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Abstract

Given a two-sided market where each agent ranks those on
the other side by preference, the stable marriage problem calls
for finding a perfect matching such that no pair of agents pre-
fer each other to their matches. Recent studies show that the
number of stable solutions can be large in practice. Yet the
classical solution to the problem, the Gale-Shapley (GS) al-
gorithm, assigns an optimal match to each agent on one side,
and a pessimal one to each on the other side; such a solu-
tion may fare well in terms of equity only in highly asymmet-
ric markets. Finding a stable matching that minimizes the sex
equality cost, an equity measure expressing the discrepancy
of mean happiness among the two sides, is strongly NP-hard.
Extant heuristics either (a) oblige some agents to involuntar-
ily abandon their matches, or (b) bias the outcome in favor of
some agents, or (c) need high-polynomial or unbounded time.
We provide the first procedurally fair algorithms that output
equitable stable marriages and are guaranteed to terminate in
at most cubic time; the key to this breakthrough is the moni-
toring of a monotonic state function and the use of a selective
criterion for accepting proposals. Our experiments with di-
verse simulated markets show that: (a) extant heuristics fail
to yield high equity; (b) the best solution found by the GS
algorithm can be very far from optimal equity; and (c) our
procedures stand out in both efficiency and equity, even when
compared to a non-procedurally fair approximation scheme.

1 Introduction

The stable marriage (or matching) problem (SMP) calls
for each agent on two sides to find a match on the other
side. Eventually, there should be no pair of agents that
would rather be matched to each other than to their allo-
cated matches. Each agent holds a preference list for mem-
bers of the opposite side. Gale and Shapley (1962) showed
that a stable solution can be found in quadratic time. The
problem finds application in several two-sided markets, in-
cluding those among doctors and hospitals (Roth 1984;
2008), students and schools (Teo, Sethuraman, and Tan
2001), or sailors and vessels (Liebowitz and Simien 2005).
Roth and Shapley shared the 2012 Nobel Memorial Prize in
Economic Sciences for that work among others.
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The set of stable matchings in a real-world market is
large (Hassidim, Romm, and Shorrer 2017). Still, the Gale-
Shapley algorithm yields one that is most preferred by
the one side and least preferred by the other (McVitie
and Wilson 1971). Arguably, many societal applications re-
quire a stable matching that compromises among the two
sides (Gusfield and Irving 1989; Roth and Sotomayor 1990;
Romero-Medina 2005). For example, in a health care mar-
ket, each surgeon may have preferences for which anes-
thetist to work with, and vice versa; ensuring a sense of fair-
ness among the two sides may lead to better performance
and societal outcomes (Romero-Medina 2005). Thus, the
problem of finding a stable matching making a good com-
promise among the two sides is worth studying (Roth 2018).

A popular way to measure the goodness of compromise,
or equity, among the two sides is the sex equality cost (Gus-
field and Irving 1989); yet the problem of optimizing that
measure is NP-hard (Kato 1993); no known algorithm of-
fers a theoretical approximation guarantee with respect to
optimality. An approximation algorithm (Iwama, Miyazaki,
and Yanagisawa 2010) provides a guarantee only with re-
spect to Gale-Shapley algorithm’s solutions. Besides, by
this algorithm, some agents have to involuntarily forgo their
match in an already stable matching for a less preferable
one, so that the whole community moves to another stable
matching. A local-search heuristic (Viet et al. 2016a) shares
this involuntary character. Proposed voluntary procedures
either bias their result in favor of some agents (Ma 1996;
Aldershof, Carducci, and Lorenc 1999), or bear no theoret-
ical guarantee to terminate in finite time (Everaere, Morge,
and Picard 2013; Gelain et al. 2013; Giannakopoulos et al.
2015), or need high-polynomial time (Dworczak 2016). To
date, no voluntary and unbiased procedure is guaranteed to
reach a stable matching in less than quartic time.

We develop the first, to our knowledge, voluntary and un-
biased procedures that are theoretically guaranteed to reach
a stable marriage in cubic time. These procedures monitor a
monotonic state function to enforce progression and apply a
selective criterion for accepting match proposals when fac-
ing difficulty. Our thorough experimental study shows that
our procedures outperform others in terms of equity and ef-
ficiency over diverse preference distributions.

7269



2 Background and Related Work

In an instance I of the stable marriage problem (SMP), we
are given n men and n women. Each person has a preference
list ranking the members of the other side by worsening or-
der of preference. Let �qi be the preference list of agent qi;
�qi [k] = pj means that pj is the k-th preference of qi; we
also write prqi(pj) = k. If a woman w prefers m1 to m2,
i.e., prw(m1) < prw(m2), we denote that as m1 �w m2;
likewise for men’s preferences. A matching M on I is a
set of disjoint pairs. When a woman w and a man m are
matched in M , we write M(w) = m and M(m) = w. A
woman w and a man m form a blocking pair for M when:
(i) M(m) �= w; (ii) w �m M(m); and (iii) m �w M(w). A
matching M is stable if no blocking pair exists for M . The
SMP calls for finding a stable perfect matching.

2.1 The Gale-Shapley Algorithm

In an iteration of the Gale-Shapley (GS) algorithm (1962),
each single man proposes to the woman of his next prefer-
ence κ, starting with κ = 0. A woman w accepts a proposal
from a man m if she is single or prefers m to her current
fiancé, M(w). Thus, w accepts a proposal from m under a
condition expressed by the Boolean predicate:

accept(w,m) = single(w) ∨ m �w M(w) (1)

where M is the matching created so far. In case the proposal
is rejected, m moves to preference κ+1 in the next iteration.

The GS algorithm arrives at a stable matching in O(n2)
steps (Gusfield and Irving 1989), thanks to the monotonic
property that the number of pairs is non-decreasing: an elop-
ing woman breaks her old pair, yet forms a new pair with a
single man; there are no circumstances in which a matched
woman elopes for a matched man, breaking two old pairs
and forming only one new, since only unmatched men issue
proposals. Notably, a woman’s preference for her match can
only improve, while that of a man can only worsen.

2.2 Striving for Equity

Unfortunately, the GS algorithm is biased: it returns, out
of a set of stable solutions that is large in real-world mar-
kets (Hassidim, Romm, and Shorrer 2017) and exponen-
tially growing in the worst case (Irving and Leather 1986),
one that is most preferable to each proposing agent and
least preferable to each receiving agent (McVitie and Wil-
son 1971). For example, in case men’s first preferences do
not conflict, each man may obtain his first choice, regardless
of how satisfactory that solution is to women. This bias calls
for solutions of higher equity. A popular equity measure, the
sex equality cost, measures the gap between the two sides’
average obtained preference:

d(M) =

∣∣∣∣∣∣
∑

(m,w)∈M

prm(w)−
∑

(m,w)∈M

prw(m)

∣∣∣∣∣∣
(2)

where prm(w) (respectively, prw(m)) denotes the position
of woman w in man m’s preference list (respectively, of
m in w’s list). Other measures of the quality, though not
the equity, of a matching are the egalitarian cost, c(M) =

∑
(m,w)∈M prm(w) +

∑
(m,w)∈M prw(m), and the regret

cost r(M) = max(m,w)∈M max{prm(w), prw(m)}.
There are O(n2) (Gusfield 1987) and O(n4) (Romero-

Medina 2005) algorithms for minimizing regret cost. Egali-
tarian cost is minimized in O(n3) (Irving, Leather, and Gus-
field 1987; Feder 1992). Such solutions explore a lattice that
contains all stable matchings (Irving 2008). Yet minimizing
the equity-oriented measure of sex equality cost is strongly
NP-hard (Kato 1993). An O

(
n3+ 1

ε

)
approximation algo-

rithm (Iwama, Miyazaki, and Yanagisawa 2010) provides
bounds with respect to the outputs of the GS algorithm, but
not versus the optimal cost; an exponential-time algorithm
solves the problem exactly (McDermid and Irving 2014).

Besides, all herein discussed algorithms require that some
agents unwillingly abandon a match, so as to move from one
stable matching to another; local-search algorithms (Viet et
al. 2016b; 2016a) share this coercive character. We are inter-
ested in procedures that exhibit procedural fairness, hence
can be voluntarily applied by agents in a real-world market.

2.3 Procedural Fairness

Two works suggest procedures in which both sides act vol-
untarily. However, these procedures have an inherent bias in
favor of some agents, like the bias of the GS algorithm in fa-
vor of one side: ROM (Ma 1996) eliminates blocking pairs
among an iteratively growing subset of agents; thus, the later
an agent is included in this growing subset, the more the
outcome is biased in its favor (Blum, Roth, and Rothblum
1997). LOTTO (Aldershof, Carducci, and Lorenc 1999) iter-
atively removes unattainable pairings from preference lists
and assigns a random agent to its best remaining preference.
Then the earlier an agent is chosen, the more the outcome
is irrevocably biased in its favor. Some recent works suggest
procedures that are both voluntary (i.e., do not oblige any
agent to act unwillingly) and unbiased (i.e., do not favor any
one agent or one side by design). We call such procedures
fair. Out of those, the following may enter cyclical loops
and have no termination guarantee:

• SML2 (Gelain et al. 2013) iteratively eliminates selected
blocking pairs to transform an initial random matching
to a stable one. However, its core process may endlessly
cycle (Tamura 1993).

• SWING (Everaere, Morge, and Picard 2013) iteratively
lets each agent reissue proposals, until it reaches either
its current match or a new position in its preference list.
However, SWING is not guaranteed to terminate in finite
iterations.

• ESMA (Giannakopoulos et al. 2015), iteratively lets each
unmatched agent propose to its following preference κ;
while faster than SWING, neither ESMA has a theoretical
termination guarantee: any agent may cycle, first accept-
ing a proposal bettering its κ index, then being abandoned
and worsening κ again.

DACC (Dworczak 2016) is the only known fair procedure
that provably terminates, albeit in O(n4), with extra mea-
sures required to ensure termination (Dworczak 2019), fol-
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lowing an arbitrary sequence of proposals. Thus, no known
fair procedure has less than quartic time.

3 Monotonic Properties

By the fair procedures we have discussed, an agent is in one
of three states:

• single (S): single, hence issuing proposals or having
reached the end of its preference list;

• discontent (D): in a pair, yet still issuing proposals to un-
examined preferences more preferable than its match;

• content (C): matched and having already issued all pro-
posals up to its match in its preference list, hence not is-
suing proposals.

We aim to develop fair procedures that reach an equitable
stable marriage in cubic time. To do so, we first revisit the
monotonic properties of GS and examine whether they are
retained by the unbiased procedures of Section 2.3. As we
saw in Section 2.1, in GS the preference rank of a recip-
ient (woman) for its assignee is not worsening, while that
of a proposer (man) is not improving. These properties are
lost when both sides act as both proposers and recipients:
the preference index κp to which an agent p issues its next
proposal may fluctuate both up and down in its preference
list. Then, the number of pairings in GS is non-decreasing;
this property is lost too: when a proposing agent abandons
one pairing to form another with an accepting recipient, two
pairings may be broken and only one created.

Thus, the monotonicity that guarantees the termination of
GS is lost. However, there may be some other monotonic-
ity to discover. We look at this matter in more detail. As
discussed, an agent can be in a single, content, or discon-
tent state, S, C, D respectively. When a new couple (p, q)
is formed, the proposing agent p has already examined all
options it prefers to q, hence will necessarily become C; the
recipient agent q will be either C or D, depending on whether
its preference rank for the proposer, prq[p], is above or be-
low κq . We denote the changes occurring when an agent X
proposes to another agent Y, who accepts, using the syntax:
*X Y* → * XY *
where two closely adjacent symbols (like *X and XY) denote
a couple; spaces separate one couple or agent from another;
* is a placeholder for possible assignees to the proposing
agent X and the recipient agent Y prior to the acceptance of
X’s proposal by Y and the creation of couple XY. The left
side of the arrow indicates the state of affairs before the pro-
posal of X is accepted by Y, while the right side indicates the
state of affairs after that acceptance. All of the symbols X,
Y, and * can assume the values S, C, and D, representing the
states of the respective agents before and after the proposal’s
acceptance. It follows that CC denotes a couple of two con-
tent agents, while CD and DC denote pairings of one content
and one discontent agent. By this notation, we distinguish
two possible repercussions of a proposal’s acceptance. First,
such an acceptance may lead to the creation of an additional
CC couple. That may happen in any of the following ways:

S CD → CC S
S DC → CC S
S S → CC

CD CD → S CC S
CD DC → S CC S
CD S → S CC

DC → CC
We obtain this list by outlining all ways in which an S or

D agent may propose to a C, D, or S agent, and lead to an
additional CC couple; the represented agents appear in the
same order on the left and right side of the syntax, while
their state may change. For example, the fifth line above in-
dicates the case where the D agent in a CD couple proposes
to the D agent in another DC couple, who prefers the pro-
poser to its κth preference; the latter accepts the proposal,
creating one new CC couple and turning the two former as-
signees of the newly paired agents into singles. The seventh
line shows that case where a D agent proposes to its own
partner. A proposal’s acceptance may decrease the number
of couples, but cannot reduce the number of CC couples. It
may fail to create an additional CC couple, yet their number
remains stable, in any of the following ways:

S CC → CC S
S DC → CD S
S S → CD

CD CC → S CC S
CD DC → S CD S
CD S → S CD

Then the following theorem follows.
Theorem 3.1. The number of CC couples is non-decreasing
in any procedure where both sides propose.

Proof. The number of CC couples could only decrease if an
accepted proposal were to break such a couple without cre-
ating a new one. A proposer p is single or discontent, hence
not party to a CC couple. On the other hand, a recipient q
may be party to a CC couple and accept the proposal from p
in case p �q M(q). Then q remains content, hence one CC
couple is broken and another is created. Thus, the number of
CC couples is non-decreasing.

4 Revising the Acceptance Criterion

From our preceding analysis it follows that there are two
kinds of content agents: those in CC couples and those in
CD couples; the content state of the latter is precarious, as
their assignee is discontent and thus more likely to elope.
We reason that such content agents in CD couples may not
be rendered content in the first place. After all, their confine-
ment to a CD couple prevents them from proposing. We may
ban the discontent state as such. That state arises out of the
acceptance criterion in Equation (1): a single agent accepts
a proposal in all cases, and may thus become discontent. We
can substitute this criterion by a selective one:

accept(q, p) = p �q �q[κq] (3)

By this criterion, q accepts a proposal from p if and only
if p is preferable to q over its next proposal target. Such an
acceptance renders q Content, and the proposer p is always
Content after a proposal is accepted; hence, by this criterion,
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discontent agents do not arise. We call the use of this crite-
rion discontent suspension. We have determined that DACC
can also employ discontent suspension instead of more con-
voluted processes to ensure termination (Dworczak 2019).

5 Terminating Procedures

Here, we use the building blocks of Sections 3 and 4 to build
fair procedures that reach a stable matching in cubic time.
By Theorem 3.1, there exists a non-decreasing state func-
tion: the number of CC couples. If we could enforce that
function’s increase at each iteration, the procedure would
terminate in O(n) iterations.

Thus, we try to enforce the increase of the number of CC
couples (in short, CC increase). We observe that, when only
one side issues proposals, there can be no cyclical behavior,
i.e., no return to a previous state. The agents on the chosen
side descend their preference lists monotonically. Eventu-
ally, each such agent becomes idle, i.e., content or single at
the end of its preference list. Even so, we cannot be sure that
a CC increase will occur before that happens. Yet, if we then
allow the other side to take turn, we can prove that it will.

Theorem 5.1. Assume each agent on the one side, P is idle
(i.e., content or single at the end of its preference list) and
there is at least one non-idle single on the other side, Q.
Then, proposals from Q incur a CC increase before all sin-
gles in Q become idle.

Proof. As all agents on side P are idle, the only possible
repercussions of a proposal by a single agent on side Q are:

S S → CC
S CD → CC S
S CC → CC S

Out of these actions, the first two incur CC increase. The
third does not incur CC increase and spawns a new single on
side Q. Assume that all singles on side Q become idle, and
a CC increase does not occur; then all proposals issued are
of the third type. The overall process is monotonic, as single
agents descend their preference lists. Eventually, there is at
least one single agent q left on side Q, hence there should
be at least one single agent p on side P too, who is also
idle. Then, p and q must have proposed to, and rejected, each
other. Without loss of generality, assume p was the last one
to issue such a proposal, which q rejected. Since q is now
an idle single, it must have later returned the proposal to p,
which leads to a contradiction.

Theorem 5.1 shows how we can enforce a CC increase.
Besides, when all agents become idle there can be no idle
singles, hence we reach stability (Gale and Shapley 1962).
We now utilize this result to build terminating procedures.

5.1 Late Discontent Suspension (LDS)

We start with an unbiased procedure that lets both sides issue
proposals in turns starting from an arbitrarily selected side
(Algorithm 1); at each iteration, it enforces a CC increase
before it moves to the next iteration. This algorithm treats all
agents on the same side equally, without discrimination: they
all get a chance to propose in each round, and the outcome

of their proposals is order-independent. Proposers, first cho-
sen at random, propose once each. If these actions incur a
CC increase, we alternate sides and move on; otherwise, we
invoke a procedure that enforces CC increase; this process
suspends the D state to impose that increase as a last resort,
hence the name Late Discontent Suspension (LDS).

LDS enforces CC increase at each iteration in up to five
stages. At Stage 1, it lets any active (i.e., non-idle) agent on
the proposing side P issue proposals until it achieves a CC
increase. If P exhausts all possible proposals without creat-
ing an additional CC couple, then all proposers have become
idle. Then LDS enters Stage 2, in which it lets active single
recipients, if such exist, act as proposers. By Theorem 5.1,
this operation will incur a CC increase. Yet if single recip-
ients do not exist, we let discontent recipients act, moving
to Stage 3; with all agents on side P idle and no singles on
either side, only the three kinds of action are possible:

CD → CC
CD CD → S CC S
CD CC → S CC S

The former two actions incur a CC increase. The latter
does not, while it creates one new single on each side. If that
happens, we enter Stage 4: we suspend discontents, adopting
the acceptance criterion of Equation (3), hence create no new
D agents or CD pairs, and let the unique single proposer issue
proposals. Each such proposal either incurs CC increase, or
spawns a new single proposer: S CC → CC S. Who-
ever is the unique single proposer, descends its preference
list. Eventually, either a CC increase occurs, or the unique
single proposer becomes idle, hence all proposers are idle.
Thereafter, the unique single recipient acts, in Stage 5. With
all proposers idle, by Theorem 5.1, a CC increase occurs.

5.2 Early Discontent Suspension (EDS)

We devise a simpler variant of LDS, Early Discontent Sus-
pension (EDS), that suspends the discontent state whenever
it forces CC increase. Algorithm 2 illustrates EDS: at Stage 1
proposers insist on proposing; we treat all discontent re-
ceivers as single, employing the selective acceptance crite-
rion of Equation (3). If Stage 1 renders all proposers idle,
the baton passes to recipients in Stage 2. By Theorem 5.1,
Stage 2 brings forth a CC increase; should we reach that
stage, it will be the final stage of the overall procedure, since
there is no action to be taken by the other idle side.

5.3 Permanent Discontent Ban (PDB)

EDS allows agents to be discontent in its regular operation.
We can ban the discontent state altogether, always using the
selective acceptance criterion. The resulting Permanent Dis-
content Ban (PDB) variant works as in Algorithm 2, albeit
with the acceptance criterion always set to selective.

5.4 PowerBalance

As the following theorem shows, the hitherto proposed al-
gorithms have cubic worst-case complexity.
Theorem 5.2. LDS, EDS, and PDB terminate in O(n3).

Proof. All variants incur O(n) rounds of CC increase, each
of which may need O(n2) proposals; O(n3) in total.
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Algorithm 1 Late Discontent Suspension

1: while not (everyone is Content) do
2: Acceptance Criterion = Non-selective (Equa-

tion (1))
3: for all p ∈ P do � First Try
4: propose(p) (propose to next preference at κp)
5: if (CC did not increase) then FORCE -

INCREASE(P )
6: swap P and Q (swap Proposing side)

1: procedure FORCE INCREASE(P )
2: while ∃ active p ∈ P do � Stage 1
3: propose(p)
4: if (CC increased) then return

5: while ∃ active Single q ∈ Q do (Q is the other side)
� Stage 2

6: propose(q)
7: if (CC increased) then return

8: while ∃ Discontent q ∈ Q and � active Single p ∈ P
do � Stage 3

9: propose(q)
10: if (CC increased) then return

11: Acceptance Criterion = Selective (Equation (3))
12: while ∃ active Single p ∈ P do � Stage 4
13: propose(p)
14: if (CC increased) then return

15: while ∃ active Single q ∈ Q do � Stage 5
16: propose(q)

Algorithm 2 Early Discontent Suspension (Force Increase)

1: procedure FORCE INCREASE(P )
2: Acceptance Criterion = Selective (Equation (3))
3: while ∃ active p ∈ P do � Stage 1
4: propose(p)
5: if (CC increased) then return

6: while ∃ active q ∈ Q do � Stage 2
7: propose(q)

For the sake of completeness, we also develop a biased
quadratic-time procedure. We revisit the subroutine enforc-
ing CC increase in EDS and PDB (Algorithm 2). In this sub-
routine, if we render all agents on side P idle and let side Q
propose, we reach termination. This procedure has quadratic
complexity, as it monotonically descends all preference lists,
and is biased, as it treats the two sides differently. On ini-
tially unmatched agents it degenerates to the GS algorithm:
first one side becomes idle, and then the other side obtains
its side-optimal matching.

We propose a variant, PowerBalance (PB), that calls this
biased termination-enforcing procedure after reaching a bal-
ance among the two sides. PB operates in two phases: in first
phase, it lets the two sides issue proposals for O(n) rounds,
without forcing CC increase; to ensure some balance among
the two sides, the more advantaged side, in terms of average
current preference, proposes in each iteration; that is fair,

since the proposing side lowers its preferences, while the
receiving side raises them. In case the first phase does not
reach termination, we enter the second, biased phase that en-
forces termination by first rendering one side idle and then
letting the other side propose. We ban Discontent agents, i.e.,
adapt the criterion of Equation (3), throughout PB’s execu-
tion. We let the side that is initially advantaged in terms of
average preference propose in the second, biased phase.

Theorem 5.3. PB terminates in O(n2) proposals.

Proof. The O(n) initial rounds make O(n) proposals each;
the termination procedure makes O(n2) proposals.

6 Experiments

We tested all algorithms on datasets drawn from distribu-
tions with diverse characteristics:

• Uniform(U), with preferences created fully at random.

• Gaussian(G), which adds Gaussian noise on an initial or-
der; each agent starts with its id as score; we add to each
score a random value from a Gaussian N (0, pol) and re-
sort; we measure polarity pol as a percentage of n.

• asymmetric distributions, in which one side follows the
Uniform or Gaussian model, while the other side follows
a Discrete(D) uniform model: a percentage of agents par-
ticipate in a hot set, all of which are more preferable than
the rest; for example, the notation UD denotes uniform
distributions on men and discrete on women.

We set the hot set of each Discrete distribution to include
40% of the agents, and the polarity of each Gaussian to 40%
of n. All algorithms were implemented in Java1 and tested
on an Intel Xeon 2GHz CPU with 8GB RAM.

6.1 Comparison among our procedures

We first compare our procedures amongst themselves. We
measure equity in terms of the sex equality cost (SECost) of
Section 2.2 for 50 instances per distribution, and show box
and whisker plots; a black dot denotes the mean; we also
measure runtime. PowerBalance runs for 4n iterations be-
fore enforcing termination. Figure 1 shows our results. We
observe that PowerBalance outperforms other approaches in
quality on Uniform data, but not on Gaussian; on asymmet-
ric distributions they come even. The complexity advantage
of PowerBalance does not always translate to lower runtime.

6.2 Evaluation against Heuristics

We observe that our three fair procedures perform sim-
ilarly to each other. We construct a single procedurally
fair representative, PF, that reports the best solution af-
ter running all three. We assess the performance of PF
and PowerBalance against heuristics with a bias and pro-
cedurally fair ones: GS, the Gale-Shapley algorithm that
outputs the male-optimal (MaleOpt) or the female-optimal
(FemOpt) solution; PolyMin, which finds the solutions min-
imizing the regret and egalitarian cost and reports the best

1Available at https://github.com/ntzia/stable-marriage.
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PowerBalance PDB EDS LDS

(a) SECost-U (b) SECost-G (c) SECost-UD (d) SECost-GD
PowerBalance PDB EDS LDS

(e) Time-U (f) Time-G (g) Time-UD (h) Time-GD

Figure 1: Comparison among our procedures

PowerBalance PF GS MaleOpt GS FemaleOpt PolyMin Lotto EROM ROM DACC

(a) SECost-U (b) SECost-G (c) SECost-UD (d) SECost-GD

PowerBalance PF GS MaleOpt GS FemaleOpt PolyMin Lotto EROM ROM DACC

(e) Time-U (f) Time-G (g) Time-UD (h) Time-GD

Figure 2: Evaluation against Heuristics

result; Lotto (Aldershof, Carducci, and Lorenc 1999), an
O(n2) biased heuristic that randomly picks an agent to as-
sign at its first remaining preference at each step; ROM (Ma
1996), an O(n3) biased heuristic that starts out with an
empty matching and eliminates blocking pairs among an

iteratively increasing subset of agents; EROM (Romero-
Medina 2005), an O(n4) regret-minimizing procedure that
lets agents propose to each other with progressive receptive-
ness: in round k, only proposals ranked up to k may be ac-
cepted. DACC (Dworczak 2016), an O(n4) fair procedure;
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Approx Achieved Ratio PowerBalance Achieved Ratio PF Achieved Ratio Approx Time PowerBalance Time PF Time

(a) SECost-U (b) SECost-G (c) SECost-UD (d) SECost-GD

Figure 3: Evaluation against Approximation Algorithm

CC Singles D Men D Women Avg κ

(a) PDB-U (b) PDB-G (c) PDB-UD (d) PDB-GD

(e) LDS-U (f) LDS-G (g) LDS-UD (h) LDS-GD

Figure 4: Representative Instances

we let DACC switch sides as PowerBalance does.
Figure 2 shows SECost and mean runtime results on sizes

of up to 4000 agents. Overall, PF and PowerBalance are
highly competitive in terms of equity, with predictable run-
times. In case of asymmetry among the two sides, one of the
two GS solutions yields a good SECost outcome.

6.3 Evaluation against APPROX

We now compare vs. the scheme of Iwama et al. (2010), AP-
PROX, where ε provides a guarantee with respect to the best
SECost achieved by the GS algorithm. For each tested size
and distribution, we generate 50 instances and explore the
range of ε to find appropriate values. Figure 3 presents our
results. The axes on the left denote cost ratios (for APPROX,
upper-bounded by ε), while those on the right denote run-
time. Remarkably, PF matches or outperforms APPROX in
all cases, and PB also does so except on Gaussian. The three
contestants come even on asymmetric distributions, yet AP-
PROX needs too high runtime with ill-chosen ε.

6.4 Representative Instances

We now study the runtime behavior of our procedures using
data sets of 2000 agents. On each data, we show the instance
of median SECost. We focus on PDB and LDS. Figure 4 de-
picts our runtime monitoring results. Bars show, on the y-
axis, the maximum stage reached to achieve CC increase per
iteration. Red dotted lines show the non-decreasing CC num-
ber. Red solid lines show the number of singles S. Green
and pink lines show the number of discontents D per side,
if any. At all times, n = 2CC + S + D. We also plot the
average preference (i.e., the κ index) among active agents.
The legend above each plot shows how many times CC in-
crease was achieved at each stage. Figure 4a shows a typical
PDB behavior. Initially, CC grows rapidly; later, the algo-
rithm struggles to achieve new CC pairings. Figure 4c shows
that PDB ends forcefully by entering Stage 2 after one side
is rendered idle. On LDS, the case of Uniform preferences
(Figure 4e) exhibits again seamless progress. In Figure 4g,
men have uniform preferences for women, hence many CD
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pairs are easily created and all men become content. There-
after, the initiative lies primarily with discontent women.
Figure 4h shows three distinct phases; initially the process
is smooth, as the existence of both hot set women and some
highly preferable men allows the creation of CC pairings. Yet
these are soon exhausted; by round 180, proposals by less
desirable women create many discontent men. These men
recuperate after round 520, causing a rapid CC increase.

7 Conclusion

The number of stable two-sided matchings in real-world ap-
plications is large, while the Gale-Shapley algorithm usu-
ally yields outcomes of suboptimal equity. A fair procedure
should operate without coercion or bias towards any agent or
side. We designed the first fair procedures that terminate in
cubic time. Our experimental study demonstrates that these
procedures achieve consistently higher equity than compet-
ing heuristics and can even outperform a computationally
demanding approximation algorithm that lacks procedural
fairness. Further, we proposed a quadratic-time algorithm
lacking procedural fairness; we build upon it in (Tziavelis et
al. 2019). In the future, we will examine the cases of incom-
plete lists and ties (Irving, Manlove, and O’Malley 2009).
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