layer
of size 256 and ReLU activations.

Scoring and Command Selection For each possible com-
mand, we compute a scalar score by feeding the concatena-

2The sequence lengths of commands vary since the commands
range from single words, e.g., inventory, to short sentences, e.g.,
cook the red hot pepper with grill.

tion of the encoded context h∗ and the encoded command
ci for i = 1, . . . , k into an MLP with a single hidden layer
of size 256 and ReLU activations. We obtain a score vector
st ∈ R

k that ranks the k possible commands. On top of the
score vector, we apply a softmax to turn it into a categorical
distribution pt. Based on pt, we sample the final command
from the presented set of input commands.

Training the agent with the Actor-Critic method

We use an online actor-critic algorithm with a shared net-
work design to optimize the agent. We compute the return
Rt of a single time-step t in the session of length T by us-
ing the n-step temporal difference method (Sutton and Barto
2018, ch. 7)

R(st, at) = γT−tv(sT ) +

T−t∑

τ=0

γτr(st+τ , at+τ ) (1)

where γ denotes the discount factor, and v(sT ) denotes the
value of the state, determined by the critic network, that
depends on the state sT . The game-environment determines
the score r, based on the state s, and the chosen action a.

From Rt we compute the advantage At at time-step t by
subtracting the state value from the critic network, i.e.

A(st, at) = R(st, at)− vt(st). (2)

While the value function from the critic v captures how good
a certain state is, the advantage informs us how much extra
reward we obtain from action a compared to the expected
reward in the current state s. For the sake of brevity, we will
drop the indication of dependence of the state s and action a
from now on.

Objective The full objective L consists of three individ-
ual terms: the policy loss, the value loss, and the entropy
loss. The policy term optimizes the parameters of the actor-
network while keeping the critic’s weights fixed. It encour-
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ages (penalizes) the current policy if it led to a positive (neg-
ative) advantage. The policy loss is given by the following
formula

Lp = − 1

T

T∑

t=1

A∗
t log pt[at] (3)

where A∗
t is the advantage At removed from the computa-

tional graph, and pt[at] is the probability of the chosen com-
mand at determined by the actor.
The value term uses a mean squared error between the re-
turn R and the value of the critic vt to encourage them to be
close, i.e.

Lv =
1

2T

T∑

t=1

(Rt − vt)
2. (4)

Finally, the entropy loss penalizes the actor for putting a lot
of probability mass on single commands and therefore en-
courages exploration:

Le = − 1

T

T∑

t=1

pT
t log pt. (5)

The final training objective is chosen as a linear combination
of to three individual terms.

Command Generation
One of the primary challenges in TBGs is the construction
of possible—or rather reasonable—commands in any given
situation. Due to the combinatorial nature of the actions, the
size of the search space is vast. Thus, brute force learning
approaches are infeasible, and RL optimization is extremely
difficult. We solve this problem by effectively generating
only a small number of the most promising commands, as
well as combining multiple actions to a single high-level
command. We find that this step of reducing the action-space
is the most important to guarantee successful and stable
learning of the agent. To this end, we train a helper model—
called Recipe Manager—that effectively extracts from the
game’s state which recipe actions still need to be performed.
By comparing the state of the ingredients in the inventory
with the given recipe and the description of the environment,
it generates the next commands in the cooking process.

Recipe Commands

The task of this model is to determine, from the raw descrip-
tion of the inventory and the recipe, the following informa-
tion for every listed ingredient:
• Does it still need to be collected?
• Which cooking actions still need to be performed with it?
Figure 4(b) in the Appendix shows an example of how the
model extracts from the raw textual input the structured in-
formation needed. To achieve this, we train a model in a su-
pervised manner with a self-constructed dataset. The dataset
consists of recipes and inventories similar to those of the
training games but augmented with multiple additional in-
gredients and adjectives to foster its generalization capabil-
ities. Here, we query the freebase database to obtain a large
selection of popular food items to make our classifier more
resilient to ingredients not present in the training games.

Model The input to the recipe model is the individual
recipe directions and the current inventory of the agent. We
do a binary classification of each direction about whether
or not it needs to be performed. The necessary information
about the state of the ingredient is present in the inventory.
Hence, we need to map and compare each direction to it. The
names of the ingredients are of varying length and can have
multiple adjectives describing it, e.g., a sliced red hot pepper
or some water. Therefore, we treat each direction and the in-
ventory as a variable-length sequence that we encode using
a GRU, after embedding it with pre-trained GloVe (Penning-
ton, Socher, and Manning 2014). Using pre-trained embed-
dings not just speeds up the convergence of the model but
also helps to make it generalize across unseen ingredients,
because all food-related items are close in the embedding
space (Pennington, Socher, and Manning 2014). As can be
seen in Figure 4(c) in the Appendix, each of the encoded
recipe directions is concatenated with the encoded inventory
to serve as the input to an MLP. The network outputs a sin-
gle value for each of the inputs that represent the probability
of the given direction still being necessary to perform.

Adding recipe actions to the possible commands The
recipe manager adds two high-level commands to the
action set. First, the take all required ingredients from here
command, grouping all the necessary ’take’ commands, that
can be performed in the current room. We construct this list
by the intersection of needed ingredients (determined by the
recipe model) and ingredients present in the current context
description. Second, the drop unnecessary items command
that lists ’drop’ commands for all the ingredients labeled as
unnecessary from the learned recipe model. It is indeed cru-
cial to learn to drop unwanted items because the inventory
has a fixed capacity. In addition to the abstract high-level
commands, it adds all action commands—specified by the
recipe model—if the specific ingredient is in the inventory
and the corresponding utility in the room. Figure 4(a) in the
Appendix provides an example for how the mapping from
high-level to low-level commands is constructed based on
the room description, the inventory, and the output from the
neural recipe model.

Navigation Commands

Another crucial challenge for an agent in a TBG is to effi-
ciently navigate through the game-world; an especially hard
task when presented with unseen room configurations at test
time. This process can be divided into two tasks, namely
(i) understanding from the context in which direction it is
possible to move, and (ii) the planning required to move
through the rooms efficiently. While the latter is learned by
the model as part of its policy, the challenge of extracting
the movement directions from the unstructured text remains.
Moreover, in the TextWorld environment, every connected
room can be blocked by a closed door that the agent has
to explicitly open before going into this direction. There-
fore, it is necessary not only to understand in which cardi-
nal direction to move for the next room but also to identify
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all closed doors in the way. For this task, we learned the
Navigator model, that is supervised trained on augmented
walkthroughs to identify (i) cardinal directions that lead to
connected rooms, and (ii) find all closed doors in the cur-
rent room. The model takes any room description as input
and encodes the sequence with a GRU to obtain a fixed-size
vector representation. This is fed into four individual MLPs
that make a binary prediction on whether the correspond-
ing cardinal direction leads to a connected room. To obtain
the closed doors in the room, the hidden representation from
each word of the description is fed into a shared binary MLP
that predicts whether or not a particular word is part of the
name of a closed door. This approach is necessary because
there can be multiple different closed doors in a room, and
the name of each door can consist of multiple words, e.g.,
sliding patio door.
The navigator adds for every detected cardinal direction
(east, south, west, north) the respective go command to
the list of possible commands. Additionally, it adds open
<doorname> for every closed door in the room’s descrip-
tion.

Other Commands

Besides the commands that handle the navigation and the
cooking, there are a few additional actions that are neces-
sary to succeed in the game. Since the number of these com-
mands is minimal, they are either added at every time-step to
the set of possible commands or based on very simple rules.
We provide the list of additional commands and their rules
in Table 1.

Command Rule

look,
inventory

Added at every step, except if they
were just performed in the previous
command.

prepare meal Added once the recipe manager does
not output any recipe direction as miss-
ing anymore and the agent’s location is
the kitchen.

eat meal Added if meal is in agent’s inventory.
examine cook-
book

Added if the cookbook is in the room’s
description.

Table 1:Rules for additional commands to be added to the
list of possible commands.

Results

First and foremost, the model was evaluated quantitatively
against more than 20 competitors in Microsoft’s TextWorld
challenge, where it scored 1st on the (hidden) validation
set and 2nd on the final test set of games. To show that
our agent improves upon existing models for TBGs on
never-before-seen games of the same family, we compare
it against several baselines on the competition’s training,
validation, and test set.

Method
valid test

% steps % steps

Random WL 0.1 97.5 0.0 98.9
±.04 ±.27 ±.03 ±.02

LSTM-DQN 2.2 97.0 1.0 99.3
±.00 ±.00 ±.00 ±.00

Random AC 11.7 43.7 12.8 50.1
±.59 ±1.67 ±.64 ±.31

DRRN 14.0 39.3 13.2 50.2
±.12 ±1.65 ±.25 ±.05

Random Pruned 33.5 90.6 39.6 95.8
±.66 ±.81 ±.14 ±.36

DRRN Pruned 34.3 89.8 44.1 92.2
±.31 ±.41 ±2.01 ±1.80

Yin and May 2019b 583 30 - -
- - - -

LeDeepChef 74.4 24.1 69.3 43.9
±.18 ±.23 ±.20 ±.19

Table 2:Results on the unseen set of validation and test
games from the TextWorld Challenge. We report the mean
and standard deviation over ten runs with different random
seeds of each best performing model on the training set.

As a metric, we always report the points per game relative
to the total achievable points. A single game terminates upon
successful completion of the task or when the agent fails, by
either damaging an item or reaching the maximum number
of a hundred steps.

Baseline Figure 3 (a) demonstrates that standard base-
lines for TBGs are not able to learn generalization capabil-
ities to sufficiently solve a whole family of games. Both,
LSTM-DQN (Narasimhan, Kulkarni, and Barzilay 2015)
and DRRN (He et al. 2015), do not exceed the 20% mark
of points per game relative to total achievable points4 during
3 epochs of training. The input to both of these models is the
concatenated game’s state, consisting of the room’s descrip-
tion, the agent’s inventory, the recipe, the feedback from the
last command, and the set of previously issued commands.
The main difference between DRRN and LSTM-DQN is
that the former ranks the provided admissible commands,
while the latter ranks (pre-selected) verbs and objects, from
which a command is formed then. Due to the combinatorial
nature of possible commands from the LSTM-DQN, the ef-
fective action-space is significantly larger than for DRRN.
Thus, a random agent on this word-level task—Random
WL—performs much worse than an agent that selects ran-
domly from the admissible commands, Random AC. Both
DRRN and LSTM-DQN significantly outperform their ran-

3Result on their own validation set, which is hold-out data from
the official training set of games. However, the dynamics and diffi-
culty of both sets of games are comparable.

420% would be equivalent to 12th place in the competition if
the admissible commands are known at every step, as for DRRN
(= handicap 5), or 9th place if not (= LSTM-DQN).
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(a) Training games scoring percentage of DRRN and
LSTM-DQN over three epochs. The two baselines Random
AC and Random WL show the performance of a random
agent on the admissible commands (like for DRRN) and the
word-level (like LSTM-DQN), respectively.

(b) Training games scoring percentage of LeDeepChef com-
pared to a DRRN model and a random baseline on the same
pruned commands, generated by the recipe module.

Figure 3:Comparison of our model to several baseline models on the TextWorld challenge games, as points per game relative
to total achievable points throughout the training of 3 epochs with 10 different random seeds. Each shown point is an average
over the past 80 games. The model details of the baselines can be found in Table 3 in the Appendix.

dom counterpart over the course of the training but are not
able to learn to solve the games to a sufficient degree. The
big scoring difference between the two random agents un-
derlines the importance of effective action-space reduction.

Comparison on pruned commands In a second exper-
iment, we use the same DRRN architecture as before, but
with a pruned version of the admissible commands to ex-
actly match the commands presented to our model; though,
without the grouping to high-level actions. As we see in Fig-
ure 3 (b), the reduced set of possible commands massively
improves both the random and the DRRN model to up to
50%5. However, the DRRN model is still not capable of im-
proving a lot upon the random model and—as before—does
not show a steady upward trend throughout the training pro-
cedure. Our model, on the other hand, improves its percent-
age significantly over the training iterations to its final score
of around 87%. We believe that the advantage of our model
over this specific baseline is mainly due to (i) the grouped
high-level commands that let the agent learn a strategy more
efficiently in an abstract space, (ii) the improvements in the
neural architecture that acts on a more sophisticated version
of the input features, and (iii) the superiority of the actor-
critic over the DQN approach.

Comparison on Test Set Table 2 shows the quantitative
results of different models on the (unseen) validation set,
as well as the final test set of Microsoft’s TextWorld chal-
lenge. As expected, our model generalizes best to the unseen
games with a mean percentage of 74.4 and 69.3 for the re-
spective sets of games. The standard baselines are not able

550% is equivalent to the 5th place in the competition.

to exceed the 15% mark, indicating that they are not suit-
able to be applied ”out-of-the-box” on the specific task of
solving families of TBGs. A recent model by Yin and May
(2019b), designed explicitly for the TextWorld environment,
uses a curriculum learning approach to train a DQN model
and achieves 58% on their validation set (hold-out data from
the challenge’s training set).

Conclusion

In this work, we presented how to build a deep RL agent
that not only performs well on a single TBG but generalizes
to never-before-seen games of the same family. To achieve
this result, we designed a model that effectively ranks a set
of commands based on the context and context-derived fea-
tures. By incorporating ideas from hierarchical RL, we sig-
nificantly reduced the size of the action-space and were able
to train the agent through an actor-critic approach. Addition-
ally, we showed how to make the agent more resilient against
never-before-seen recipes and ingredients by training with
data augmented by a food-item database. The performance
of our final agent on the unseen games of the FirstTextWorld
challenge is substantially higher than any standard baseline.
Moreover, it achieved the highest score, among more than
20 competitors, on the (unseen) validation set and beat all
but one agent on the final test set.
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