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Abstract

Robust support vector machine (RSVM) has been shown to
perform remarkably well to improve the generalization per-
formance of support vector machine under the noisy envi-
ronment. Unfortunately, in order to handle the non-convexity
induced by ramp loss in RSVM, existing RSVM solvers of-
ten adopt the DC programming framework which is computa-
tionally inefficient for running multiple outer loops. This hin-
ders the application of RSVM to large-scale problems. Safe
sample screening that allows for the exclusion of training
samples prior to or early in the training process is an effective
method to greatly reduce computational time. However, ex-
isting safe sample screening algorithms are limited to convex
optimization problems while RSVM is a non-convex prob-
lem. To address this challenge, in this paper, we propose two
safe sample screening rules for RSVM based on the frame-
work of concave-convex procedure (CCCP). Specifically, we
provide screening rule for the inner solver of CCCP and an-
other rule for propagating screened samples between two suc-
cessive solvers of CCCP. To the best of our knowledge, this is
the first work of safe sample screening to a non-convex opti-
mization problem. More importantly, we provide the security
guarantee to our sample screening rules to RSVM. Experi-
mental results on a variety of benchmark datasets verify that
our safe sample screening rules can significantly reduce the
computational time.

Introduction

In supervised learning, support vector machine (SVM)
(Chang and Lin 2011; Platt 1998; Cortes and Vapnik 1995)
is a powerful classification method that is widely used
to separate data by maximizing the margin between two
classes. However, real-world data tend to be massive in
quantity but with quite a few unreliable outliers. Traditional
SVM usually use convex hinge loss function to calculate the
loss of misclassified samples. Since the convex function is
unbounded and puts an extremely large penalty on outliers,
traditional SVM is unstable in the presence of outliers. Ro-
bust support vector machine (RSVM) (Wu and Liu 2007;
Shen et al. 2003; Xu, Crammer, and Schuurmans 2006) sup-
presses the influence of outliers on the decision function
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through clipping the convex hinge loss to the non-convex
ramp loss, and has been shown to perform remarkably well
under the noisy environment.

The non-convex objective function of RSVM can be
viewed as a difference of convex (DC) (Sriperumbudur and
Lanckriet 2009) programming problem which is normally
solved by the concave-convex procedure (CCCP) (Yuille
and Rangarajan 2003; Collobert et al. 2006) algorithm. The
CCCP algorithm iteratively solves a sequence of constrained
convex optimization problems. For each loop of CCCP al-
gorithm, it solves a surrogate convex optimization problem
which linearizes the concave part of the original DC pro-
gramming problem. The inner surrogate convex optimiza-
tion problem is very similar to the problem of SVM, and
is normally solved by the sequential minimal optimization
(SMO) algorithm (Platt 1998; Vapnik 2013). As pointed out
in (Chang and Lin 2011), the time complexity of SMO algo-
rithm is O(n"), where 1 < k < 2.3, n is the number of the
training samples. Thus, the time complexity of CCCP algo-
rithm to solve RSVM is O(tn*), where ¢ is the number of
loops of the CCCP algorithm. The high computational cost
severely hinders the implementation of RSVM and its appli-
cation to big data.

To address the above challenging problem, one promis-
ing approach is safe screening. Ghaoui et al. (2010) first
exploited safe screening rules to discard inactive features
prior to starting a Lasso solver. They exploited the geometric
quantities of the feature space to bound the Lasso dual solu-
tion to be within a compact region and only need to solve a
smaller optimization problem on the reduced datasets which
leads to huge savings in the computational cost and mem-
ory usage. Since then, the concept of safe screening has
been expanded in two main directions. The first direction is
called sequential screening, which performs screening along
the entire regularization path which is the sequence of op-
timal solutions w.r.t. different values of regularization pa-
rameter. Sequential screening relies on an additional feasi-
ble or optimal solution obtained in advance, which can pro-
vide a warm start of the screening process. This direction
has been pursued in (Wang et al. 2013; 2014; Liu et al. 2013;
Xu and Ramadge 2013; Xiang, Wang, and Ramadge 2016;
El Ghaoui, Viallon, and Rabbani 2011). However, they are



Table 1: Representative safe screening algorithm. (“Type” represents the algorithm screening samples or features).

Problem Reference Type Type of screening | Warm-start | Type of optimization problems
SVM Zimmert et al. (2015) Samples Dynamic No Convex
SVM Ogawa et al. (2014) Samples Sequential Yes Convex
SVM Ogawa et al. (2013) Samples Sequential Yes Convex
Logistic Regression Wang et al. (2014) Features Sequential Yes Convex
Lasso Liu et al. (2013) Features Dynamic No Convex
Proximal Weighted Lasso | Rakotomamonjy et al. (2019) | Features Dynamic Yes Non-convex
RSVM Our Samples Dynamic Yes Non-convex

only applicable to algorithms that also compute the reg-
ularization paths. The second direction is called dynamic
screening (Bonnefoy et al. 2014; 2015), which performs
the screening throughout the optimization algorithm itself.
For example, Fercoq et al. (2015) proposed a duality gap
based safe feature screening algorithm for lasso. Although
dynamic screening might be useless early in the training
process, it might become efficient as the algorithm pro-
ceeds towards the optimal solution. Further, Rakotoma-
monjy et al. (2019) expanded safe feature screening rule
to lasso with non-convex sparse regularizers. They handled
the non-convexity of the objective through the majorization-
minimization (MM) principle and provided a warm-start
process that allows to propagate screened features from one
MM iteration to the next.

Recently, Ogawa et al. (2013) first proposed a safe screen-
ing to indentify non-support vectors for SVM. They ex-
tended the existing feature-screening methods to sample-
screening. On this basis, Ogawa et al. (2014) and Wang et al.
(2014) improved its ability to screen inactive samples. How-
ever, as sequential screening algorithms, they relies on an
additional feasible or optimal solution obtained in advance,
which can be very time consuming. To overcome this dif-
ficult, Zimmert et al. (2015) proposed a dynamic screening
rule using a duality gap function in the primal variables of
hinge loss kernel SVM. We summarized several representa-
tive safe screening algorithms in table 1. It shows that exist-
ing safe feature screening algorithms have been widely used
in convex and non-convex problems while existing safe sam-
ples algorithms are limited to convex problems. Dynamic
screening algorithm for SVM can not provide a warm-start
for training the model, so it only works during the training
the model. It is obvious that the dynamic samples screening
rule for RSVM is still an open problem.

In this paper, we propose two safe sample screening rules
for RSVM based on the framework of concave-convex pro-
cedure (CCCP). Specifically, we first provide a screening
rule for the inner solver of CCCP. Secondly, we provide a
new rule for propagating screened samples between two suc-
cessive solvers of CCCP. To the best of our knowledge, this
is the first work of safe sample screening to a non-convex op-
timization problem. More importantly, we provide the secu-
rity guarantee to our sample screening rules to RSVM. Ex-
perimental results on a variety of benchmark datasets verify
that our safe sample screening rules can significantly reduce
the computational time.

Contributions. The main contributions of this paper are
summarized as follows:
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1. To the best of our knowledge, we are the first to propose a
safe samples screening rule for the non-convex problem.

. By utilizing an iterative CCCP strategy to solve RSVM,
we proposed a safe samples screening rule for propagat-
ing screened samples between two successive solvers of
CCCP.

Preliminaries of Robust Support Vector
Machine

In this section, we first give a brief review of RSVM. Then,
we give the primal and dual form of RSVM. At last, we give
the screening set in the RSVM.

Robust Support Vector Machine

We consider a training set D = {(z1,y1), ", (Tn,Yn)}
constituted with n samples , where z; € R and Yy; €
{=1,+1}. SVM has a discrimination hyperplane in the fol-
lowing form:

fo(xi) = who(z;) + b, (1)

where § = (w, b) are the parameters of the model, and ¢(+)
is a transformation function from an input space to a high-
dimensional reproducing kernel Hilbert space. SVM solves
the following minimization problem:

SRS AR =
min gl +C;H1(yif0($i)) 2
where the function H,(z) = max(0,s — z) is the hinge

loss. Since the convex hinge loss function is unbounded and
puts an extremely large penalty on outliers, traditional SVM
is unstable in the presence of outliers. We clip the hinge
loss to get the ramp loss Rs(z) = min(s — z, H1(z))
H,(z) — Hs(z), where s < 0. The ramp loss is bounded,
meaning that noisy samples cannot influence the solution be-
yond that of any other misclassified point. Thus, RSVM can
effectively suppress the influence of outliers and it solves the
following minimization problem:

min %lel2+CzH1(yif9(Ii)) —C> Hy(yifo(:)) 3)

i=1 i=l

() v(0)

where o and v are real-valued convex functions. It is easy to
see that the objective function (3) is a form of DC.



Primal and Dual Problem

The non-convex objective function of RSVM can be viewed
as a DC programming problem which is normally solved
by the CCCP algorithm. The main mechanism of CCCP al-
gorithm is to iteratively construct an optimized surrogate
objective function which linearizes the concave part of the
original DC programming problem. In order to apply the
CCCP algorithm to solve the problem (3), we first have to
calculate derivative of the concave part with respect to 6:

0-Vo(0) = = jriyifo(:) @
1=1
_J O if yife(z) <s
where —{ 0 otherwise. ©)

The primal problem can be transformed into the following
optimized surrogate objective:

1 n n
P(6)=min 5||w||2+C;H1 (yife(xi))JFZ;l‘iyifG (z;)  (6)
In this paper, we call the formulation (6) as convex in-
ner loop (CIL) problem. Using Lagrange multiplier method
(Bertsekas 2014), we directly give the dual form of the pri-
mal problem as follows:

Ta

1
min §aTHa -y @)

n
s.t. Zai = 0; Qz <oy < 67,
i=1

where H is a positive semidefinite matrix with H;;
K(Iia Ij) = <¢(xz)a ¢($])> for all 1 S Zv] S n, K(Iu Z;
is the kernel function, C; = min(0,Cy;) — uy, C;
max(0, Cy;) — piy, o = y;(8; — p;) and f; is the Lagrange
multiplier.

According to the convex optimization theory (Boyd and
Vandenberghe 2004), the dual CIL problem (7) can be trans-

formed into the following min-max form:

~—

min max
e b eR

D(9") %aTHoa—yTa-i-b' (;ai> ®)
where 0’ = («, V') are the parameters of the dual CIL prob-
lem and b’ is the Lagrangian multiplier. Further, from the
KKT theorem (Bazaraa and Shetty 2012), the first-order
derivative of D(6") with respect to « leads to the following
KKT conditions:

aD(0)
(’)ai

def

vD(#),

=Y oHij+V —yi (9
=1

Screening Set

Safe sample screening is built on the KKT optimality condi-
tion (Bertsekas 1997). According to the gradient V.D(¢’),,
we can categorize the n training samples into three cases:

VD@03 =0 o €[C;,C] (10)
<0 o; = Cz
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Switching to the primal problem, (10) leads to the following
four cases:

yifo(x;)) >1 = «; =0; (11)
yifolz:) =1 = o;€[C;,C; (12)
s<vyifo(zi) <1 = a;=yC; (13)
yifo(z;)) <s = a;=0 (14)

If some of the training samples are known to satisfy the case
(11) or (14) in advance, we can throw away those samples
prior to the training stage. Similarly, if we know that some
samples satisfy case (13), we can fix the corresponding «;
at the following training process. Namely, if some knowl-
edge on these five cases are known a-priori, our training task
would be extremely easy. The samples satisfy the case (11)
or (14) are often called non-support vectors because they
have no influence on the resulting classifier.

In this paper, we show that, through our safe sample
screening rule, some of the non-SVs and some of the sam-
ples satisfying case (13) or (14) can be screened out prior
to the training process. Then, in the latter training process,
we can train the model with fewer samples to reduce com-
putation time while ensuring consistent results. Suppose that
we obtain an active set A (a subset of D) after applying our
safe sample screening rule, correspondingly, we can define
an inactive set A = D — A that the variables « ; are fixed.
The original optimization (7) can be reduced into a smaller
optimization problem as follows.

. L r T
min §aAHAAaA—(yA—HAAo¢A) ag (15)
n
Za:O; C, <a; <y

i=1

s.t.

which is a smaller optimization problem. Notice that differ-
ent from existing approximate shrinking heuristics (Chang
and Lin 2011; Joachims 1999b; Gu et al. 2018; Joachims
1999a; Fan, Chen, and Lin 2005) which sample through a
boundary without well theory guarantees, the active set ob-
tained by our sample screening rule is safe and reliable.

Safe Screening Rule for Single CIL Problem

In this section, we first provide the safe screening rule for
single CIL problem. Then, we give the implementation of
single CIL problem. Finally, we analyze the security analy-
sis of sample screening rule.

Safe Screening Rule

As stated in the duality theory, the dual problem D(6') is
a lower bound on the primal problem P(6). When strong
duality theorem (Boyd and Vandenberghe 2004) is satisfied,
the optimal solution of the dual problem is equal to the op-
timal solution of the primal problem. We define the duality
gap functions G'p(6) as follows:

Gr®) = i Gol®(®) (16)
= P(G)_gin@%‘/) D(#")



[wll*+C Y Hi(yi fo())
i=1
+ Z piyifo(w:) — max (Z(yl - b')%)
i=1 i=1

and Gp(0') = P(0(0')) — D(¢) respectively. The weak
duality theorem (Boyd and Vandenberghe 2004) guarantees
that duality gap is always greater than 0. In the following, we
first show that the duality gap is a strong convex function.

Property 1. The duality gap G p(6) is strongly convex with
parameter 0. Then

Gp(01) > Gp(02) + (VG p(02),01 — 02) + |01 — 02|,

We provide the detailed proof in the appendix. Accord-
ing to the strongly convex property of the duality gap, we
can easily get that the euclidean distance between arbitrarily
feasible solution and the optimal solution is always less than
the current duality gap.

Corollary 1. Let 0* = (w*,b*) be the optimal solution of
the primal problem. Then we have

10— 6"[| < vVGp(0) (17)

We provide the detailed proof in the appendix. Accord-
ing to (9), we can obtain the relation between the feasible
solution and the optimal solution:

j=1

= D (@ —ay)Hy+ Y ajHy—y;
i=1 =1
IR

VDO + Y (af — ) Hyj + 0" =V
j=1

VD(0); + (0" — 0", ¢(x:))

Based on Corollary 1, we further obtain the inequality rela-
tion between the euclidean distance from the feasible solu-
tion to the optimal solution of any sample and the current
duality gap.

Corollary 2. Let 0" = (a*, ') be the optimal solution of
the dual problem. Denote K;; the entries of the associated
kernel matrix, then for allt = 1,--- ,n we have:

IVD(6™*); —VD(#);] < /K- Gp(6') (19)
We provide the detailed proof in the appendix. According
to Corollary 2, we know that the optimal solution VD(0"*);
is always in a circle with the feasible solution VD(¢);
as the center of the circle and r = /K;;Gp(0') as the
radius. Thus, when this circle does not contain the point
VD(6*); = 0, we can screen out this sample. The safe sam-
ple screening rule is summarized as follows:

VD(Q/)l > K”GD(G/) = Oé;k = Qz (20)

6984

Figure 1: Illustration of safe sample screening rule. The
points O in the figure represents support vector i.e.
VD(0"*); = 0. During the training process, if a certain sam-
ple i is a support vector, the feasible solution V.D(6'); must
be in a circle centered at O and radius r = /K;;Gp(6')
in any iteration. Correspondingly, if the feasible solution
VD(0"); is at point B, its optimal solution must be in a cir-
cle of the same radius r. At this time, the optimal solution
VD(0"™); must be greater than 0. On the contrary, when the
feasible solution VD(6"); is at point A, we are not sure that
the optimal solution V.D(6'); is equal to 0.

We give the illustration of safe sample screening rule in Fig-
ure 1.

Interpretation

We use a SMO algorithm to solve the CIL problem in its
dual form (7). The core idea of SMO algorithm is to heuris-
tically select two samples that violate the KKT condition to
the largest extent to update. Then, we will update the gradi-
ent of all the samples and the parameter b. SMO algorithm
repeat the process until it converges. The gradient of all the
samples g; is defined as follows:

gi =Y o;Hij —yi (22)
j=1

During the training process, in order to use safe sample
screening rule, we need to compute the duality gap. Major
time-consuming of duality gap is compute |Jw||?. In the fol-
lowing, we will show that how to use the gradient in the
update process to compute the duality gap easily. According
to the KKT conditions, the ||w||? is defined as follows:

n

lwl> =" aiojHij = > (g + yi)ou (23)
i=1 j=1 i=1
and the y; f(z;) can be easily solved as:
yif (zi) = yi(gi +0) =1 (24)

Thus, we can avoid recalculating kernel by maintaining the
gradient in each iteration of SMO algorithm. The duality gap
in the early stage can always be large, which makes the dual
and primal estimations inaccurate and finally results in inef-
fective screening rules. We typically start sample screening
after 50 iterations and screen the samples every 10 iterations.
We summarized the safe sample screening rule for single
CIL problem in Algorithm 1.



Algorithm 1 Safe sample screening for single CIL problem

Input: Training set D, optimization precision € .
Output: The optimal solution of .
1: Initialize o = 0.
2: while optimaliy conditions are not satisfied with ¢ do
3 Select two samples points update.
4:  Compute the VD(’); and duality gap.
5 Screening the samples that satisfy (20)-(21).
6: end while

Theoretical Analysis

The main advantage of our safe sample screening algorithm
is its theoretic guarantee. In the following, we prove that
all inactive samples would be detected and screened by our
screening rule after a finite number of iterations of the algo-
rithm.

Property 2. Define the screening set of the CIL problem
as R* = {i € D |[VD(©™);| = 0} and R, = {i €
D |VD(0'%);| < /K;;Gp(0'%)} obtained at iteration k
of an algorithm solving the CIL problem. Then, there exists
ko € N s.t. Yk > ko, R =R

We provide the detailed proof in the appendix.

Safe Screening Rule for Successive CIL
Problems

In this section, we give the propagation behavior of the
screened samples.

Propagating Screening Rule

Prior to this we have introduced the inner solver for single
CIL problem and its safe screening rule, we are going to
analyze how this rule can be improved into solving succes-
sive CIL problems. Each iteration of the CCCP algorithm
approximates the concave part by its tangent and minimizes
the resulting convex function, and the its tangent is always
an upper bound of the concave part:

—C"Ho(yi(w*¢(z:) + %)) < piys(w*d(zi) +b7)

For each inner problem of CCCP, we can perform screening
by using p; as defined in (5), which improves the efficiency
of CCCP. However, since the ;s are also expected to vary
for different iterations, we do not know whether the a screen
sample of iteration k can be safely screened in iteration k1.
Thus, in the next iteration, we usually need to solve a new
CIL problem due to the change of ;. In the following, we
derive conditions that could be used to propagate screened
samples from one iteration to the next in a CCCP algorithm.

First of all, we give the relation of feasible solutions of
any two subproblems:

(25)

VDO = (ol = ol Hy + 0 =6 + VDo)
j=1

Then, we consider the relation of duality gap of any two
subproblems:
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/GD(Q/IH»I)

VIGp(0"FFT) —Gp(6"F) + Gp (')
VIGD(0'F+1) — Gp (0'F)| + /G p (67F)

<
<

By utilizing the relation from one iteration to the next in a
CCCEP algorithm, we can obtain the Property 3.

Property 3. Consider a CIL problem with py and its fea-
sible solutions 0'% allowing to screen samples according to
(20)-(21). Suppose that we have a new set of weight of /"1
defining a new CIL problem. Given a primal-dual feasible
solution % for the latter problem, a safe sample screen-
ing rule for sample i reads

VD(0™®); — \/KiiGp(0'F) + m| L] +n —q >0 (26)

VD) 4+ \/KuiGp(0%) + m|| L] +n+q <0 (27)

where m, n and q are constants such that ||a ™ — ||y <

m, |b/k+1 - b/k| < n and \/Kii|GD(9/k+l) — GD(G’k)| <
q, I; denote vector [H;1, Hp, -+ -, Hy()) forall 1 <i < n.

Algorithm 2 Safe sample screening for successive CIL
problem

Input: The training set D.

Output: The optimal solution of RSVM.
1: Initialize the °.

2: Solve a CIL problem with p°.

3 k1.

4: Compute the u according to (5).

5: while i* are not convergence do

6:  Screening the samples that satisfy (26)-(27).

7:  Solve a CIL problem with z*.

8 k<« k+1

9:  Compute the p; according to (5).

10: end while

We provide the detailed proof in the appendix. To make
this safe sample screening rule tractable, we first need a fea-
sible solution §’**1 of the dual CIL problem in iteration
k + 1, then we can obtain an upper bound on the norm of
|a’*+1 — o/*|| and a bound on the difference of the dual-
ity gap |Gp(6'*T1) — Gp(0'%)| and threshold |b'*+1 — b'¥|
respectively. Interestingly, when using the primal solution
¥ = (B¥ — pF*t1)y as our feasible solution in iteration
k + 1, the safe sample screening rule given in Property 3
does not involve any additional dot product and is cheaper
to compute. The propagation of screened samples provide
a warm-start process for the next iteration in a CCCP algo-
rithm. We summarized the safe sample screening rule for
successive CIL problems in Algorithm 2.

Experiments

In this section, we first present the experimental setup, and
then provide the experimental results and discussions.
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Figure 2: Average computational time of four contrast algorithms under different setting.

Experimental Setup

Design of Experiments: In the experiments, we compare
the computation time of different algorithms for comput-
ing the optimization problem (3) to verify the effective-
ness of our algorithm. The active set technique (also called
shrinking technique) is used by two of the most commonly
used state-of-the-art SVM solvers, LIBSVM (Chang and Lin
2011) and SVMLight (Joachims 1999b). Similarly, the ac-
tive set technique solves a smaller optimization problem (15)
by screening inactive samples to reduce the computational
time. However, these methods do not have theoretic guaran-
tee w.r.t. whether a training sample can be safely remove.
In the experiments, we combine our safe sample screening
rules with active set technology to reduce the computational
time. Specifically, we use our safe sample screening rules at
the beginning of the experiment during which the screening
operation is invoked every 10 iterations until the duality gap
is smaller than 10~%. Then, we use active set technique for
the rest of the training process.

In addition, we compared our safe sample screening algo-
rithm with traditional RSVM algorithm, which uses all the
samples to train the model during the whole training process.
The compared algorithms are summarized as follows.
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1. Safe: Our proposed safe sample screening algorithm.

. Shrink: The active set technique without safe screening
guarantee (Chang and Lin 2011; Joachims 1999b).

. Shrink+Safe: our safe sample screening rules combined
with active set technique.

. Non screening: The traditional RSVM algorithm with
CCCEP (Collobert et al. 2006).

Implementation: We implement our algorithm in MAT-
LAB. For kernel, the linear kernel and Gaussian Kker-
nel K(xq,x) exp(—rl|z1 — x2|?) are used in all
experiments. The parameter C' is selected from the set
{0.1,1,10,100}. The Gaussian kernel parameter & is se-
lected from the set {0.05,0.5,5}. The ramp loss function
parameter s is fixed at 0. The optimization precision e is set
to be 1078, For each dataset, we randomly selected 20000
samples for training.

Datasets: Table 2 summarizes the four benchmark datasets
(CodRNA, ijcnnl, a9a, letter) used in the experiments. There
are from LIBSVM !sources. Originally, the Letter is a 26-
class dataset (i.e., the alphabet “A”-Z”). We created a bi-

"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Figure 3: The screening rate of different datasets.

nary version of Letter dataset by classifying alphabet A to
M versus N to Z.

Table 2: The benchmark datasets used in the experiments.

Dateset ~ Dimensionality Samples  Source
CodRNA 8 59535 LIBSVM
a9%a 123 32561 LIBSVM
letter 16 20000  LIBSVM
ijennl 22 49990 LIBSVM

Results and Discussions

Figure 2 presents the average computational time of four
competing algorithms under different setting. Compared
with Non screening, our safe sample screening rule can ef-
fectively reduce almost 50% computational time in most set-
tings. The result clearly demonstrate that our safe sample
screening rule combined with active set technology is the
most efficient method for reducing computational time, sig-
nificantly outperforming the standalone active set technique.
This is because the active set technique is not safe, meaning
that, when it erroneously screens useful samples, it needs
to repeat the training after correcting those mistakes. Our
safe sample screening rule can safely screen samples until
close to the optimal solution. Then, when using the activity
set technique, we can try to avoid screening active samples
by mistake as much as possible. Even if some samples are
wrongly screened, the retrained process only requires fewer
samples.

Figure 3 presents the screening rate of different datasets.
The results clearly demonstrate that when the Gaussiam ker-
nel parameter is small, our safe sample screening rule can ef-
fectively screen half of the inactive samples at the beginning
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of training process. As the number of iterations increases,
our safe sample screening rule can screen almost all inac-
tive samples. In Figure 3 (d), (k), (I), we only screen a few
inactive samples because the SVM model contains a lot of
support vectors and is not sparse in samples at this setting.

Conclusion

In this paper, we propose two safe sample screening rules
for RSVM based on the CCCP algorithm. Specifically, we
first provide a screening rule for the inner solver of CCCP.
Secondly, we provide a new rule for propagating screened
samples between two successive solvers of CCCP. We also
provide the security guarantee to our sample screening rules
to RSVM. To the best of our knowledge, this is the first work
of safe sample screening to a non-convex optimization prob-
lem. Experimental results on a variety of benchmark datasets
verify that our safe sample screening rules can significantly
reduce the computational time.
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