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Abstract

We consider the challenging problem of online planning for
a team of agents to autonomously search and track a time-
varying number of mobile objects under the practical con-
straint of detection range limited onboard sensors. A standard
POMDP with a value function that either encourages discov-
ery or accurate tracking of mobile objects is inadequate to
simultaneously meet the conflicting goals of searching for
undiscovered mobile objects whilst keeping track of discov-
ered objects. The planning problem is further complicated by
misdetections or false detections of objects caused by range
limited sensors and noise inherent to sensor measurements.
We formulate a novel multi-objective POMDP based on infor-
mation theoretic criteria, and an online multi-object tracking
filter for the problem. Since controlling multi-agent is a well
known combinatorial optimization problem, assigning control
actions to agents necessitates a greedy algorithm. We prove
that our proposed multi-objective value function is a monotone
submodular set function; consequently, the greedy algorithm
can achieve a (1 − 1/e) approximation for maximizing the
submodular multi-objective function.

Introduction

We study the problem of controlling a team of agents to
jointly track discovered mobile objects and explore the en-
vironment to search for undiscovered mobile objects of
interest. Such problems are ubiquitous in wildlife track-
ing (Cliff et al. 2015; Kays et al. 2011; Nguyen et al. 2019a;
Thomas, Holland, and Minot 2012), search and rescue mis-
sions (Gerasenko et al. 2001; Murphy et al. 2008). For in-
stance, a team of unmanned aerial vehicles (UAVs) can be
deployed to monitor activities of endangered radio-tagged
wildlife in a survey scene, or to search for victims in a disaster
response (Beck et al. 2018). Hence, it is critical to not only
search for undiscovered objects but also track the movements
of discovered objects of interest. Consequently, the overall
team’s objectives arise as a natural multi-objective optimiza-
tion problem, where several pertinent goals (i.e., tracking and
discovering) need to be simultaneously achieved.

Intrinsically, searching for undiscovered objects whilst si-
multaneously tracking visible objects are competing goals
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because, in practice, agent sensor systems, such as cameras,
have limited detection range. A single agent may only ob-
serve a small region of space and a decision to leave a visible
object to explore hitherto unseen regions will lead to los-
ing track of visible objects. Therefore, an agent observing
a small region of the search area needs to collaboratively
interact with other agents to plan its course of actions to col-
lectively maximize the overall team’s objectives of tracking
and discovering multiple objects.

Multi-agent planning to achieve multiple competing objec-
tives remains a challenging problem because of the complex
interactions between agents leading to combinatorial opti-
mization problems (Wai et al. 2018). In practice, the problem
is further complicated because: i) the agent sensors are not
only limited in range but also sensitivity, and measurements
are always subjected to environmental noise. Consequently,
object detectors suffer from both missing detections of ob-
jects and false detections; and ii) the number of objects of
interest is often unknown, and varies with time since mobile
objects can enter and leave the scene anytime (Vo et al. 2012).
Most critically, the computation of optimal planning actions
must be timely for real-world applications.

We propose a framework for multiple agents to jointly
plan, search and track a time-varying number of objects us-
ing a novel multi-objective information-based value function
formulation. Our multi-objective value function captures the
competing objectives of planning for tracking and discovery.
We adopt the random finite set (RFS) model for the collection
of objects of interest to account for the random appearance
and disappearance of objects and their dynamics. Our pro-
posed multi-objective value function maximizes information
gain over a look-ahead horizon for both discovered and undis-
covered objects. Most importantly, our multi-objective value
function is proven to be a monotone submodular set function;
thus, we can cope with the intractability of the multi-objective
optimization problem (MOP) by employing a greedy algo-
rithm. Our ability to use a greedy algorithm facilitates the
computation of approximately optimal control actions with
linear complexity in the number of agents for realizing an
online planning method.

Related Work: Multi-agent path planning in partially ob-
servable environments is a difficult problem for which the
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Partially Observable Markov Decision Processes (POMDP)
approach has recently gained significant interest (Silver and
Veness 2010; MacDermed and Isbell 2013; Messias, Spaan,
and Lima 2011). Although the cooperation problem can
be formulated as a decentralized POMDP (Dec-POMDP),
its exact solutions are NEXP-hard (Bernstein et al. 2002).
This is especially problematic for multi-agent POMDPs
since the action and observation space grows exponentially
with the number of agents (Amato and Oliehoek 2015).
To cope with this intractability, we adopt the MPOMDP
centralized approach (Messias, Spaan, and Lima 2011)
for controlling multiple agents (Dames and Kumar 2015;
Dames, Tokekar, and Kumar 2017; Wang et al. 2018).

POMDP has also been employed for sensor selection prob-
lems, e.g., (Spaan, Veiga, and Lima 2015; Satsangi et al.
2018) proposed using the ρPOMDP (Araya et al. 2010) for a
mobile agent to select K in N available sensors to search and
track multiple objects. In particular, (Spaan, Veiga, and Lima
2015) proposed a method that always assumes the existence
of one extra object in the scene to encourage discovery. How-
ever, biasing the cardinality estimate generates sub optimal
planing decisions at the cost of tracking performance.

Our study focuses on the problem of controlling a team of
agents for the task of tracking and discovering mobile targets.
The task requires a suitable tracking framework. Studies on
tracking objects have employed approaches such as Multiple
Hypotheses Tracking (MHT) (Reid 1979) or Joint Probabilis-
tic Data Association (JPDA) (Blackman and Popoli 1999).
The complex nature of our problem requires a framework that
has the notion of probability of a random collection due to a
time-varying and random number of objects where the states
of objects are random vectors. The random finite set (RFS)
(Mahler 2007) is the only framework that has the notion of
probability density of a random set. Hence, we adopt RFS as
our tracking framework.

Information-based path planning under the RFS framework
for a single agent has been studied in several works (Beard
et al. 2017; Hoang and Vo 2014; Ristic and Vo 2010). Most
studies on multi-agent path planning using an RFS frame-
work, is based on the Generalized Covariance Intersection
(GCI) methods with the assumption that agents have a con-
sensus view of all objects (Gostar, Hoseinnezhad, and Bab-
Hadiashar 2016; Wang et al. 2018) and using only a single
look-ahead horizon. (Dames, Tokekar, and Kumar 2017) pro-
posed to control multiple fixed-wing UAVs to localize mobile
taxis with a single objective value function. For localizing
and searching objects simultaneously, (Dames and Kumar
2015) and (Charrow, Michael, and Kumar 2015) considered
a similar scenario, but only for stationary objects. Planning
using multi-objective optimization (MOP) has not been ex-
plored yet, except for single sensor selection (Zhu, Wang, and
Liang 2019) or using the weighted sum method presented in
(Charrow, Michael, and Kumar 2015) where the weighting
parameters are difficult to define without prior knowledge.
In contrast, we focus on optimizing all value functions (i.e.,
tracking and discovering) simultaneously using MOP. In par-
ticular, our proposed tracking and discovering value functions
are based on information criteria. The tracking value func-
tion maximizes the mutual information between future mea-

surements and discovered object states under a multi-sensor
Bernoulli filter; the discovering value function maximizes
the mutual information between empty measurements and
undiscovered object states under a grid occupancy filter.

Our contributions: The main contributions of our work
are: (i) We formulate a multi-agent planning problem with
competing objectives and propose a planning algorithm for
searching and tracking multiple mobile objects; (ii) We unify
tracking and planning algorithms under a Bernoulli-based
model; (iii) We prove that our proposed multi-objective value
function is submodular; hence, the greedy algorithm can
be used to rapidly determine the approximately optimal
control actions with a bounded performance guarantee at
(1− 1/e)OPT.

Problem Formulation

First, we introduce assumptions to help define our problem
and introduce the notations we adopt in our work. Second, we
provide a brief overview of the multi-sensor Bernoulli filter
which unifies the tracking and discovering formulation. Next,
we formulate our MPOMDP multi-agent planning approach
for controlling the multi-agent team.

Assumptions and Notations

Assumptions: We consider a team of S agents surveying a
large area to detect and track an unknown and time-varying
number of mobile objects using detection-based measure-
ments. We assume that each agent can localize itself (e.g.,
using an onboard GPS for UAVs) and that all agents can
communicate to a central node to enables us to adopt the
centralized approach for MPOMDP. Consequently, we as-
sume that all of the measurements are transferred to a central
node that analyzes received information and subsequently
sends control actions to all of the agents. Here, we em-
ploy a discrete control action space to reduce the compu-
tational load (Beard et al. 2017; Dames, Tokekar, and Kumar
2017). We further assume that the measurements from an
object collected by the agents are conditionally independent
given the object’s state (Charrow, Michael, and Kumar 2015;
Thrun, Burgard, and Fox 2005).
Notations: We use the convention that lower-case letters
(e.g., x) represent single-object states, upper-case letters (e.g.,
X) represent multi-object (finite-set) states, and blackboard
bold letters (e.g., X,Z) represent spaces. We denote the inner
product

∫
f(x)g(x)dx = 〈f, g〉.

Multi-sensor Bernoulli filter (MS-BF)

In practice, an object can randomly enter and leave the surveil-
lance region, hence the number of objects of interest is un-
known and time-varying. Further, it is important to consider
the existence of objects of interest to allow the agents to dis-
cover new objects when they enter the scene and to prevent
agents following false-positives. This can be addressed by
the random finite sets (RFSs) approach, first proposed by
(Mahler 2007). RFSs are finite-set valued random variables.
We assume that each measurement is uniquely identified, e.g.,
transmit frequencies from radio beacons (Cliff et al. 2015;
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Kays et al. 2011; Nguyen et al. 2019a; 2019b; Thomas, Hol-
land, and Minot 2012) or MAC address (Beck et al. 2018;
Charrow, Michael, and Kumar 2015), which is typical for
wildlife tracking or search and rescue missions. Since each
object is uniquely identified, we propose using a the multi-
sensor Bernoulli filter (MS-BF) (Vo et al. 2012), where each
object’s state is a Bernoulli RFS, and run multiple MS-BF
filters parallelly to track multiple objects. A Bernoulli RFS
X on X has at most one element with probability r for being
singleton or 1 − r for being empty. Its probability density
π(·) = (r, p(·)) given by

π(X) =

{
1− r, X = ∅,
r · p(x), X = {x}.

Object tracking with MS-BF: We model each object’s state
at time k by Xk as a Bernoulli RFS. The MS-BF propagates
the two quantities: the existence probability r and spatial den-
sity p(·). If the posterior density is πk−1 = (rk−1, pk−1),
then the predicted density πk|k−1 = (rk|k−1, pk|k−1) is
also a Bernoulli RFS, with rk|k−1 = rB,k(1 − rk−1) +

rk−1〈pS,k, pk−1〉; pk−1(xk) =
[
rB,k(1 − rk−1)bk(xk) +

rk−1〈fk|k−1(xk|·), pS,k(·)pk−1(·)〉
]
/rk|k−1. Here, rB,k and

pS,k are the probabilities of object birth and object survival,
bk(·) is the object birth density. Further, the updated density
πk is also a Bernoulli RFS, given by πk = (rk, pk) with rk =

Ψ
(S)
k ◦ · · · ◦ Ψ(1)

k (rk|k−1); pk = Ψ
(S)
k ◦ · · · ◦ Ψ(1)

k (pk|k−1).
Here, ◦ denotes composition (of operators), Ψ(s)

k is an update
operator for agent s, i.e.:

[Ψ
(s)
k (r)] =〈η(s)(Z(s)|·), p(·)〉r/[(1− r)e−λ(s)

+ r〈η(s)(Z(s)|·), p(·)〉], (1)

[Ψ
(s)
k (p)](x) =η(s)(Z(s)|x)p(x)/〈η(s)(Z(s)|·), p(·)〉 (2)

where the superscript (s) denotes the parameters of agent
s, λ(s) is the clutter rate, and η(s)(Z(s)|x) denotes the like-
lihood of measurement set Z(s) from agent s given the ob-
ject’s state x. η(s)(Z(s)|x) is also a Bernoulli RFS, given by

η(s)(Z(s)|x) =
{
1− p

(s)
d (x), Z(s) = ∅,

p
(s)
d (x)g(s)(z|x), Z(s) = {z}.

Here, p(s)d (x) is the probability that agent s detects object
x, and g(s)(z|x) is the (conventional) likelihood function of
measurement z given object’s state x.

Planning

At time k, the team of S agents needs to plan how they ma-
noeuvre over the time interval k + 1 : k + H to improve
its estimation of the states of multiple objects Xk, where
H denotes the look-ahead horizon length. Let A ⊆ R

N be
all possible set of control actions for a given agent. When
the control action aik ∈ A is applied to an agent i, it fol-
lows a trajectory comprised of sequence of the discrete poses
ui
k+1:k+H(aik) = [ui

k+1, . . . , u
i
k+H ]T with corresponding

measurements Zi
k+1:k+H(aik) = [Zi

k+1, . . . , Z
i
k+H ]T (for

notational compactness, we omit the dependence on Xk

here). Let Ak = [a1k, . . . , a
S
k ]

T ∈ A
S be the control ac-

tions where A
S = A × · · · × A is the control action space

for S agents, and the corresponding measurement set is
Zk+1:k+H(Ak) = [Z1

k+1:k+H(a1k), . . . , Z
S
k+1:k+H(aSk )]

T .
The objective of path planning is to find the optimal action

A∗
k ∈ A

S that maximizes the value function, i.e.,

A∗
k = argmax

Ak∈AS

V (Xk+1:k+H , Zk+1:k+H(Ak)). (3)

where V (Xk+1:k+H , Zk+1:k+H(Ak)) =

E
[∑H

j=1 R(Xk+j , Zk+j(Ak))
]

is the value function
or the expected sum of immediate rewards R(·) over a finite
horizon H . Since an analytic solution does not exist for the
expected reward, we use the predicted ideal measurement
set (PIMS) (Mahler 2004)—a computationally low-cost
approach. The value function is calculated:

V (Xk+1:k+H , Ẑk+1:k+H(Ak)) =

H∑

j=1

R(Xk+j , Ẑk+j(Ak))

where Ẑk+j(Ak) denotes the ideal measurement set of
Zk+j(Ak) calculated using the measurement model and
the estimated states of objects without measurement noise.
For notational compactness, we write the value function
V (Xk+1:k+H , Ẑk+1:k+H(Ak)) as V (Ak).

Planning for Tracking and Discovering

Multiple Objects

Planning for tracking discovered mobile objects

In this problem, we consider maximizing an information-
based reward function to reduce the overall uncertainty of the
discovered mobile objects because more information natu-
rally implies less uncertainty. In particular, we propose using
the mutual information I(X;Z) between the object’s state X
and measurement state Z as the immediate reward function,
and the long-term sum of rewards over a finite horizon H , or
so-called the value function is given by

V1(Ak) =

H∑
j=1

I(Xk+j ; Ẑk+j(Ak)) (4)

where I(X;Z) = h(X)− h(X|Z), with h(X) is the gener-
alization of differential entropy for a finite set X ⊆ X with
density f(X) defined as h(X) = − ∫

X
f(X) log f(X)δX;

here
∫
X
·δX is the set integral (Mahler 2007). For Bernoulli

RFS, this integration is simplified to h(X) = −[
f(X =

∅) log f(X = ∅) + ∫
f(X = x) log f(X = x)dx

]
. We have

the following theorem.
Theorem 1. The mutual information I(X;Z) between the
object state X and measurement state Z is a monotone sub-
modular set function of Z.

Proof. We want to prove that this mutual information
I(X;Z) is a monotone submodular set function, i.e., for
Z1 ⊆ Z2 ⊆ Z, and z ∈ Z \ Z2 independent of Z1 and Z2:

I(X;Z2, {z})− I(X;Z2) ≤ I(X;Z1, {z})− I(X;Z1).
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Since Z1 ⊆ Z2 ⊆ Z, using mutual information inequalities
(Cover and Thomas 2012, p.50), we have:

I(Z2; {z}) ≥ I(Z1; {z}),
⇔ h(z)− h(z|Z2) ≥ h(z)− h(z|Z1),

⇔ h(z|Z1) ≥ h(z|Z2),

⇔ h(Z1, {z})− h(Z1) ≥ h(Z2, {z})− h(Z2). (5)

Further, since I(Z2; {z}|X) = I(Z1; {z}|X) = 0 is due to
z is independent of Z1 and Z2 given X , we have:

h({z}|X) = h({z}|X,Z2) + I(Z2; {z}|X) = h({z}|X,Z2)

= h(X,Z2, {z})− h(X,Z2),

h({z}|X) = h({z}|X,Z1) + I(Z1; {z}|X)

= h(X,Z1, {z})− h(X,Z1).

Hence,

h(X,Z2, {z})− h(X,Z2) = h(X,Z1, {z})− h(X,Z1).
(6)

Subtracting (5) from (6), we have:

[h(X,Z2, {z})− h(X,Z2)]− [h(Z2, {z})− h(Z2)]

≥ [h(X,Z1, {z})− h(X,Z1)]− [h(Z1, {z})− h(Z1)]

Using differential entropy chain rules (Cover and Thomas
2012, p.253), we have that h(X|Z2, {z}) = h(X,Z2, {z})−
h(Z2, {z}) and h(X|Z2) = h(X,Z2) − h(Z2), thus the
above equation is equivalent to

h(X|Z2, {z})− h(X|Z2) ≥ h(X|Z1, {z})− h(X|Z1)

⇔[h(X)− h(X|Z2, {z})]− [h(X)− h(X|Z2)]

≤ [h(X)− h(X|Z1, {z}]− [h(X)− h(X|Z1)],

⇔I(X;Z2, {z})− I(X;Z2) ≤ I(X;Z1, {z})− I(X;Z1).

Thus, I(X;Z) is a submodular set function. Further, using
the chain rule we have:

I(X;Z2, {z})− I(X;Z2) = I(X;Z2|{z}) ≥ 0

Therefore, I(X;Z) is a monotone submodular set function.

Remark: Our mutual information formulation is different to
that in (Krause, Singh, and Guestrin 2008) used for sensor
selection problems. Krause et al. showed that for Z ⊆ Z, the
mutual information I(Z;Z \Z) is a submodular set function.
In other words, the mutual information I(Z1;Z2) is submod-
ular with the property that Z1 ∪ Z2 = Z and |Z| is fixed. In
contrast, we measure the mutual information between the
random set object state X and the random set measurement
state Z and prove I(X;Z) is also a submodular set function
of Z without the aforementioned property.
Corollary 2. The value function V1(Ak) in (4) is a monotone
submodular set function.

Proof. Since I(Xk; Ẑk+j(Ak)) is a monotone submodular
set function and V1(Ak) is a positive linear combination of it,
according to (Nemhauser, Wolsey, and Fisher 1978, p.272),
V1(Ak) is a monotone submodular set function.

Mutual Information Calculation based on MS-BF: As-
sume that each object i is associated with a Bernoulli dis-
tribution π(Xi) = (ri, pi). Let pi(x) be approximated by a

set of Ns particles, such that pi(x) ≈
Ns∑

m=1
w

(m)
i δ(x(m) − x)

with
Ns∑

m=1
w

(m)
i = 1 and δ(·) is the Kronecker delta function;

X = X1 ∪ · · · ∪Xn be the state of multiple objects. Since
each object is uniquely identified by its label and estimated
by an individual Bernoulli filter, we have

h(X) =
n∑
i

h(Xi) ≈
n∑
i

[
− (1− ri) log(1− ri) (7)

− ri

Ns∑
m=1

[
w

(m)
i log(riw

(m)
i )

]]
.

According to the definition of the mutual information
I(X;Z) = h(X)−h(X|Z), thus the tracking value function
V1(Ak) can be calculated as V1(Ak) =

∑H
j=1

[
h(Xk+j) −

h(Xk+j |Ẑk+j(Ak))
]
, where h(Xk+1) is calculated directly

in (7). For h(Xk+j |Ẑk+j(Ak)), it has the same form as in
(7); however, rk+j,i and w

(m)
k+j,i are calculated by propagat-

ing rk,i and w
(m)
k,i from time k to k + j using (1) and (2)

respectively with the ideal measurements Ẑk+j(Ak).

Planning to search for undiscovered mobile objects

Occupancy Grid Filter: Since an agent is equipped with
a sensor with a limited detection range, we propose us-
ing an occupancy grid to represent the probability of any
undiscovered objects (Elfes 1989). We extend the static
grid approach in (Charrow, Michael, and Kumar 2015;
Thrun, Burgard, and Fox 2005) by incorporating the birth
probability into each occupancy cell to account for the pos-
sibilities of mobile objects entering and leaving the survey
area, anytime. The survey area is divided into an occupancy
grid G = {g1, . . . , gNg} ⊂ R

N , where each cell gi ∈ G
associated with a Bernoulli random variable ri. Here, ri is
the probability that cell gi contains at least one undiscovered
object. For initialization, we set ri0 = rB such that every
cell has the same prior. Each cell i is propagated through
MS-BF over time using the predict and update equations. In
particular, let rik−1 be the probability of cell gi containing
at least one undiscovered object, then its predict and update
probabilities at time k are (8) and (9). Note that since these
objects are yet to be discovered, we use empty measurements
for all agents (denoted as Z∅ to update).

rik|k−1 = rB(1− rik−1) + rik−1pS , (8)

rik = Ψ
(S)
k ◦ · · · ◦Ψ(1)

k (rik|k−1), (9)

where [Ψ
(s)
k (ri)] = (1 − p

(s)
d (gi))ri/

[
1 − ri + ri(1 −

p
(s)
d (gi))

]
.

Searching for undiscovered objects: As before, we propose
using mutual information as the immediate reward function.
We want to maximize the mutual information between the
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estimated occupancy grid G and the ideal empty future mea-
surement Ẑ∅

k+1:k+H(Ak), i.e.,

V2(Ak) =

H∑
j=1

I(Gk; Ẑ
∅
k+j(Ak)), (10)

where I(Gk; Ẑ
∅
k+j(Ak)) = H(Gk)−H(Gk|Ẑ∅

k+j(Ak)) and
H(Gk) is the Shannon entropy of Gk:

H(Gk) = −
Ng∑
i=1

[
rik log(r

i
k) (11)

+ (1− rik) log(1− rik)
]
,

and H(Gk+j |Ẑ∅
k+j(Ak)) has the same form as in (11) with

rik+j is calculated by propagating rik+j from k to k+ j using
the update step in (9) with empty measurements Ẑ∅

k+j(Ak).

Theorem 3. The value function V2 in (10) is a monotone
submodular set function.

Proof. We can apply a similar strategy as per Theorem 1 to
prove that I(Gk; Ẑ

∅
k+j(Ak)) is a monotone submodular set

function, note that H(·) is the Shannon entropy (a discrete
version of differential entropy h(·)). Further, since V2(Ak) is
a positive linear combination of I(Gk; Ẑ

∅
k+j(Ak)), according

to (Nemhauser, Wolsey, and Fisher 1978, p.272), V2(Ak) is
a monotone submodular set function.

Multi-objective value function for tracking and
discovering

In this problem, we want to control the team of agents to
perform both tracking and discovering; this naturally leads to
a multi-objective problem. Specifically, we want to maximize

V (Ak) = [V1(Ak), V2(Ak)]
T

subject to Ak ∈ A
S where V1 and V2 are defined in (4) and

(10), respectively. Multi-objective optimization provides a
meaningful notion of multi-objective optimality such as the
Pareto-set, which represents trade-offs between the objec-
tives such that there is no other solution that can improve one
objective without degrading any remaining objectives (White-
son and Roijers 2016). Online planning necessitates selecting
one compromised solution from the Pareto-set on-the-fly.
One approach is Robust Submodular Observation Selection
(RSOS) (Krause et al. 2008), which is robust against the
worst possible objective; however, even if each Vi is submod-
ular, Vmin = mini Vi is generally not submodular. Other
approaches include Weighted Sum (WS) and Global Crite-
rion Method (GCM); simplicity of these methods are not only
attractive for meeting the demands of online planning but
also result in a submodular value function. In this work, we
adopt GCM to select the compromised solution considering
the distance from the ideal solution. Inspired by (Koski 1993),
we define the value function Vmo (with Vmo(∅) = 0) as:

Vmo(Ak) =

2∑
i=1

Vi(Ak)− min
Ak∈AS

Vi(Ak)

max
A∈AS

Vi(Ak)− min
Ak∈AS

Vi(Ak)
. (12)

The global criterion method admits a unique optimal so-
lution from the Pareto-set (Coello et al. 2007). Hence, the
multi-objective problem becomes

A∗
k = argmax

Ak∈AS

Vmo(Ak). (13)

Since finding the optimal control action A∗ ∈ A
S is a com-

binatorial optimization problem, we want to show that the
multi-objective value function Vmo(A) in (12) is also a mono-
tone submodular set function on Z. This enables us to use
the greedy algorithm to find the optimal action that approxi-
mately maximize this multi-objective value function.
Corollary 4. The multi-objective value function Vmo in (12)
is a monotone submodular set function.

Proof. Since Vi(Ak)) is a monotone submodular set function
and Vmo(Ak) is a positive linear combination of it, according
to (Nemhauser, Wolsey, and Fisher 1978, p.272), Vmo(Ak)
is a monotone submodular set function.

Greedy search algorithm

We proved our multi-objective value function Vmo(·) is a
monotone submodular set function—see Corollary 4. For
submodular functions, (Nemhauser, Wolsey, and Fisher 1978)
proved the greedy search algorithm guarantees a performance
bound at (1−1/e)OPT, where OPT is the optimal value of the
submodular function. Therefore, if the optimal value of our
value function is Vmo(A

∗), we can simply state the following
fundamental performance bound for our submodular value
function:
Theorem 5. From (Nemhauser, Wolsey, and Fisher 1978).
Let AG be the output greedy control action and A∗ be the
optimal control action evaluated using brute-force method of
(13). Then

Vmo(AG) ≥ (1− 1/e)Vmo(A
∗) (14)

where e = 2.718 . . . is the base of the natural logarithm.
Hence, we propose using the greedy search algorithm —

see the work by (Dames, Tokekar, and Kumar 2017) — by
simply adding agents sequentially and picking the next agent
which provides the maximum value function Vmo(·).

Experiments

We evaluate the proposed value function using a series of
comprehensive synthetic experiments since we can control
all of the parameters of the problem, especially with a time-
varying number of agents and objects. We compare three plan-
ning algorithm formulations: (i) using the single objective
value function V1(·) in (4) for tracking. (ii) using a single ob-
jective value function based on our new discovery value func-
tion V2(·) in (10). (iii) using our proposed multi-objective
value function Vmo(·).

We use optimal sub-pattern assignment (OSPA) (Schuh-
macher, Vo, and Vo 2008) to measure performance. We re-
port OSPA Dist as the main metric to evaluate the overall
team performance since it incorporates both tracking and
discovery indicators. For further insights into our planning
formulations, we also report: (i) OSPA Loc as a localization
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Figure 1: Setup for four scenarios: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4. Start/Stop locations for each
object are denoted by ©/�. Start locations for agents are denoted by �.

accuracy measure, (ii) OSPA Card as an object discovery
performance measure; and (iii) Search Area Entropy as
the average entropy of the occupancy grid to measure the
coverage area of the team. For demonstration, a team of
quad-copter UAVs flying at different altitudes is considered.
The detailed parameter settings are provided in the appendix,
while scenario setups are shown in Figure 1. Our experi-
ments considered four different scenarios and two different
detection-based sensors subject to noisy measurements.

Scenario 1 (FastMoving): Three fast moving objects in
two groups travelling in the same direction. A team of agents
starts at [500, 100]T m as depicted in Figure 1a.

Scenario 2 (LateBirth): Late birth objects. We investi-
gate a searching and tracking scenario in Figure 1b) with four
slow-moving mobile objects using a team of agents. Here, the
groups of objects D and C enter the scene when the agents
are out of their detection range—late birth. This scenario
favours agent planning with the discovery value function en-
couraging exploration and demonstrates the effectiveness of
our multi-objective value function with its competing track-
ing and discovery objectives.

Scenario 3 (Opposite): Four objects in two groups (A and
B) moving rapidly in opposing directions. Figure 1c illustrates
the scenario. We use this setting to confirm the effectiveness
of our multi-objective value function. Now, the possibility to
discover group B out of the sensor detection range must be
achieved through exploration while planning to track group
A in the vicinity of the agents is immediately rewarded by
the tracking objective.

Scenario 4 (Explosion): Multiple groups of fast moving
objects in opposing directions. Here, we consider a team of
agents to search and track 20 fast moving mobile objects as
shown in Figure 1d.

Detection-based sensors: (i) We considered agents
equipped with a range and bearing based sensor—common
in wildlife tracking (Cliff et al. 2015) for example. Let us =
[psx, p

s
y, p

s
z]

T be the position of agent s, xp = [px, py, 1]
T be

the position of object x, each detected object x leads to a
noisy measurement z of range and bearing given by: z =[
arctan [(py − psy)/(px − psx)], ||xp−us||]T +v. Here,|| · ||

is the Euclidean norm; v ∼ N (0, R) with R = diag(σ2
φ, σ

2
ρ)

where σφ = σ0,φ+βφ||xp−us||, σρ = σ0,ρ+βρ||xp−us||.
(ii) To demonstrate the sensor-agnostic nature of our ap-

Scenario 1 Scenario 2 Scenario 3 Scenario 4
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Figure 2: Multi-objective value function ratio between the
greedy V GD

mo and brute-force V BF
mo algorithms with agents

(a) S = 2 and (b) S = 3 (20 MC runs, range and bearing
based sensor with rd = 200 m).

proach, we consider agents equipped with a vision-based
sensor. Each detected object x leads to a measurement z
of noisy xy positions, given by: z =

[
px, py]

T + v. Here,
v ∼ N (0, R) with R = diag(σ2

x, σ
2
y).

Experiment 1 Comparing greedy and brute force algo-
rithm results for our submodular multi-objective value func-
tion: Figure 2 depicts the ratio of our multi-objective value
function obtained from greedy and brute-force algorithms for
the four scenarios. The result obtained from 20 Monte-Carlo
(MC) runs for each scenario agrees with the performance
guarantee of the greedy algorithm to yield an approximately
optimal solution with a bounded performance guarantee at
(1− 1/e) OPT.

Experiment 2: Comparing multi-objective multi-agent
planning with single objective multi-agent planning. Table 1
compares results for scenario 1, 2, 3 and 4 collected from 20
MC runs for agents with range and bearing based sensors.
It is expected that the average search area entropy is small-
est for V2 since it encourages agents to explore the search
area. Consequently, V2 can also be seen to generate the best
performance in term so of OSPA cardinality—OSPA Card.
In contrast, we can see that the multi-agent planning with
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Table 1: Comparing multi-agent planning for tracking mobile objects using our multi-objective value function Vmo across
Scenarios 1, 2, 3 and 4 with detection range rd = 200 m. V1 and V2 are baselines and the results are averaged over 20 MC trials.

Scenario 1 (FastMoving) Scenario 2 (LateBirth)

Indicators Overall
Performance

Tracking
Performance

Discovery
Performance

Overall
Performance

Tracking
Performance

Discovery
Performance

Agents Value
Functions

OSPA
Dist (m)

OSPA
Loc (m)

OSPA
Card (m)

Search Area
Entropy (nats)

OSPA
Dist (m)

OSPA
Loc (m)

OSPA
Card (m)

Search Area
Entropy (nats)

S = 3
V1 33.9 4.4 29.5 0.23 57.0 4.0 53.0 0.22
V2 21.2 9.7 11.5 0.12 41.1 10.3 30.8 0.12
Vmo 17.7 6.1 11.6 0.17 52.1 5.2 46.9 0.17

S = 5
V1 25.4 5.1 20.3 0.2 53.4 3.6 49.8 0.17
V2 20.3 9.2 11.1 0.09 43.9 9.5 34.4 0.09
Vmo 16.8 5.7 11.1 0.13 38.8 5.1 33.7 0.11

Scenario 3 (Opposite) Scenario 4 (Explosion)

S = 3
V1 51.7 3.0 48.7 0.24 53.7 3.1 50.6 0.32
V2 18.3 12.8 5.5 0.12 55.0 29.8 25.2 0.28
Vmo 11.1 5.9 5.2 0.18 40.7 9.7 31.0 0.32

S = 5
V1 51.2 2.9 48.3 0.24 36.9 5.0 31.9 0.30
V2 10.5 6.9 3.6 0.09 31.2 19.5 11.7 0.25
Vmo 10.5 5.9 4.1 0.15 17.4 6.4 11.1 0.29

the single value function (to encourage only tracking accu-
racy) V1, achieves improved results for object localization
accuracy only (low OSPA Loc results) but at the expense of
missing objects often out of the range of the sensors (as seen
by significantly large OSPA Card results). Most importantly,
our results verify that Vmo performs best in term of overall
tracking and cardinality accuracy (reported by OSPA Dist)
since Vmo not only rewards agents for undertaking the dis-
covery of new objects but also rewards agents for accurately
tracking discovered objects.

Figure 3 shows the grid occupancy probability and the tra-
jectories of the agents for scenario 3. The results demonstrate
the effectiveness of our proposed planning method, where
agents not only track but discover distant mobile objects.

Experiment 3: Explore the asymptotic behavior of track-
ing performance with an increasing number of agents for
our planning formulation. Figure 4 depicts the overall mean
tracking accuracy from 20 MC runs for agent teams with
each detection-based sensor. It confirms that planning with
Vmo consistently performs better than V1 or V2 alone. As
expected, when the number of agents increases, V1 and V2

tracking performances improve and approach that of Vmo.
Interestingly, multi-agent planning with a single exploration
objective closely approaches the tracking performance of the
multi-objective value function when the team of agents is
large enough to cover the survey area with its range limited
sensors and all objects become visible to the agents.

Conclusion

In this paper, we have formulated a multi-objective plan-
ning approach for multi-agent tracking and searching for
mobile objects. We have established that our formulation
results in a value function that is monotone and submodu-
lar. We presented a series of extensive experimental results
to demonstrate the effectiveness of our method and perfor-
mance guarantees when using the low-cost greedy algorithm
to determine control actions for the multi-agent.

We consider a centralized MPOMDP approach where scal-
ability can be a limitation. Factored-POMDP (Oliehoek et

al. 2008) can be employed to achieve further system scala-
bility. We require reliable and fast communications between
all agents and their centralized controller. If there are any
delays in communications, the problem can be formulated as
an MPOMDP with delayed communications. It is extremely
challenging to plan and track mobile objects in an online
manner without any communications among agents as in
Dec-POMDP, hence it is an open question for future work.

Acknowledgments
This work was jointly supported by the Western Australia
Parks and Wildlife (WA Parks), the Australian Research
Council (LP160101177, DP160104662), the Defense Science
and Technology Group (DSTG), and The Shultz Foundation.

Appendix

Parameter settings for experiments

The search areas for the first three scenarios and scenario 4 are
1000 m ×1000 m and 2000 m ×2000 m, respectively. Each
agent is controlled to fly at a fixed and different altitude (i.e.,
5 m altitude gap between each agent) to prevent collisions
with other team members. The minimum altitude starts at
30 m for the first agent and increases 5 m for each additional
agent. Further, all objects are assumed exist on a horizontal
ground plane to speed up the numerical experiments by track-
ing in 2D. Each object state x = (x, l) is uniquely identified
by its label l, while its motion state x = [px, ṗx, py, ṗy]

T

comprises of object’s position and velocity in Cartesian coor-
dinates. Each object moves in accordance with the constant
velocity (CV) model given by xk = FCV xk−1+ qCV

k−1. Here,
FCV = [1, T0; 0, T0]⊗ I2, T0 is the sampling interval (T0 =
1 s for our experiments), ⊗ denotes for the Kronecker tensor
product; I2 is the 2×2 identity matrix; qCV

k−1 ∼ N (0, QCV ) is
a 4× 1 zero mean Gaussian process noise, with co-variance
QCV = σ2

CV [T
3
0 /3, T

2
0 /2;T

2
0 /2, T0] ⊗ I2. The detection

probability is pD(us, xp) ={
0.98 ||xp − us|| ≤ rd
max(0, 0.98− (||xp − us|| − rd)�) otherwise;
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Figure 3: Scenario 3. Grid occupancy probability (top) and heat map (bottom) of trajectories for 3 agents over 20 MC runs with
rd = 200 m using (a) V1. Late birth group B never discovered, (b) V2. Extensive exploration, and (c) Vmo. Discovers the late
birth group B whilst tracking both groups.
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Figure 4: Overall tracking performance over 20 MC runs
based on multi-agent planning with our multi-objective value
function Vmo compare with the single objective value func-
tions V1 and V2 when the number of agents are increased
from 2 to 10 for Scenario 4 (Explosion) with rd = 200 m
using (a) agents with range and bearing based sensors, (b)
agents with vision based sensors.

where rd is the sensor detection range and � = 0.008 m−1.
The sensor reports false detections or false-alarm measure-
ments following a Poison RFS with a clutter rate λ = 0.2,
where each agent collects at most one measurement per time
step for each object, either from the real objects, clutters
(false detections) or the measurement is empty (missed de-
tections). For sensor noise, the range and bearing based
measurement is corrupted with a zero mean Gaussian pro-
cess noise that depends on the distance between objects and
agents, i.e., v ∼ N (0, R) with R = diag(σ2

φ, σ
2
ρ) where

σφ = σ0,φ + βφ||xp − us||, σρ = σ0,ρ + βρ||xp − us||;
σ0,φ = 2π/180 rad, βφ = 1.7 · 10−5 rad/m, σ0,ρ = 10 m,
and βρ = 5 · 10−3. Similarly, for vision-based sensor, each
detected object x leads to a measurement z of noisy x−y po-
sitions, given by: z =

[
px, py]

T +v. Here, v ∼ N (0, R) with
R = diag(σ2

x, σ
2
y) where σx = σy = σ0,xy +βxy||xp−us||

with σ0,xy = 10 m, and βxy = 1 · 10−2. The grid size is
100× 100 across four scenarios. This corresponds to a grid
cell of 10 m ×10 m for scenario 1,2 and 3 and a grid cell of
20 m ×20 m for scenario 4. The total time is 200 s. The agent
does not have any prior knowledge about object’s state, thus it
uses the initial birth probability rB = 0.005, and a Gaussian
density pB = N (x;mB , QB) with mB = [500, 0, 500, 0]T

and QB = diag([500, 10, 500, 10]).
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