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Abstract

Learning agents that are not only capable of taking tests,
but also innovating is becoming a hot topic in AI. One of
the most promising paths towards this vision is multi-agent
learning, where agents act as the environment for each other,
and improving each agent means proposing new problems for
others. However, existing evaluation platforms are either not
compatible with multi-agent settings, or limited to a specific
game. That is, there is not yet a general evaluation platform
for research on multi-agent intelligence. To this end, we in-
troduce Arena, a general evaluation platform for multi-agent
intelligence with 35 games of diverse logics and represen-
tations. Furthermore, multi-agent intelligence is still at the
stage where many problems remain unexplored. Therefore,
we provide a building toolkit for researchers to easily in-
vent and build novel multi-agent problems from the provided
game set based on a GUI-configurable social tree and five ba-
sic multi-agent reward schemes. Finally, we provide Python
implementations of five state-of-the-art deep multi-agent re-
inforcement learning baselines. Along with the baseline im-
plementations, we release a set of 100 best agents/teams that
we can train with different training schemes for each game, as
the base for evaluating agents with population performance.
As such, the research community can perform comparisons
under a stable and uniform standard. All the implementations
and accompanied tutorials have been open-sourced for the
community at https://sites.google.com/view/arena-unity/.

Introduction

Modern learning algorithms are more of outstanding test-
takers, but less of innovators, i.e., the ceiling of an agent’s
intelligence may be limited by the complexity of its environ-
ment (Leibo et al. 2019). Thus, the emergence of innovation
is becoming a hot topic for AI. One of the most promising
paths towards such a vision is learning via social interaction,
i.e., multi-agent learning. In multi-agent learning, how the
agents should beat the opponents or collaborate with each
other is not defined or limited by the creator of the environ-
ment, e.g., the inventor of the ancient Go never defines what
strategies are good. However, enormous and sophisticated
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strategies are invented while a population of human play-
ers/artificial agents evolves by improving themselves over
the others, i.e., each agent is acting as an environment for
the others and improving itself means proposing new prob-
lems for the others.

To study a new class of intelligence, general evaluation
platforms with diverse games are milestones that push for-
ward the research to the next levels. For example, ALE
(Bellemare et al. 2013), Mujoco (Todorov, Erez, and Tassa
2012), and DM-Suite (Tassa et al. 2018) are the most
spread general evaluation platforms that greatly acceler-
ate the research in general reinforcement learning. How-
ever, there is no such general evaluation platform for multi-
agent intelligence. Although some platforms support multi-
agent settings (Wydmuch, Kempka, and Jaśkowski 2018;
Vinyals et al. 2017), they are not general evaluation plat-
forms, i.e., built for specific games. Thus, in this paper, we
propose the first general evaluation platform for multi-agent
intelligence, called Arena, containing 35 multi-agent games
in total, with diverse logics and representations; see Fig. 1.

Apart from training and evaluation, multi-agent intelli-
gence research is still at a stage where many problems re-
main undiscovered or unexplored. Thus, the second contri-
bution of Arena is a building toolkit for multi-agent intel-
ligence, enabling the easy creation of different multi-agent
scenarios. For example, in the sample game in Fig. 2 (a), af-
ter defining the basic behavior of the agent (i.e., moving and
turning) and the “alive” state of the agent (i.e., it stays on
the playground), it can be extended to different multi-agent
scenarios with minimal effort. For example, (1) five players
fight each other until only one agent is left alive (see Fig. 2
(b)), or (2) 5ˆ2 players form 2 teams, and each agent fights
for its own team until all players in a team are dead (see Fig.
2 (c)), or (3) multiple players form multiple teams in hierar-
chies, where the collaboration and competition relationships
between the teams are customized (see Fig. 3).

Thus, Arena is not just a research platform for the evalua-
tion with a fixed set of games, but also a building toolkit for
researchers to invent and build novel multi-agent problems.

To achieve the above vision of building a toolkit for multi-
agent intelligence, (1) we provide a GUI-configurable tree
that defines the social structure of agents, called social tree;
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Figure 1: Game set of Arena.

and (2) based on the social tree, we propose 5 basic multi-
agent reward schemes (BMaRSs), which define different so-
cial paradigms at each node in the social tree. Specifically,
each BMaRS is a restriction applied to the reward function,
so it corresponds to a batch of reward functions that can
lead to a specific social paradigm. For each BMaRS, Arena
provides multiple ready-to-use reward functions, simplify-
ing the construction of games with complex social relation-
ships. Furthermore, if the agent is controlling each joint of
a robot, it has long been a burden for researchers that low-
level intelligence (such as the basic skill of moving) must
first be built, before they can study high-level multi-agent
intelligence (Heess et al. 2017). Thus, Arena provides many
ready-to-use dense reward functions in each BMaRS that
handle such low-level intelligence. Additionally, Arena also
offers a verification option for customized reward functions,
so the researchers can make sure that the programmed re-
ward functions lie in one of the BMaRSs that produces a spe-
cific social paradigm. Thus, with the above efforts towards a
building toolkit for multi-agent intelligence and the provided
set of 35 games for a general evaluation platform, one can
easily customize a set of games of a new social paradigm to
study a yet unexplored problem.

Finally, we provide Python implementations of sev-
eral state-of-the-art deep multi-agent reinforcement learning
baselines, which can be used as starting points for the devel-
opment of novel multi-agent algorithms, as well as the vali-
dation of new environments. Along with the baseline imple-
mentations, we also release a set of 100 best agents/teams
that we can train with different training schemes for each
game, as the base for evaluating agents with population per-
formance (Balduzzi et al. 2019; 2018). So, the research com-
munity can perform comparisons under a stable and uniform
standard.

To summarize, this paper’s contributions are as follows:

(1) a general evaluation platform for multi-agent intelligence
with a set of diverse games, most of which are new to the
community or still stand as a challenge for state-of-the-art
algorithms, (2) a building toolkit for multi-agent games, en-
abling the easy creation of new social paradigms based on
GUI-configurable social trees and BMaRSs, (3) the baseline
implementations of 5 state-of-the-art multi-agent algorithms
for both competitive and collaborative settings, and (4) sets
of benchmark agents/teams for the community to conduct
stable and uniform population evaluation (Balduzzi et al.
2018). Code for games, building toolkit, and baselines, as
well as all corresponding tutorials have been released online
at https://sites.google.com/view/arena-unity/.

The Platform

State-of-the-Art Engine. The engine behind Arena is the
world-leading game engine Unity (Juliani et al. 2018), which
provides Arena with several desirable features on render-
ing, physics, customizability, and community. There are
also other choices of popular engines. Some platforms con-
tain a wide set of diverse games (Bellemare et al. 2013;
Nichol et al. 2018; Perez-Liebana et al. 2016; OpenAI
2016). However, they are designed mostly for single-agent
scenarios and are extremely hard to customize (adding mul-
tiple players or creating new games), since the games are
provided as compiled binary ROMs. Other downsides of
these choices include deterministic environments, unreal-
istic rendering, and unrealistic physics. Other platforms
(Todorov, Erez, and Tassa 2012; Tassa et al. 2018) are, in na-
ture, more physics engines than game engines, which lack a
visual editor for easily creating customized games, and can-
not handle more “game-like” features, such as instantiating
and destroying objects in real-time during the simulation.
The rest of the platforms are limited in the sense that they
are built for specific tasks, such as for first-person shoot-
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Figure 2: Game examples of the extensible multi-agent platform.

ing (Wydmuch, Kempka, and Jaśkowski 2018), Real-Time
Strategy (RTS) (Tian et al. 2017), vision understanding (Qiu
et al. 2017), in-door scene understanding (Handa et al. 2016;
Brodeur et al. 2017; Savva et al. 2017; Chang et al. 2017;
Puig et al. 2018; Gao et al. 2019), surviving (Suarez et al.
2019), and interaction (Wu et al. 2018; Savva et al. 2019;
Kolve et al. 2017), or specific games, such as Starcraft
(Vinyals et al. 2017) and Dota2 (OpenAI 2018). Thus, cre-
ating a general evaluation platform on these engines is not a
reasonable choice. DeepMind Lab (Beattie et al. 2016), Psy-
chlab (Leibo et al. 2018), and Malmo (Johnson et al. 2016)
are more appropriate choices when building a customizable
general evaluation platform. However, the main drawbacks
of the above engines are tied to their dated nature. The ren-
dering system of these engines are either low-polygon pixe-
lated (Malmo, based on Minecraft) or outdated (DeepMind
Lab and Psychlab, based on Quake III). The physics systems
of these engines are either rudimentary (Malmo), or have a
gap (Juliani et al. 2018) to the physical world (DeepMind
Lab and Psychlab). Besides, they are all incompatible with
a visual editor, making it quite cumbersome to build cus-
tomized scenarios.

To summarize, built on Unity, Arena has the following ad-
vantages over other platforms: (1) realistic rendering, so that
features, such as complex lighting, textures, and shaders,
are fully handled by the background engine and easily pro-
duced in a customized game, (2) realistic physics, so that
enough and realistic stochasticity is introduced in the game
and transferring a policy learned within a simulator to the
real world is easier, (3) user-friendly visual editor, so that
building new multi-agent scenarios in Arena is easy, and (4)
a large and active development community, so that creating
new games is easy with millions of off-the-shelf assets.

Game Sets Towards General Intelligence. The first con-
tribution of Arena is to provide a set of multi-agent games
with diverse game logics and representations, so that it may
push forward the research of general multi-agent intelli-
gence. Specifically, Arena provides: (1) 27 new games that
are not yet studied in the community, (2) 8 games, of which
the basic logics are inspired by other research, but equipped
with realistic rendering effects, physics engine, and all fea-
tures described in the following two paragraphs, such as ex-
tensibility to other social paradigms, and (3) interface to
the popular stand-alone domain StarCraft. The game set is
shown in Fig. 1. For more detailed information, see Tables
2-7 in the extended paper (Song et al. 2019).

Building Toolkit for Multi-Agent Environments. As the
second contribution, we provide a building toolkit for multi-
agent environments: we provide (1) a GUI-configurable so-
cial tree that defines how agents are grouped together with
each other, and (2) 5 basic multi-agent reward schemes
(BMaRSs) applied on each node in the social tree, so that
different social relationships can be easily built and verified,
and low-level intelligence (like motor skills) can be handled.

Other Features. Learning to communicate is an important
research area in multi-agent intelligence (Das et al. 2017;
Mordatch and Abbeel 2018). Thus, Arena provides a broad-
cast board at each node of the social tree (accessible for
any agent as a child of the node), which enables the study
of learning communication at each level. Also, global states
may be used in research for different purposes (Lowe et al.
2017; Gupta, Egorov, and Kochenderfer 2017; Foerster et al.
2017; 2018). Thus, Arena provides the option to broadcast it
to all agents. Besides, a top-down view of the global game is
often appreciated for visualizing population behavior (John-
son et al. 2016; Wydmuch, Kempka, and Jaśkowski 2018;
Jaderberg et al. 2018; Liu et al. 2019). Thus, Arena by de-
fault enables this option. Finally, there is a necessity for
competitive agents to evaluate against human players, and
also a research trend for collaborative agents to team up with
human players. Thus, Arena provides a gaming interface for
humans, so that a human player can take the place of any
agent in the game.

Basic Multi-Agent Reward Schemes and

Social Trees

Preliminaries. We consider a Markov game as defined in
(Littman 1994), consisting of multiple agents x P X , a fi-
nite global state space S , a finite action space Ax for each
agent x, and a bounded-step reward space rx,t P R for each
agent x. The environment consists of a transition function
g : SˆŚ�Ax : x P X(Ñ S , which is a stochastic function
st`1 „ g

`
st, pax,tqxPX

˘
, a reward function for each agent

fx : S ˆ Ś�Ax : x P X(Ñ R, which is a deterministic
function rx,t`1 “ fx

`
st, pax,tqxPX

˘
, a joint reward function

f “ pfxqxPX , and episode reward Rf
x “ řT

t“1 rx,t for each
agent x under the joint reward function f . For the agent, we
consider that it observes sx,t P Sx, where Sx consists of a
part of the information from the global state space S . Thus,
we have a policy πx : Sx Ñ Ax, which is a stochastic func-
tion ax,t „ πxpsx,tq. Besides, we consider that the agent x
can take a policy πx from a set of policies Πx and assume
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that the random seed of all sampling operations is k, which
is sampled from the whole seed space K.

We investigate the effect of tx : x P X u and tπx : πx P
Πxu on tRf

x : x P X u. By applying different restrictions on
the effect, we have different BMaRSs, each one of which is
a set of joint reward functions F “ tf : ¨u that produce a
similar effect on the population X . The term reward scheme
first appears in (Tampuu et al. 2017) as a tabular, which is
applied to a special case of Pong. While we define it in a
general form and show that many examples are special cases
within this general form.

In a non-sequential setting (normal-form game), the re-
ward scheme serves a similar purpose as the payoff matrix
(Myerson 2013), which is also represented as a tabular. See
Lemma 2 in the extended paper (Song et al. 2019) for how
the payoff matrix is aligned with BMaRSs. In the follow-
ing, we define 5 different BMaRSs. Along defining these
BMaRSs, we also describe the ready-to-use reward func-
tions f within these BMaRSs, which is provided by Arena
as a dropdown list.

Non-learnable BMaRSs (FNL) are a set of joint reward
functions f as follows:

FNL “ �
f : @k P K,@x P X ,@πx P Πx,

BRf
x { Bπx “ 0

(
,

(1)

where 0 is a zero matrix of the same size and shape as the
parameter space that defines πx. Intuitively, FNL means that
Rf

x for any agent x P X cannot be optimized by improving
its policy πx.

Isolated BMaRSs (FIS) are a set of joint reward functions
f as follows:

FIS “ �
f : f R FNL and @k P K,@x P X ,

@x1 P X ztxu,@πx P Πx,@πx1 P Πx1 ,
BRf

x

Bπx1
“ 0

(
,

(2)

Intuitively, FIS means that the episode reward Rf
x received

by any agent x P X is not related to any policy πx1 taken by
any other agent x1 P X ztxu.

Reward functions fx in f of FIS are often called internal
reward functions in other multi-agent approaches (Hendtlass
2004; Jaderberg et al. 2018; Bansal et al. 2018), meaning
that apart from the reward functions applied at a population
level (such as win/loss), which are too sparse to learn, there
are also reward functions directing the learning process to-
wards receiving the population-level rewards, but are more
frequently available, i.e., more dense (Heess et al. 2017).
FIS is especially practical if the agent is a robot requiring
continuous control of applying force on each of its joints,
which means basic motor skills (such as moving) need to
be learned before generating population-level intelligence.
Thus, we provide f in FIS of energy cost, punishment of
applying a big force, encouragement of keeping a steady ve-
locity, and moving distance towards target.

Competitive BMaRSs (FCP ), inspired by (Cai and
Daskalakis 2011), are defined as

FCP “ �
f : f R FNL Y FIS and @k P K,@x P X ,

@πx P Πx,@πx1 P Πx1 ,
B ş

x1PX Rf
x1dx1

Bπx
“ 0

(
,

(3)

which intuitively means that for any agent x P X , taking
any possible policy πx P Πx, the sum of the episode re-
ward of all agents will not change. If the episode length is 1,
it expresses a classic multi-player zero-sum game (Cai and
Daskalakis 2011). Useful examples of f within FCP are:
(1) agents fight for a limited amount of resources that are
always exhausted at the end of the episode, and the agent is
rewarded for the amount of resources that it gained, and (2)
fight till death, and the reward is given based on the order of
death (the reward can also be based on the reversed order,
so that the one departing the game first receives the highest
reward, such as in some poker games, the one who first dis-
cards all cards wins). Rock, Paper, and Scissors in normal-
form game (Myerson 2013) and Cyclic Game in (Balduzzi
et al. 2019) are both special cases of FCP ; see Lemmas 2
and 3 in the extended paper (Song et al. 2019).

Collaborative BMaRSs (FCL), inspired by (Cai and
Daskalakis 2011), are defined as

FCL “ �
f : f R FNL Y FIS and @k P K,@x P X ,

@x1 P X ztxu,@πx P Πx,@πx1 P Πx1 ,
BRf

x1

BRf
x

ě 0
(
,

(4)

which, intuitively, means that there is no conflict of interest
(BRf

x1 { BRf
x ă 0) for any pair of agents px1, xq. Besides,

since f R FNL Y FIS , there is at least one pair of agents
px, x1q that makes BRf

x1 { BRf
x ą 0. This indicates that this

pair of agents shares a common interest, so that improving
Rf

x for agent x means improving Rf
x1 for agent x1. The most

common example of f within FCL is that fx for all x P X
is identical, such as the moving distance of an object that
can be pushed forward by the joint effort of multiple agents,
or the alive duration of the population (as long as there is
at least one agent alive in the population, the population is
alive). Thus, we provide f in FCL: living time of the team
(both positive and negative, since some games require the
team to survive as long as possible, while other games re-
quire the team to depart as early as possible, such as poker).

Competitive and Collaborative Mixed BMaRSs (FCC)
are defined as a catch-all for any other than the above four
ones. First, the term B ş

x1PX Rf
x1dx1 { Bπx “ 0 in (3) can be

written as
ş
x1PX BRf

x1 { BRf
xdx

1 “ 0 (see Lemma 1 in ex-
tended paper (Song et al. 2019), which makes an alternative
(3). Considering FCP in this alternative (3) and FCL in (4),
an intuitive explanation of FCC is that there exist circum-
stances when BRf

x1 { BRf
x ă 0, meaning that the agents are

competitive at this point. But the derivative of total interestş
x1PX BRf

x1 { BRf
xdx

1 is not always 0; thus, the total interest
can be maximized with specific policies, meaning that the
agents are collaborative at this point.
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Figure 3: An example of a social tree and BMaRSs applied on it.

Apart from providing several practical f in each BMaRS,
we also provide a verification option for each BMaRS,
meaning that one can customize an f and use this verifi-
cation option to make sure that the programmed f lies in a
specific BMaRS. The implementation of verification option
can be found in Section 1 in the extended paper (Song et al.
2019).

The Social Tree. The BMaRSs defined above apply to an
agent group of all sizes. To define more complex and struc-
tured social paradigms, we use a tree structure (social tree)
to organize the agents and apply BMaRSs on each node of
the tree. We illustrate this by an example. The GUI interface
in Fig. 3 (a) defines a tree structure in Fig. 3 (b), representing
a population of 4 agents.

The tree structure can be easily reconfigured by dragging,
duplicating, or deleting nodes in the GUI interface in Fig. 3
(a). In this example, each agent has an agent-level BMaRS.
The agent is a robot ant, so that the agent-level BMaRSs
are FIS , specifically, the option of ant-motion that directs
the learning towards basic motion skills such as moving for-
ward, as shown in Fig. 3 (c). Each two agents form a team
(which is a set of agents or teams), the two agents have team-
level BMaRSs. In this example, the two robot ants collab-
orate with each other to push a box forward, as shown in
Fig. 3 (d). Thus, the team-level BMaRSs are FCL, specifi-
cally, the moving distance of the box. On the two teams, we
have global-level BMaRSs. In this example, the two teams
are set to have a match regarding which team pushes its box
to the target point first, as shown in Fig. 3 (e). Thus, the
global-level BMaRSs are FCP , specifically, the ranking of
the box reaching the target. The final reward function ap-
plied to each agent is a weighted sum of the above three
BMaRSs at three levels. One can imagine defining a social
tree of more than three levels, where small teams form big-
ger teams, and BMaRSs are defined at each node to give
more complex and structured social problems. After defin-
ing the social tree and applying BMaRSs on each node, the
environment is ready for use with an abstraction layer han-
dling everything else, such as assigning viewports to each
agent in the window, applying the team color, displaying the
agent ID, and generating a top-down view.

The Learning Agents

The Baselines. We provide Python implementations of sev-
eral state-of-the-art baselines that can be used as starting
points for the development of novel multi-agent algorithms,

as well as for the validation of new environments. Specifi-
cally, we first implement a fully decentralized system, where
each agent is a self-contained PPO (Schulman et al. 2017),
with independent critic, actor, and optimizer. We also im-
plement two state-of-the-art methods based on self-play
in (OpenAI 2018) (SP) and population-based training in
(Jaderberg et al. 2018; DeepMind 2019) (PB). For collabo-
rative agents, we implement two state of the arts: centralized
critic (Lowe et al. 2017) (CC) and centralized critic with a
counterfactual baseline (Foerster et al. 2018) (CF).

The Evaluation Metric. It is recently raising attention
that evaluating an agent against a single-agent or hand-
coded bot is unstable and misleading (Balduzzi et al. 2018).
Thus, the population performance is introduced to evalu-
ate an agent’s (or an agent group’s) performance among a
base population. To enable population evaluation, we release
100 best agents, which we can train with different training
schemes for each game as the base population. One can call
the provided function to get the ranking of an agent among
the base population, or get the averaged ranking of a popu-
lation among the base population. Moreover, we provide a
human ranking among the base population, which provides
an indication of human-level intelligence in the game. We
will accept the submission of agents from the community
as well as keep implementing algorithms introduced in the
future, so that the base population will be upgraded, as the
level of research in multi-agent intelligence advances.

Experiments

Experiments are conducted from three aspects. First, we
evaluate our game set from the perspective of stochastic-
ity, realistic rendering, and simulation speed, all of which
are presented in the extended paper (Song et al. 2019) due
to page limit. Other advantages from the Unity engine have
been verified by (Juliani et al. 2018). Second, we evaluate
our design of the extensible multi-agent building toolkit with
a case study, showing that by applying different social trees
and BMaRSs, different population-level strategies can be
learned. Third, we report the experimental results of 5 base-
lines that we implemented and show that by using the pro-
vided population performance evaluation metric, the train-
ing progress can be visualized in a less noisy and more ana-
lyzable way.

Case Study of Social Tree and BMaRSs. We use the
game Crossroads from Arena to study the effectiveness of
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Figure 4: Visualizing training progress over episode reward (a,b) and population performance (c,d) of different baselines: D-
PPO (Decentralized Proximal Policy Optimization), SP (Self-Play), PB (Population-Based training), CC (Centralized Critic),
and CF (Counterfactual Baseline).

Figure 5: Case Study of Social Tree and BMaRSs.

the proposed social tree and BMaRSs via designing differ-
ent social paradigms. Specifically, in the game Crossroads
shown in Fig. 5 (a), the agent can move and turn, the final
goal of the agent is to reach the target on the other side of
the crossroad. By defining different social trees and applying
different BMaRSs, as shown in Fig. 5 (b) to (d), the agents
learn different strategies. In Fig. 5 (b), isolated BMaRSs
(FIS) are applied to all agents, i.e., each agent minimizes
the time that it takes to reach the target. The result shows
that the learned agents simply rush forward, and they easily
crash with each other at the center of the crossroad, produc-
ing a traffic jam. In Fig. 5 (c), collaborative BMaRSs (FCL)
are applied to the parent node of all agents, i.e., all agents
are rewarded with the time that the last one of them takes
to reach the target. The result shows that the agents learn
to wait for each other to go across the crossroad, so that
they can all get across as efficiently as possible. In Fig. 5
(d), collaborative BMaRSs (FCL) are applied on the parent
node of every 4 agents (which form a team), and competitive
BMaRSs (FCP ) are applied on the parent node of the two
teams. Specifically speaking, each two agents in the same
team are rewarded with the same reward, and the reward is
1 for the team that gets all of its agents to the target first, 0
for the other team. The results show that each team learns to
block the road of the other team with one agent, so that the
other agents in the team can get across undisturbed. Then,
the agent that blocks the road leaves for the target, after all
its teammates have reached the target.

Baselines and Evaluation Metric. We compare 5 base-
lines on two games: (1) Crossroads in Fig. 5 (a) with the
BMaRS settings of Fig. 5 (d) and (2) PushBox in Fig. 3 (e)
with the BMaRS settings of Fig. 3 (b). The BMaRS settings
of both games contain competitive as well as collaborative
social relationships, i.e., multiple agents form collaborative
teams, and teams compete with each other. Thus, we inves-
tigate SP and PB baselines at the level of teams compet-
ing with each other, as well as investigate CC and CF base-
lines at the level of agents collaborating with each other in a
team. As can be seen, the curve of episode reward shown in
Fig. 4 (a) and (b) is extremely noisy, as the environment is
non-stationary with the strategy of other collaborators and/or
competitors evolving during the training. However, in Fig. 4
(c) and (d), which is the curve of ranking in the released
base population, i.e., population performance, all methods
are comparable with clear performance gaps.

Related Work

Surveys of multi-agent intelligence research can be found in
(Hernandez-Leal, Kartal, and Taylor 2018). Different ideas
have been explored on competitive and collaborative multi-
agent settings.

Collaborative Settings. The simplest way to deploy
multi-agent collaborative systems is to make each agent have
a completely independent learning process (fully decentral-
ized) (Matignon, Laurent, and Le Fort-Piat 2012). However,
collaborative behaviors are hardly observed under such fully
decentralized setting; thus, a fully centralized system is uti-
lized in (Peng et al. 2017), where the policy has access to
the global state and is shared by all agents. However, it
is impractical, since the global state is mostly unavailable
in practice, and the system does not support extending the
number of agents. Thus, centralized training and decentral-
ized execution are gaining attention (Kraemer and Banerjee
2016). For multi-agent systems, this idea is mostly explored
under actor-critic algorithms (Foerster et al. 2018). Other
ideas include using a joint action-value function, (Lauer and
Riedmiller 2004) addressing the variance problem by a large
batch size (Bansal et al. 2018), and learning grounded coop-
erative communication protocols between agents (Foerster
et al. 2016).

Competitive Settings. Competitive multi-agent intelli-
gence originally comes from computational game theory
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(Bowling et al. 2015). Later on, deep multi-agent reinforce-
ment learning (D-MARL) is preferred, due to its scala-
bility, and as it achieves notable advances on two-player
games, such as Poker and Go (Moravčı́k et al. 2017; Silver
et al. 2017). Later, D-MARL was applied to more diverse
problems, such as high-dimensional video games (OpenAI
2018; DeepMind 2019) and those involving physics control
(Bansal et al. 2018). When solving more practical problems,
many issues have been raised, such as ensuring diversity
amongst agents (Marivate 2015), avoiding overfitting to the
policy of the opponents (Lanctot et al. 2017). Many ideas
address such issues (Kleiman-Weiner et al. 2016). Follow-
ing on D-MARL, a very promising recent direction is self-
play (Tesauro 1995). Fictitious self-play (Heinrich and Sil-
ver 2016) first shows promising performance on the com-
petitive game Leduc Poker. However, as the stability and
parallelizability are improving with the invention of new re-
inforcement learning algorithms, state-of-the-art approaches
adopt a simpler form of self-play (OpenAI 2018), which pro-
duces a superior-human intelligence on large video games,
like Dota2. Another promising recent idea is population-
based training, as adopted in StarCraft (DeepMind 2019).

Summary and Outlook

This paper has introduced the first general evaluation plat-
form for multi-agent intelligence research. Besides, with the
efforts on a building toolkit of multi-agent environments,
the platform also allows for easily building new multi-agent
problems. Additionally, with the released implementations
of several state-of-the-art baselines, researchers can start
their adventure instantly. Finally, by releasing a base popula-
tion, the community can conduct comparisons under a stable
and uniform evaluation metric.
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competitions: Playing doom from pixels. IEEE Transactions on
Games.

7260


