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Abstract

We develop a Distributed Event-Triggered Stochastic GRAdi-
ent Descent (DETSGRAD) algorithm for solving non-convex
optimization problems typically encountered in distributed
deep learning. We propose a novel communication trigger-
ing mechanism that would allow the networked agents to
update their model parameters aperiodically and provide suf-
ficient conditions on the algorithm step-sizes that guarantee
the asymptotic mean-square convergence. The algorithm is
applied to a distributed supervised-learning problem, in which
a set of networked agents collaboratively train their individ-
ual neural networks to perform image classification, while
aperiodically sharing the model parameters with their one-
hop neighbors. Results indicate that all agents report similar
performance that is also comparable to the performance of
a centrally trained neural network, while the event-triggered
communication provides significant reduction in inter-agent
communication. Results also show that the proposed algorithm
allows the individual agents to classify the images even though
the training data corresponding to all the classes are not locally
available to each agent.

Introduction

With the advent of smart devices, there has been an expo-
nential growth in the amount of data collected and stored
locally on individual devices. Applying machine learning to
extract value from such massive data to provide data-driven
insights, decisions, and predictions has been a popular re-
search topic as well as the focus of numerous businesses.
However, porting these vast amounts of data to a data center
to conduct traditional machine learning has raised two main
issues: (i) the communication challenge associated with trans-
ferring vast amounts of data from a large number of devices
to a central location and (ii) the privacy issues associated
with sharing raw data. Distributed machine learning tech-
niques based on the server-client architecture (Li et al. 2014a;
2014b; Zhang, Alqahtani, and Demirbas 2017) have been
proposed as solutions to this problem. On one extreme
end of this architecture, we have the parameter server ap-
proach, where a server or group of servers initiate dis-
tributed learning by pushing the current model to a set of
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client nodes that host the data. The client nodes compute
the local gradients or parameter updates and communicate
them to the server nodes. Server nodes aggregate these
values and update the current model (Zhang et al. 2018;
Li et al. 2014b). On the other extreme, we have federated
learning, where each client node obtains a local solution to
the learning problem and the server node computes a global
model by averaging the local models (Konec̆nú et al. 2016;
McMahan et al. 2017). Besides the server-client architec-
ture, a shared-memory (multicore/multiGPU) architecture,
where different processors independently compute the gra-
dients and update the global model parameter using a
shared memory, has also been proposed as a solution to the
distributed machine learning problem (Recht et al. 2011;
De Sa et al. 2015; Chaturapruek, Duchi, and Ré 2015;
Feyzmahdavian, Aytekin, and Johansson 2016). However,
none of the above-mentioned learning techniques are truly
distributed since they follow a master-slave architecture and
do not involve any peer-to-peer communication. Furthermore,
these techniques are not always robust and they are rendered
useless if the master/server node or the shared-memory fails.
Therefore, we aim to develop a fully distributed machine
learning architecture enabled by client-to-client interaction.

For large-scale machine learning, stochastic gradient de-
scent (SGD) methods are often preferred over batch gradient
methods (Bottou, Curtis, and Nocedal 2018) because (i) in
many large-scale problems, there is a good deal of redun-
dancy in data and therefore it is inefficient to use all the data
in every optimization iteration, (ii) the computational cost
involved in computing the batch gradient is much higher than
that of the stochastic gradient, and (iii) stochastic methods
are more suitable for online learning where data are arriv-
ing sequentially. Since most machine learning problems are
non-convex, there is a need for distributed stochastic gradi-
ent methods for non-convex problems. Therefore, here we
present a communication efficient, distributed stochastic gra-
dient algorithm for non-convex problems and demonstrate its
utility for distributed machine learning.

Related work

Distributed Non-Convex Optimization: A few early exam-
ples of (non-stochastic or deterministic) distributed non-
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convex optimization algorithms include the Distributed Ap-
proximate Dual Subgradient (DADS) Algorithm (Zhu and
Martı́nez 2013), NonconvEx primal-dual SpliTTing (NESTT)
algorithm (Hajinezhad et al. 2016), and the Proximal Primal-
Dual Algorithm (Prox-PDA) (Hong, Hajinezhad, and Zhao
2017). More recently, a non-convex version of the accelerated
distributed augmented Lagrangians (ADAL) algorithm is pre-
sented in Chatzipanagiotis and Zavlanos(2017) and succes-
sive convex approximation (SCA)-based algorithms such as
iNner cOnVex Approximation (NOVA) and in-Network suc-
cEssive conveX approximaTion algorithm (NEXT) are given
in Scutari, Facchinei, and Lampariello(2017) and Lorenzo
and Scutari(2016), respectively. References (Hong 2018;
Guo, Hug, and Tonguz 2017; Hong, Luo, and Razaviyayn
2016) provide several distributed alternating direction method
of multipliers (ADMM) based non-convex optimization al-
gorithms. Non-convex versions of Decentralized Gradient
Descent (DGD) and Proximal Decentralized Gradient De-
scent (Prox-DGD) are given in Zeng and Yin(2018). Finally,
Zeroth-Order NonconvEx (ZONE) optimization algorithms
for mesh network (ZONE-M) and star network (ZONE-S) are
presented in Hajinezhad, Hong, and Garcia(2019). However,
almost all aforementioned consensus optimization algorithms
focus on non-stochastic problems and are extremely commu-
nication heavy because they require constant communication
among the agents.
Distributed Convex SGD: Within the consensus optimiza-
tion literature, there exist several works on distributed
stochastic gradient methods, but mainly for strongly con-
vex optimization problems. These include the stochas-
tic subgradient-push method for distributed optimization
over time-varying directed graphs given in Nedić and Ol-
shevsky(2016), distributed stochastic optimization over ran-
dom networks given in Jakovetic et al.(2018), the Stochas-
tic Unbiased Curvature-aided Gradient (SUCAG) method
given in Wai et al.(2018), and distributed stochastic gra-
dient tracking methods Pu and Nedić(2018). There are
very few works on distributed stochastic gradient methods
for non-convex optimization (Tatarenko and Touri 2017;
Bianchi and Jakubowicz 2013); however, the push-sum al-
gorithm given in Tatarenko and Touri(2017) assumes there
are no saddle-points and it often requires up to 3 times as
many internal variables as the proposed algorithm. Com-
pared to Bianchi and Jakubowicz(2013) and Tatarenko and
Touri(2017), the proposed algorithm provides an explicit con-
sensus rate and allows the parallel execution of the consensus
communication and gradient computation steps.
Parallel SGD: There exist numerous asynchronous SGD algo-
rithms aimed at parallelizing the data-intensive machine learn-
ing tasks. The two popular asynchronous parallel implementa-
tions of SGD are the computer network implementation orig-
inally proposed in Agarwal and Duchi(2011) and the shared
memory implementation introduced in Recht et al.(2011).
Computer network implementation follows the master-slave
architecture and Agarwal and Duchi(2011) showed that for
smooth convex problems, the delays due to asynchrony are
asymptotically negligible. Feyzmahdavian, Aytekin, and Jo-
hansson(2016) extend the results in Agarwal and Duchi(2011)
for regularized SGD. Extensions of the computer network

implementation of asynchronous SGD with variance reduc-
tion and polynomially growing delays are given in Huo and
Huang(2016) and Zhou et al.(2018), respectively. Recht et
al.(2011) proposed a lock-free asynchronous parallel imple-
mentation of SGD on a shared memory system and proved
a sublinear convergence rate for strongly convex smooth ob-
jectives. The lock-free algorithm, HOGWILD!, proposed in
Recht et al.(2011) has been applied to PageRank approx-
imation (Mitliagkas et al. 2015), deep learning (Noel and
Osindero 2014), and recommender systems (Yu et al. 2012).
In Duchi, Jordan, and McMahan(2013), authors extended the
HOGWILD! algorithm to a dual averaging algorithm that
works for non-smooth, non-strongly convex problems with
sparse gradients. An extension of HOGWILD! called BUCK-
WILD! is introduced in De Sa et al.(2015) to account for
quantization errors introduced by fixed-point arithmetic. In
Chaturapruek, Duchi, and Ré(2015), the authors show that
because of the noise inherent to the sampling process within
SGD, the errors introduced by asynchrony in the shared-
memory implementation are asymptotically negligible. Re-
cently, several parallel SGD works focus on adjusting the
worker-server interaction period or frequency as a way to
decrease the communication overhead. For example, (Yu,
Jin, and Yang 2019) and (Yu, Yang, and Zhu 2019) used a
fixed period, while (Yu and Jin 2019) and (Lin, Stich, and
Jaggi 2018) propose an increasing period as a way to reduce
communication. A detailed comparison of both computer
network and shared memory implementation is given in Lian
et al.(2015). Again, the aforementioned asynchronous algo-
rithms are not distributed since they rely on a shared-memory
or central coordinator.
Decentralized SGD: Recently, numerous decentralized SGD
algorithms for non-convex optimization have been proposed
as a solution to the communication bottleneck often en-
countered in the server-client architecture (Lian et al. 2017;
Jiang et al. 2017; Tang et al. 2018; Lian et al. 2018; Wang
and Joshi 2018; Haddadpour et al. 2019; Assran et al. 2019;
Wang et al. 2019). However almost all these works primarily
focus on the performance of the algorithm during a fixed time
interval, and the constant algorithm step-size, which often
depends on the final time, is selected to speed-up the conver-
gence rate. These SGD algorithms with constant step-size can
only guarantee convergence to some ε-ball of the stationary
point. Furthermore, most of the aforementioned decentralized
SGD algorithms provide convergence rates in terms of the
average of all local estimates of the global minimizer without
ever proving a similar or faster consensus rate. In fact, most
decentralized SGD algorithms can only provide bounded
consensus and they require a centralized averaging step after
running the algorithm until the final-time (Lian et al. 2017;
Tang et al. 2018; Lian et al. 2018; Haddadpour et al. 2019;
Wang et al. 2019). Finally, most application of decentralized
SGD focus on distributed learning scenarios where the data
is distributed identically across all agents.

Contribution: Currently, there exists no distributed SGD
algorithm for the non-convex problems that doesn’t require
constant or periodic communication among the agents. In
fact, algorithms in (Lian et al. 2017; Jiang et al. 2017;
Tang et al. 2018; Lian et al. 2018; Wang and Joshi 2018;
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Haddadpour et al. 2019; Assran et al. 2019; Wang et al. 2019)
all rely on periodic communication despite the local model
has not changed from previously communicated model. This
is a waste of resources, especially in wireless setting and
therefore we propose an approach that would allow the nodes
to transmit only if the local model has significantly changed
from previously communicated model. The contributions of
this paper are three-fold: (i) we propose a fully distributed
machine learning architecture, (ii) we present a distributed
SGD algorithm built on a novel communication triggering
mechanism, and provide sufficient conditions on step-sizes
such that the algorithm is mean-square convergent, and (iii)
we demonstrate the efficacy of the proposed event-triggered
SGD algorithm for distributed supervised learning with i.i.d.
and more importantly, non-i.i.d. data.

Notation: Let Rn×m denote the set of n×m real matrices.
For a vector φ, φi is the i− th entry of φ. An n× n identity
matrix is denoted as In and 1n denotes an n-dimensional
vector of all ones. For p ∈ [1, ∞], the p-norm of a vector x
is denoted as ‖x‖p. For matrices A ∈ R

m×n and B ∈ R
p×q ,

A ⊗ B ∈ R
mp×nq denotes their Kronecker product. For a

graph G (V, E) of order n, V � {1, . . . , n} represents the
agents or nodes and the communication links between the
agents are represented as E � {e1, . . . , e�} ⊆ V × V . Let
Ni � {j ∈ V : (i, j) ∈ E} denote the set of neighbors of
node i. Let A = [aij ] ∈ R

n×n be the adjacency matrix with
entries of aij = 1 if (i, j) ∈ E and zero otherwise. Define
Δ = diag (A1n) as the in-degree matrix and L = Δ−A as
the graph Laplacian.

Distributed machine learning

Our problem formulation closely follows the centralized ma-
chine learning problem discussed in Bottou, Curtis, and No-
cedal(2018). Consider a networked set of n agents, each with
a set of mi, i = 1, . . . , n, independently drawn input-output
samples {xj

i , y
j
i }j=mi

j=1 , where xj
i ∈ R

dx and yj
i ∈ R

dy are
the j-th input and output data, respectively, associated with
the i-th agent. For example, the input data could be images
and the outputs could be labels. Let h (· ; ·) : Rdx × R

dw �→
R

dy denote the prediction function, fully parameterized by
the vector w ∈ R

dw . Each agent aims to find the parameter
vector that minimizes the losses, � (· ; ·) : Rdy × R

dy �→ R,
incurred from inaccurate predictions. Thus, the loss function
� (h (xi;w) ,yi) yields the loss incurred by the i-th agent,
where h (xi;w) and yi are the predicted and true outputs,
respectively, for the i-th node.

Assuming the input output space R
dx × R

dy associated
with the i-th agent is endowed with a probability measure
Pi : R

dx × R
dy �→ [0, 1], the objective function an agent

wishes to minimize is

Ri(w) =

∫
Rdx×R

dy

� (h (xi;w) ,yi) dPi (xi,yi)

= EPi
[� (h (xi;w) ,yi)] .

(1)

Here Ri(w) denotes the expected risk given a parameter
vector w with respect to the probability distribution Pi. The

total expected risk across all networked agents is given as

R(w) =

n∑
i=1

Ri(w) =

n∑
i=1

EPi [� (h (xi;w) ,yi)] . (2)

Minimizing the expected risk is desirable but often unattain-
able since the distributions Pi are unknown. Thus, in practice,
each agent chooses to minimize the empirical risk R̄i(w)
defined as

R̄i(w) =
1

mi

mi∑
j=1

�
(
h
(
xj
i ;w

)
,yj

i

)
. (3)

Here, the assumption is that mi is large enough so that
R̄i(w) ≈ Ri(w). The total empirical risk across all net-
worked agents is

R̄(w) =

n∑
i=1

R̄i(w) =

n∑
i=1

1

mi

mi∑
j=1

�
(
h(xj

i ;w),yj
i

)
(4)

To simplify the notation, let us represent a sample input-
output pair (xi, yi) by a random seed ξi and let ξji denote
the j-th sample associated with the i-th agent. Define the
loss incurred for a given

(
w, ξji

)
as �

(
w, ξji

)
. Now, the

distributed learning problem can be posed as an optimization
involving sum of local empirical risks, i.e.,

min
w

f(w) = min
w

n∑
i=1

fi (w) , (5)

where fi (w) = 1
mi

∑mi

j=1 �
(
w, ξji

)
.

Distributed event-triggered SGD

Here we propose a distributed event-triggered stochastic gra-
dient method to solve (5). Let wi(k) ∈ R

dw denote agent
i’s estimate of the optimizer at time instant k. Thus, for an
arbitrary initial condition wi(0), the update rule at node i is
as follows:

wi(k + 1) = wi(k)− βk

n∑
j=1

aij (ŵi(k)− ŵj(k))

− αk gi (wi(k), ξi(k)) ,

(6)

where αk and βk are hyper parameters to be specified, aij
are the entries of the adjacency matrix and gi (wi(k), ξi(k))
represents either a simple stochastic gradient, mini-batch
stochastic gradient or a stochastic quasi-Newton direction,
i.e.,

gi (wi(k), ξi(k)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇�
(
wi(k), ξ

k
i

)
, or

1
ni(k)

ni(k)∑
s=1

∇�
(
wi(k), ξ

k,s
i

)
, or

Hi(k)
1

ni(k)

ni(k)∑
s=1

∇�
(
wi(k), ξ

k,s
i

)
,

where ni(k) denotes the mini-batch size, Hi(k) is a positive
definite scaling matrix, ξki represents the single random input-
output pair sampled at time instant k, and (ξk,si ) denotes the
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s-th input-output pair out of the ni(k) random input-output
pairs sampled at time instant k. For i = 1, . . . , n, the piece-
wise constant signal ŵi(k) defined as

ŵi(k) = wi(t
i
q), ∀ k ∈ {

tiq, t
i
q + 1, . . . , tiq+1 − 1

}
, (7)

denote agent i’s last broadcasted estimate of the optimizer.
Here

{
tiq, q = 0, 1, . . .

}
with ti0 = 0 denotes triggering in-

stants, i.e., the time instants when agent i broadcasts wi to
its neighbors. Define w(k) �

[
w�

1 (k) . . . w�
n (k)

]� ∈
R

ndw and ŵ(k) �
[
ŵ�

1 (k) . . . ŵ�
n (k)

]� ∈ R
ndw . Now

(6) can be written as

w(k + 1) = w(k)− βk (L ⊗ Idw) ŵ(k)

− αk g(w(k), ξ(k)),
(8)

where L is the network Laplacian and

g(w(k), ξ(k)) �

⎡
⎢⎣
g1 (w1(k), ξ1(k))

...
gn (wn(k), ξn(k))

⎤
⎥⎦ ∈ R

ndw .

Let ei(k) = wi(k)− ŵi(k) and e(k) = w(k)− ŵ(k). Now
(8) can be written as

w(k + 1) = (Wk ⊗ Idw
)w(k) + βk (L ⊗ Idw

) e(k)

− αk g(w(k), ξ(k)),
(9)

where Wk = (In − βkL). The event instants are defined as

tiq+1 = inf
{
k > tiq | ‖ei(k)‖1 ≥ υ0 αk

}
, (10)

where υ0 is a positive constant to be defined. Pseudo-code
of the proposed distributed event-triggered SGD is given in
Algorithm 1 (see supplementary material).

Now we state the following assumption on the individual
objective functions:
Assumption 1. Objective functions fi( · ) and its gradients
∇fi( · ) : Rdw �→ R

dw are Lipschitz continuous with Lip-
schitz constants L0

i > 0 and Li > 0, respectively, i.e.,
∀wa, wb ∈ R

dw , i = 1, . . . , n, we have

‖fi(wa )− fi(wb )‖2 ≤ L0
i ‖wa −wb‖2 and

‖∇fi(wa )−∇fi(wb )‖2 ≤ Li‖wa −wb‖2.
Now we introduce F (·) : Rndw �→ R, an aggregate objec-

tive function of local variables

F (w(k)) =
n∑

i=1

fi (wi(k)) . (11)

Following Assumption 1, the function F (·) is Lipschitz
continuous with Lipschitz continuous gradient ∇F (·), i.e.,
∀wa, wb ∈ R

ndw , we have ‖∇F (wa ) − ∇F (wb )‖2 ≤
L‖wa−wb‖2, with constant L = max

i
{Li} and ∇F (w ) �[∇f1(w1 )

� . . . ∇fn(wn )
�]� ∈ R

ndw .

Assumption 2. The function F (·) is lower bounded by Finf ,
i.e., Finf ≤ F (w), ∀w ∈ R

ndw .
Without loss of generality, we assume that Finf ≥ 0. Now

we make the following assumption regarding {αk} and {βk}:

Assumption 3. Sequences {αk} and {βk} are selected as

αk =
a

(k + 1)δ2
and βk =

b

(k + 1)δ1
, (12)

where a > 0, b > 0, 0 < 3δ1 < δ2 ≤ 1, δ1/2 + δ2 > 1, and
δ2 > 1/2.

For sequences {αk} and {βk} that satisfy Assumption 3,
we have

∑∞
k=1 αk = ∞,

∑∞
k=1 βk = ∞,

∑∞
k=1 α2

k < ∞
and

∑∞
k=1 αkβ

1/2
k < ∞. Thus αk and βk are not summable

sequences. However, αk is square-summable and αk

√
βk is

summable.
Assumption 4. The interaction topology of n networked
agents is given as a connected undirected graph G (V, E).
Assumption 5. Parameter b in sequence {βk} is selected
such that

W0 = (In − bL) (13)

has a single eigenvalue at 1 corresponding to the right eigen-
vector 1n and the remaining n − 1 eigenvalues of W0 are
strictly inside the unit circle.

In other words, b is selected such that b < 1/σmax(L),
where σmax(·) denotes the largest singular value. Thus,
bσmax(L) < 1. Let Eξ[·] denote the expected value
taken with respect to the distribution of the random vari-
able ξk given the filtration Fk generated by the sequence
{w0, . . . ,wk}, i.e.,

Eξ[wk+1 ] = E[wk+1 |Fk]

= (Wk ⊗ Idw
)wk − αkE[g(wk, ξk) |Fk] a.s.,

where a.s. (almost surely) denote events that occur with prob-
ability one. Now we make the following assumptions regard-
ing the stochastic gradient term g(w(k), ξ(k)).
Assumption 6. Stochastic gradients are unbiased such that

Eξ [g(wk, ξk) ] = ∇F (wk), a.s. (14)

That is to say Eξ [g(wk, ξk) ] =⎡
⎢⎣
Eξ1 [g1 (w1(k), ξ1(k)) ]

...
Eξn [gn (wn(k), ξn(k)) ]

⎤
⎥⎦ =

⎡
⎢⎣
∇f1(w1(k) )

...
∇fn(wn(k) )

⎤
⎥⎦

Assumption 7. Stochastic gradients have conditionally
bounded second moment, i.e., there exist scalars μ̄v1 ≥ 0 and
μ̄v2 ≥ 0 such that

Eξ

[‖g(wk, ξk)‖22
] ≤ μ̄v1 + μ̄v2 ‖∇F (wk)‖22 , a.s. (15)

Assumption 7 is the bounded variance assumption typically
made in all SGD literature.

Pseudo-code of the proposed distributed event-triggered
SGD is given in Algorithm 1.

Convergence analysis

Define the average-consensus error as w̃k = (M ⊗ Idw
)wk,

where M = In − 1
n1n1

�
n . Note that ML = L and

(L ⊗ Idw) w̃k = (L ⊗ Idw)wk. Thus from (9) we have

w̃k+1 =(Wk ⊗ Idw
) w̃k + βk (L ⊗ Idw

) e(k)

− αk (M ⊗ Idw)g(wk, ξk).
(16)
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Algorithm 1 DETSGRAD algorithm

Input : a, b, υ0, δ1 and δ2
Initialization : w(0) =

[
w�

1 (0) . . . w�
n (0)

]�
for Agent i = 1 to n do

Sample ξi(0) & compute gi (wi(0), ξi(0))

Send wi(0) & let ŵ
(i)
i = wi(0)

Receive wj(0) & let ŵ
(i)
j = wj(0), ∀ j ∈ Ni

Update wi(1) = wi(0)− α0 gi (wi(0), ξi(0))

−β0

∑
j∈Ni

aij

(
ŵ

(i)
i − ŵ

(i)
j

)

end for
for Iteration k ≥ 1 do

for Agent i = 1 to n do
Sample ξi(k) & compute gi (wi(k), ξi(k))

Compute ei(k) = wi(k)− ŵ
(i)
i

if ‖ei(k)‖1 ≥ υ0 αk then

Send wi(k) & let ŵ
(i)
i = wi(k)

end if
if any wj(k) received then

Let ŵ(i)
j = wj(k)

end if
Update wi(k+1) = wi(k)−αk gi (wi(k), ξi(k))

−βk

∑
j∈Ni

aij

(
ŵ

(i)
i − ŵ

(i)
j

)

end for
end for

Our strategy for proving the convergence of the proposed
distributed event-triggered SGD algorithm to a critical point
is as follows. First we show that the consensus error among
the agents are diminishing at the rate of O

(
1

(k+1)δ2

)
(see

Theorem 1). Asymptotic convergence of the algorithm is
then proved in Theorem 3. Theorem 4 then establishes that
the weighted expected average gradient norm is a summable
sequence. Convergence rate of the algorithm in the typical
weak sense is given in Theorem 5. Finally, Theorem 6 proves
the asymptotic mean-square convergence of the algorithm to
a critical point.
Theorem 1. Consider the event-triggered SGD algorithm (6)
under Assumptions 1-7. Then, there holds:

E
[‖w̃k‖22

]
= O

(
1

(k + 1)δ2

)
. (17)

Proof of Theorem 1 is given in George and Gurram(2019).
Define

γk =
αk

βk
=

a/b

(k + 1)δ2−δ1
. (18)

Now define a non-negative function V (γk,wk) as

V (γk,wk) = F (wk) +
1

2γk
w�

k (L ⊗ Idw)wk. (19)

Taking the gradient with respect to wk yields

∇V (γk,wk) = ∇F (wk) +
1

γk
(L ⊗ Idw

)wk. (20)

Theorem 2. Consider the distributed event-triggered SGD
algorithm (6) under Assumptions 1-7. Then, for the gradient
∇V (γk,wk) given in (20), there holds:

∞∑
k=0

αkE

[
‖∇V (γk,wk)‖22

]
< ∞. (21)

Proof. See Theorem 2 in George and Gurram(2019).

Theorem 3. For the distributed event-triggered SGD algo-
rithm (6) under Assumptions 1-7, we have

∞∑
k=0

E

[
‖wk+1 −wk‖22

]
< ∞ and (22)

lim
k→∞

E

[
‖wk+1 −wk‖22

]
= 0. (23)

See the supplementary material section of George
and Gurram(2019) for the proof of Theorem 3. De-
fine w̄k = 1

n

(
1n1

�
n ⊗ Idw

)
wk and ∇F (wk) =

1
n

(
1n1

�
n ⊗ Idw

)∇F (wk). Note that ‖∇F (wk)‖22 =
1
n‖

(
1�
n ⊗ Idw

)∇F (wk)‖22 = 1
n‖

∑n
i=1 ∇fi(wi(k))‖22.

Theorem 4. For the distributed event-triggered SGD algo-
rithm (6) under Assumptions 1-7, we have

∞∑
k=0

αk E

[∥∥∇F (wk)
∥∥2
2

]
< ∞. (24)

Proof. See Theorem 4 in George and Gurram(2019).

Theorem 4 establishes results about the weighted sum
of expected average gradient norm and the key take-
away from this result is that, for the distributed SGD in
(8) or (6) with appropriate step-sizes, the expected aver-
age gradient norms cannot stay bounded away from zero
(See Theorem 9 of (Bottou, Curtis, and Nocedal 2018)),
i.e., lim infk→∞ E

[∥∥∇F (wk)
∥∥2
2

]
= 0 or equivalently

lim infk→∞ E

[
‖∑n

i=1 ∇fi(wi(k))‖22
]

= 0. The rate of
such weak convergence results can be obtained as shown
in Theorem 5.
Theorem 5. Let {wk}Kk=0 be generated according to the
distributed event-triggered SGD given in (6) under Assump-
tions 1-7. Then for δ2 = 1 we have

E

⎡
⎣
∥∥∥∥∥

n∑
i=1

∇fi( z
K
i )

∥∥∥∥∥
2

2

⎤
⎦ = O

(
1

log(K + 1)

)
(25)

and for δ2 ∈ (0.5, 1) we have

E

⎡
⎣
∥∥∥∥∥

n∑
i=1

∇fi( z
K
i )

∥∥∥∥∥
2

2

⎤
⎦ = O

(
1

(K + 1)1−δ2

)
. (26)

Here zK �
[
(zK

1 )� . . . (zK
n )�

]�
is a random sample

from {wk}Kk=0 with probability P
(
zK = wk

)
= αk∑K

j=0 αj
.

Proof. See Theorem 5 in George and Gurram(2019).
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(a) Centralized SGD (b) Distributed SGD-r (c) Distributed SGD-s

(d) DETSGRAD-r (e) DETSGRAD-s

Figure 1: Empirical risk for all five experiments on MNIST dataset.

(a) DETSGRAD-r (b) DETSGRAD-s

Figure 2: Fraction of event-triggered broadcast events for the 10 agents compared to continuous broadcasting case for MNIST
dataset.

Agent 1 2 3 4 5 6 7 8 9 10

Dist. SGD-r 98.97 98.97 98.97 98.97 98.97 98.97 98.97 98.97 98.97 98.97

Dist. SGD-s 98.86 98.86 98.86 98.87 98.86 98.86 98.86 98.87 98.85 98.87

DETSGRAD-r 98.34 98.35 98.32 98.27 98.31 98.31 98.38 98.29 98.23 98.33

DETSGRAD-s 98.46 98.49 98.49 98.51 98.5 98.45 98.13 98.49 98.42 98.51

Table 1: MNIST - Final classification accuracies (%) of the 10 agents after 40 epochs (240000 iterations for the random
sampling/i.i.d. case and 216840 iterations for the single class/non-i.i.d case) using different algorithms. The final accuracy of a
single agent using centralized SGD after 10 epochs (600000 iterations) is 98.63%.
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Agent 1 2 3 4 5 6 7 8 9 10

DETSGRAD-r 61759 61455 61504 61636 61738 61822 61746 61712 61850 61795

DETSGRAD-s 71756 71718 71762 71983 71976 71773 71762 72159 72233 72208

Table 2: MNIST - Total number of event-triggered broadcast events for the 10 agents after 40 epochs. The total number of
continuous broadcast events for each agent after 40 epochs is 240000 in the random sampling case, and 216840 in the single
class case.

Finally, we present the following result to illustrate that
stronger convergence results follows from the continuity as-
sumption on the Hessian, which has not been utilized in our
analysis so far.
Assumption 8. The Hessians ∇2fi( · ) : Rdw �→ R

dw×dw

are Lipschitz continuous with Lipschitz constants LHi , i.e.,
∀wa, wb ∈ R

dw , i = 1, . . . , n, we have

‖∇2fi(wa )−∇2fi(wb )‖2 ≤ LHi‖wa −wb‖2. (27)

It follows from Assumption 8 that the Hessian ∇2F (·) is
Lipschitz continuous, i.e., ∀wa, wb ∈ R

ndw ,

‖∇2F (wa )−∇2F (wb )‖2 ≤ LH‖wa −wb‖2, (28)

with constant LH = max
i

{LHi}.

Theorem 6. For the distributed SGD algorithm (6) under
Assumptions 1-8 we have

lim
k→∞

E

[ ∥∥∇F (wk)
∥∥2
2

]
= 0 and (29)

lim
k→∞

E

⎡
⎣
∥∥∥∥∥

n∑
i=1

∇fi(wi(k))

∥∥∥∥∥
2

2

⎤
⎦ = 0. (30)

Proof. See Theorem 6 in George and Gurram(2019).

Similar to the centralized SGD (Bottou, Curtis, and
Nocedal 2018), the analysis given here shows the mean-
square convergence of the distributed algorithm to a critical
point, which include the saddle points. Though SGD has
shown to escape saddle points efficiently (Lee et al. 2017;
Fang, Lin, and Zhang 2019; Jin et al. 2019), extension of
such results for distributed SGD is currently nonexistent and
is a topic for future research.

Application to distributed supervised learning

We apply the proposed algorithm to distributedly train neu-
ral network agents for image classification task. We present
extensive results on two different datasets - MNIST1 and
CIFAR-102.

MNIST

MNIST data set is a handwritten digit recognition data set
containing 60000 grayscale images of 10 digits (0-9) for
training and 10000 images are used for testing. We distribut-
edly train 10 agents that are connected in an undirected un-
weighted ring topology. The 10-node ring was selected only

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html

since it is one of the least connected network (besides the
path) and MNIST contains 10 classes. Proposed algorithm
would work for any undirected graph as along as it is con-
nected.

Each agent aims to train its own neural network, which is
a randomly initialized LeNet-5 (LeCun et al. 1998). During
training, each agent broadcasts its weights to its neighbors
at every iteration or aperiodically as described in the pro-
posed algorithm. Here we conduct the following five experi-
ments: (i) Centralized SGD, where a centralized version of
the SGD is implemented by a central node having access to all
60000 training images from all classes; (ii) Distributed SGD-
r, where all the agents broadcast their respective weights at
every iteration, and each agent has access to 6000 training
images, randomly sampled from the entire training set, which
forms the i.i.d. case; (iii) Distributed SGD-s, where all the
agents broadcast their weights at every iteration, and each
agent has access to the images corresponding to a single
class, which forms the non-i.i.d. case; (iv) DETSGRAD-r,
where the agents aperiodically broadcast their weights using
the triggering mechanism in (10), and each agent has access
to 6000 training images, randomly sampled from the entire
training set, i.e., i.i.d. case; (v) DETSGRAD-s, where the
agents aperiodically broadcast their weights using the trig-
gering mechanism in (10), and each agent has access to the
images corresponding to a single class, i.e., non-i.i.d. case.
In the single class case, for ease of programming, we set the
number of training images available for each agent to 5421
(the minimum number of training images available in a single
class, which is digit 5 in MNIST data set). Here we select
αk = 0.1

(εk+1) and βk = 0.2525
(εk+1)1/10

, where ε = 10−5 for
Distributed SGD and DETSGRAD. We select αk = 0.001

(εk+1)

for centralized SGD. Note that using a scale factor ε does
not affect the theoretical results provided in the previous
sections. For the DETSGRAD experiments, we select the
broadcast event trigger threshold υ0 = 0.2×Nparameters,
where Nparameters is the total number of parameters in each
neural network.

The plots of the empirical risk vs. the iterations (parameter
update steps), illustrated in Figure 1, show the convergence
of the proposed algorithm. The final test accuracies of the
10 agents after 40 training epochs using different algorithms
and different training settings are shown in Table 1. Results
obtained here indicate that regardless of how the data are dis-
tributed (random or single class), the agents are able to train
their network and the distributedly trained networks are able
to yield similar performance as that of a centrally trained net-
work. More importantly, in the single class case, agents were
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Agent 1 2 3 4 5 6 7 8

Dist. SGD-r 85.02 85.04 84.88 84.93 85.2 85.7 84.47 84.92

DETSGRAD-r 84.96 84.84 84.42 84.37 84.46 84.86 84.84 84.6

Table 3: CIFAR-10 - Final classification accuracies (%) of the 8 agents after 200 epochs of training. The final accuracy of a
single agent using centralized SGD after 150 epochs is 85.12%.

(a) Centralized SGD (b) Distributed SGD-r (c) DETSGRAD-r

Figure 3: Empirical risk vs. epoch for ResNet20 trained on CIFAR-10 dataset.

Agent 1 2 3 4 5 6 7 8

DETSGRAD-r 5484 5479 5471 5483 5483 5485 5493 5481

Table 4: CIFAR-10 - Total number of event-triggered broadcast events for the 8 agents after 200 epochs. The total number of
continuous broadcast events for each agent after 200 epochs is 9800.

able to recognize images from all 10 classes even though they
had access to data corresponding only to a single class during
the training phase. This result has numerous implications for
the machine learning community, specifically for federated
multi-task learning under information flow constraints.

The total number of event-triggered parameter broadcast
events for the 10 agents using the DETSGRAD algorithm
are shown in Table 2. In the random sampling case, by em-
ploying broadcast event-triggering mechanism, we are able
to reduce the inter-agent communications from 240000 to an
average of 61702 over 40 epochs leading to a reduction of
74.2% in network communications. In the single class case,
the agents broadcast the parameters continuously for the first
4 epochs, after which the event-trigger mechanism is started.
Here, we are able to reduce the parameter broadcasts for each
agent from 216840 to an average of 71933 over 40 epochs
leading to a reduction of 66.8% in network communications.
Yet, as can be seen in Table 1, DETSGRAD gives similar
classification performance as distributed SGD with continu-
ous parameter sharing with significant reduction in network
communications. The fractions of the broadcast events for
the 10 agents over 40 epochs are presented in Figure 2. As
expected, the number of broadcast events reduces with the in-
crease in epoch number as the agents converge to the critical
point of the empirical risk function.

CIFAR-10

CIFAR-10 data set is an image classification data set contain-
ing 50000 color images of 10 classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck) for training
and 10000 images are used for testing. We distributedly train
8 agents that are connected in an undirected unweighted ring
topology. Each agent trains its own neural network, which
is a randomly initialized ResNet-203 (He et al. 2016). We
conducted the following three experiments: (i) Centralized
SGD, where a centralized version of the SGD is implemented
by a central node having access to all 50000 training images
from all classes; (ii) Distributed SGD-r, where all the agents
broadcast their respective weights at every iteration, and each
agent has access to 6250 training images, randomly sampled
from the entire training set; (iii) DETSGRAD-r, where the
agents aperiodically broadcast their weights using the trig-
gering mechanism in (10), and each agent has access to 6250
training images, randomly sampled from the entire training
set. Here we select αk = 0.1

(εk+1) and βk = 0.2525
(εk+1)1/10

, where
ε = 0.00025 for Distributed SGD and DETSGRAD. We
select αk = 0.1

(εk+1) , where ε = 10−5 for centralized SGD.
For the DETSGRAD experiment, we select the broadcast
event trigger threshold υ0 = 0.01 × Nparameters, where
Nparameters is the total number of parameters in each neural

3https://github.com/akamaster/pytorch resnet cifar10
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network, with the agents broadcasting the parameters contin-
uously for the first 25 epochs.

The plots of the empirical risk vs. epochs, illustrated in
Figure 3, show the convergence of the proposed algorithm.
The final test accuracies of the 8 agents after 200 training
epochs using two different algorithms are shown in Table 3.
Similar to the previous case, results obtained here indicate
that the distributedly trained networks are able to yield simi-
lar performance as that of a centrally trained network. The
total number of event-triggered parameter broadcast events
for the 8 agents using the DETSGRAD algorithm are shown
in Table 4. By employing broadcast event-triggering mecha-
nism, we are able to reduce the inter-agent communications
from 9800 to an average of 5482 over 200 epochs leading to
a reduction of 44.1% in network communications. Yet, as can
be seen in Table 3, DETSGRAD gives similar classification
performance as distributed SGD with continuous parameter
sharing with significant reduction in network communica-
tions.

Conclusion
This paper presented the development of a distributed stochas-
tic gradient descent algorithm with event-triggered commu-
nication mechanism for solving non-convex optimization
problems. We presented a novel communication triggering
mechanism, which allowed the agents to decidedly reduce
the communication overhead by communicating only when
the local model has significantly changed from previously
communicated model. We presented the sufficient conditions
on algorithm step-sizes to guarantee asymptotic mean-square
convergence of the proposed algorithm to a critical point and
provided the convergence rate of the proposed algorithm. We
applied the developed algorithm to distributed supervised-
learning problem, in which a set of networked agents collab-
oratively train their individual neural nets to perform image
classification. Results indicate that the distributedly trained
networks are able to yield similar performance to that of a cen-
trally trained network. Numerical results also show that the
proposed event-triggered communication mechanism signifi-
cantly reduced the inter-agent communication while yielding
similar performance to that of a distributedly trained network
with constant communication.
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