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Abstract

With the advance of sensor technologies, the Multivariate
Time Series classification (MTSC) problem, perhaps one of
the most essential problems in the time series data mining
domain, has continuously received a significant amount of
attention in recent decades. Traditional time series classifi-
cation approaches based on Bag-of-Patterns or Time Series
Shapelet have difficulty dealing with the huge amounts of
feature candidates generated in high-dimensional multivari-
ate data but have promising performance even when the train-
ing set is small. In contrast, deep learning based methods can
learn low-dimensional features efficiently but suffer from a
shortage of labelled data. In this paper, we propose a novel
MTSC model with an attentional prototype network to take
the strengths of both traditional and deep learning based ap-
proaches. Specifically, we design a random group permuta-
tion method combined with multi-layer convolutional net-
works to learn the low-dimensional features from multivariate
time series data. To handle the issue of limited training labels,
we propose a novel attentional prototype network to train the
feature representation based on their distance to class proto-
types with inadequate data labels. In addition, we extend our
model into its semi-supervised setting by utilizing the unla-
beled data. Extensive experiments on 18 datasets in a public
UEA Multivariate time series archive with eight state-of-the-
art baseline methods exhibit the effectiveness of the proposed
model.

1 Introduction

A time series is a set of real value observations sequentially
ordered by time. A multivariate time series is a set of co-
evolving time series that is typically recorded by a set of
sensors simultaneously over time. With the advance of sen-
sor technologies, The Multivariate Time Series Classifica-
tion (MTSC) problem, identifying the labels for multivari-
ate time series records, has received a great amount of at-
tention in recent decades. Since time series data is a popu-
lar data type that exists in a wide range of research domains
and applications, multivariate time series classification mod-
els have been used in many different real-world applications
such as Human Activity Recognition (Minnen et al. 2006),
EEG/ECG data analysis, (Bagnall et al. 2018)(Wang et al.
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Table 1: Characteristics of Existing Models

Method
Little

Domain
Knowledge

Small
Feature
Space

Shortage
of Labels

Unlabeled
Data

DTW
√ √

Shapelet
√

Bag-of-Patterns
√

Traditional DL
√ √

TapNet (Ours)
√ √ √ √

2015) and Motion Recognition (Rakthanmanon and Keogh
2013).

Most existing general time series classification ap-
proaches such as bag of patterns (Senin and Malinchik 2013)
or time series shapelet (Ye and Keogh 2009) require a pars-
ing step to convert the time series into an extensive set of
subsequences or patterns as feature candidates. The large
feature space generated makes the feature selection step dif-
ficult and may result in low accuracy in the multivariate case
(Schäfer and Leser 2017). Recently, deep learning based
methods (Karim et al. 2018)(Zheng et al. 2014) achieve
promising performance in the time series classification task.
These approaches can perfectly handle the issue concern-
ing a huge feature space by learning a low-dimensional fea-
ture representation via convolutional or recurrent networks
directly from raw time series data. Moreover, neural net-
work solutions require less domain knowledge in time series
data than traditional methods. But these approaches require
a large amount of labeled data to train the massive model
parameters. Different from the computer vision and natu-
ral language processing domains, the availability of labeled
data is limited in most of the time series datasets (Bagnall et
al. 2018)(Bagnall et al. 2017). For instance, the “MotorIm-
agery” dataset (Lal et al. 2005) provided by the University
of Tubingen for brain activity detection contains only 378
labeled data samples, which is arduous to train a deep learn-
ing model with thousands of model parameters (Neyshabur,
Tomioka, and Srebro 2014). However, the issue of limited
training labels can be handled by the traditional time series
classification approach using distance-based methods such
as DTW-1NN (Shokoohi-Yekta, Wang, and Keogh 2015).
Table 1 presents the characteristics of existing MTSC meth-
ods. We can see that traditional time series approaches can
work with limited training samples, but they usually gen-
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erate a large feature space and require domain knowledge
in time series data. In contrast to traditional approaches,
the deep learning methods can learn low-dimensional fea-
ture representations without domain knowledge, but these
approaches suffer from the limitation of training labels.

To combine the strengths of both traditional and deep
learning based MTSC approaches, this paper proposes a
novel multivariate Time series classification model named
Time series attentional prototype network (TapNet). Tap-
Net is capable of extracting low-dimensional features from
multivariate time series with little domain knowledge and
handling the shortage of labeled data. To learn the latent
features from multivariate time series efficiently, we design
a random group permutation method to reconstruct the di-
mensions of time series into groups, preceded by convolu-
tional layers. To handle the issue of limited labeled data,
we propose a novel attentional prototype network to train a
low-dimensional feature representation for each time series
based on their distances to the class prototype learned by
a small amount of labeled samples. Since the training pro-
cess is distance-based, it requires much fewer labeled sam-
ples than traditional deep neural networks. To summarize,
our work has the following main contributions: 1) Propose
an attentional prototype network to handle the limited train-
ing samples. 2) Learn a low-dimensional feature representa-
tion (embedding) for multivariate time series. 3) Extend our
model to semi-supervised settings to utilize the unlabeled
data. 4) Conduct extensive experiments on the multivariate
time series datasets with a wide range of applications.

The rest of the paper is organized as follows. Section 2
discusses related work in multivariate time series classifi-
cation, and Section 3 introduces the problem definition and
notations. Section 4 introduces the proposed model. The ex-
perimental results on 18 UEA Archive datasets are presented
in Section 5, and the paper concludes with a summary of the
research in Section 6.

2 Related Work
In this section, we briefly describe recent advances in time
series classification research in both multivariate and semi-
supervised time series classification.

2.1 Multivariate Time Series Classification

Most work on multivariate time series classification (Bay-
dogan and Runger 2015)(Schäfer and Leser 2017)(Wis-
tuba, Grabocka, and Schmidt-Thieme 2015)(Baydogan and
Runger 2016) follows two main directions: time series
shapelet and bag-of-patterns based classification models.
Wistuba et al. introduced an approach named Ultra Fast
Shapelets (UFS) (Wistuba, Grabocka, and Schmidt-Thieme
2015) to efficiently select representative patterns from multi-
variate time series to discriminate classes. Similarly, (Karls-
son, Papapetrou, and Boström 2016) introduced an approach
named Generalized Random Shapelet Forests (gRSF) that
generates shapelet-based decision trees via randomly se-
lected shapelets. (Baydogan and Runger 2015) introduced
an approach named Symbolic Representation for Multivari-
ate Time series (SMTS). SMTS uses a codebook to cap-
ture the local relationships between different dimensions

and uses it to classify the multivariate time series. Recently,
(Schäfer and Leser 2017) introduced an approach named
WEASEL-MUSE, which uses the bag of SFA (Symbolic
Fourier Approximation) symbol model to classify multivari-
ate time series. It has been shown that WEASEL-MUSE can
outperform existing shapelet-based approaches (Schäfer and
Leser 2017).

Recently, deep learning based methods (Karim et al.
2018)(Zheng et al. 2014) achieved promising performance
in multivariate time series classification task. These models
often use a LSTM layer and stacked CNN layer to extract
features from the time series, and a softmax layer is then ap-
plied to predict the label. Zheng et al. introduced a model
named Multi Channel Deep Convolutional Neural Network
(MCDCNN) (Zheng et al. 2014), for which each univari-
ate time series is passed through a separate CNN layer. The
outputs of all univariate time series are concatenated and
pass through a softmax layer to predict the label. In con-
trast, (Karim et al. 2018) recently proposed a model consist-
ing of an LSTM layer and stacked CNN layer along with
a Squeeze-and-Excitation block to generate latent features.
Different from the conventional approaches, deep learning
based methods learn the latent features by training convo-
lutional or recurrent networks with large-scale labeled data.
However, existing work does not address the problem with
the (labeled) data shortage.

2.2 Semi-supervised Time Series Classification

It has been shown that in many applications, collecting la-
beled data is often very difficult. As a result, for time se-
ries classification, semi-supervised approaches have gained
much popularity in recent years. However, most existing
work on semi-supervised time series classification work fo-
cuses on univariate time series (González et al. 2018)(Wei
and Keogh 2006)(Chen et al. 2013). The general approach
is to use Dynamic Time Warping (DTW) (Wei and Keogh
2006)(Chen et al. 2013) to estimate labels for unlabeled time
series. It has been shown that it can greatly improve the per-
formance over the original DTW classifier. (Marussy and
Buza 2013) introduced a semi-supervised approach, SUC-
CESS, which consists of constrained hierarchical clustering
and dynamic time warping. (Begum et al. 2014) introduced
a minimum description length (MDL) based stopping crite-
rion for semi-supervised learning.

3 Problem Formulation

In this section, we begin by formulating the multivariate
time series classification (MTSC) problem. Then a semi-
supervised classification problem for multivariate time se-
ries (SMTSC) is formally defined.

3.1 Multivariate Time Series Classification

A multivariate time series (MTS) X = {x1, . . . ,xm} ∈
Rm×l is an ordered sequence of m ∈ N streams with xi =(
xi,1, . . . , xi,l

)
, where l is the length of the time series and

m is the number of multivariate dimensions. For instance,
when a dust sensor collects 100 sequential particle density
records in three dimensions (PM1, PM2.5, and PM10), the
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multivariate time series X can be represented as a matrix
with the dimension m = 3 and time series length l = 100.
Each multivariate time series is associated with a class label
y ∈ Ω from a predefined label set Ω. Given a group of mul-
tivariate time series X = {X1, . . . , Xn} ∈ Rn×m×l, where
n is the number of time series, and the corresponding labels
y = {y1, . . . , yn} ∈ Rn for each time series, the MTSC
task is to train a classifier fX �→ y to predict a class label for
a multivariate time series whose label is unknown.

3.2 Semi-supervised Multivariate Time Series
Classification

For the semi-supervised MTSC problem, we assume the la-
beled samples are not sufficient to train a model for the mul-
tivariate time series classification problem. So we intend to
utilize unlabeled data during the training process to help
improve the overall classification performance. The train-
ing set for the semi-supervised setting is denoted as a tuple
of labeled and unlabeled examples:

(
(X ,y), X̃ )

). The la-
beled portion is made up of the same input as the MTSC
problem, containing tuples of time series features X and la-
bels y. The unlabeled portion includes a set of time series
X̃ =

{
X̃1, . . . , X̃ñ

}
containing only time series features

without labels, where X̃i represents the input features of the
ith unlabeled time series and ñ is the size of unlabeled sam-
ples. The SMTSC task is to train a classifier f̃X �→ y to
predict a class label for a multivariate time series with not
only the labeled training data samples (X ,y) but unlabeled
data samples X̃ .

4 Proposed Model

In this section, we first introduce the overall architecture of
our new proposed TapNet model in Section 4.1. Then we ex-
plain the components of our model in Sections 4.2 through
4.4. Lastly, we extend our model to the semi-supervised set-
ting (Semi-TapNet) in Section 4.5.

4.1 Model Architecture Overview

Figure 1 shows the overall architecture of our proposed
model, TapNet, comprising three main components: random
dimension permutation, multivariate time series encoding,
and attentional prototype learning.

The input of our model is a set of multivariate time se-
ries with multiple dimensions. An example of 6-dimensional
time series is shown in Figure 1. For each dimension, the
time series share the same time series length. To model
the interactive features between multivariate dimensions, we
propose a random dimension permutation (RDP) method to
randomly combine the dimensions into different groups with
fixed group size. Taking the multivariate time series in Fig-
ure 1 as an example, we divide the six dimensions of the
time series into three groups with different dimension per-
mutations. A detailed description of the random dimension
permutation method can be found in Section 4.2.

After the dimension permutation, a low-dimensional time
series embedding is learned in the time series encoding

component. Specifically, we apply both the LSTM and 1-
Dimensional convolutional layers to model the sequential in-
formation of time series and the relationships between time
series dimensions. After low-dimensional embeddings are
learned, we use the embeddings of training samples as the
input to learn the prototype for each class. Here, the class
prototype is a feature representation (embedding) of each
class, which contains the same embedding size as the time
series. Specifically, the class prototype is a weighted combi-
nation of the training samples in the same class, where the
weights of the training samples are trained by an attention
layer. The intuition behind this is to learn a class prototype
for each class, which has smaller distances to the data sam-
ples in the same class, but larger distances to data samples
in different classes. The details of time series encoding and
attentional prototype learning can be found in Sections 4.3
and 4.4, respectively.

Also, we extend the supervised TapNet model into its
semi-supervised settings (Semi-TapNet). The Semi-TapNet
model utilizes the feature information of unlabeled data
(usually from the test set), which makes a notable improve-
ment when the training labels are not sufficient. The de-
tails of semi-supervised attentional prototype learning can
be found in Section 4.5.

4.2 Random Dimension Permutation

We propose a novel method, Random Dimension Permuta-
tion (RDP), to reorganize the time series dimensions into
different groups based on random permutation orders, which
helps to model the interactive features between multivari-
ate dimensions and capture local patterns(Gao and Lin
2019)(Gao and Lin 2017).

Suppose the time series have m dimensions and they are
divided into g groups, the size ϕ of each group can be repre-
sented as ϕ =

⌊
m·α
g

⌋
, where α is the scale factor parameter

to control the ratio of the total dimensions in the new per-
mutation over the original size and �·� represents the largest
integer less than or equal to the given input. As the example
shown in Figure 2, we have a time series with 6 dimensions
(m = 6), and they are divided into g = 3 groups with scale
factor α = 1.5. Then the group size ϕ =

⌊
6·1.5
3

⌋
= 3. We

define σm as one random permutation of a set of numbers
{1, . . . ,m}. To divide all the dimensions into g groups, we
need to run the random permutation g times. For each per-
mutation, we retrieve the first ϕ dimensions as the group
candidates. To distinguish the different random permuta-
tions, we define σ

(i)
m as the random permutation for the ith

group based on m dimensions. Then the candidates Gi of
the ith group can be defined as follows:

Gi =
{
σ(i)
m (1), . . . , σ(i)

m (ϕ)
}
, i = 1 . . . g. (1)

The example in Figure 2 shows that the time se-
ries with six dimensions are divided into three groups{
(4, 5, 2), (1, 2, 6), (3, 6, 4)

}
. Three of the six dimensions

appears in two different groups, which is controlled by the
scale factor parameter.
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4.3 Multivariate Time Series Encoding

The time series encoding component is to learn a low-
dimensional embedding x ∈ Rd for each time series by
a neural network based function fΘ(X), where Θ is the
set of function parameters and X ∈ Rm×l is the time
series data. To extract the sequential information as well
as the multivariate features of the MTS data, we apply
both a long short-term memory network (LSTM) (Sunder-
meyer, Schlüter, and Ney 2012) and a multi-layer convolu-
tional network (Krizhevsky, Sutskever, and Hinton 2012).
For the LSTM part, operating over the raw time series data
X ∈ Rm×l we obtain the contextual embedding Xlstm ∈
Rm×dl , where dl is the hidden dimension of LSTM with
the default value 128. Then we apply a global average pool-
ing operation on time series dimensions and get the output
Xlstm+pool ∈ R1×dl . For the convolutional network part, the
input is the grouped permutations G = {G1, . . . ,Gg}. We
apply three one-dimensional convolutional layers on each
group XGi

∈ Rϕ×l. After each convolutional layer, we op-

erate both Batch Normalization (Ioffe and Szegedy 2015)
and Leaky Rectified Linear Units (Leaky ReLU) (Xu et al.
2015). Noted that we use separate parameters for the first
convolutional layer but share the parameters for the second
and third layers, which can help to learn separate features
for each group but reduce the size of the parameters in the
last two layers. We set the default value of filters for the
three convolutional layers as 256, 256 and 128 and set ker-
nels as 8, 5, and 3. For the time series with an extremely
long length, we also apply a dilated convolution operation
(Yu and Koltun 2015) to support exponential expansion of
the receptive field without loss of long-length time series
information. The output of the three convolutional layers
for the ith group is X

(i)
conv ∈ Rdf×dc , where df is the fil-

ter size of the last convolutional layer and dc is the output
dimension of convolutional operations. For each group, a
global average pooling is applied on the convolutional di-
mensions dc and generates the output X(i)

conv+pool ∈ Rdf×1.
Then we concatenate the results of all the groups of con-
volutional networks and LSTM together and get the output
Xcombo ∈ R(df×g+dl)×1. Last, we operate two fully con-
nected layers on Xcombo to generate the low-dimensional
feature representation (embedding) of the multivariate time
series x ∈ Rd, where d is the dimension of the embedding.
The details of the parameter settings can be found in the Ap-
pendix.

4.4 Attentional Prototype Learning

Since the training samples in time series data can be severely
limited, traditional deep learning networks may have an in-
ductive bias (Neyshabur, Tomioka, and Srebro 2014). To ad-
dress this issue, we propose a novel attentional prototype
learning method by training the distance-based loss func-
tion. Specifically, in our approach, we learn a class prototype
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embedding (Snell, Swersky, and Zemel 2017) for each class
and classify the input time series based on their distance to
the prototype of each class. Let Hk =

[
h1, . . . ,h|Sk|

] ∈
R|Sk|×d be a matrix of time series embeddings belonging to
the class k, where Sk represents the set of indices for data
samples with class label k. Then the prototype embedding
of class k can be presented by a weighted sum of individual
sample embeddings as follows:

ck =
∑
i

Ak,i ·Hk,i, (2)

where Ak,i is the weight of ith data sample in class k and
Hk,i represents the embedding of the data sample.

Here the sample weight Ak,i is not a predefined parameter
but a trainable value according to the embeddings of time se-
ries. In particular, we regard the time series samples from the
same class as a bag of independent instances. For each in-
stance, an attention-based multi-instance pooling (Ilse, Tom-
czak, and Welling 2018) method is applied to learn its in-
stance weight for the class prototype. The attention weights
for the kth class can be computed by the following equation:

Ak = softmax

(
wT

k tanh
(
VkH

T
k

))
, (3)

where wk ∈ Ru×1 and Vk ∈ Ru×d are trainable parameters
for the attention model and u is the size of hidden dimension
for both trainable parameters. Note that we use separate pa-
rameters wk and Vk for each class due to the assumption
that the different classes may have distinct attentions on their
feature spaces.

After we have the embedding vectors of class prototypes,
the distribution over classes for a given time series x ∈ Rd

can be represented as a softmax over distances to the proto-
types in the embedding space as follows:

pΘ
(
y = k|x) = exp

(−D
(
fΘ(x), ck

))∑
i exp

(−D
(
fΘ(x), ci

)) , (4)

where the function D : Rd × Rd �→ [0,+∞) is the dis-
tance function to measure the distances between two em-
bedding vectors. The distance function can be chosen from
regular Bregman divergences (Banerjee et al. 2005). Exam-
ples of Bregman divergences include squared Euclidean dis-
tance and Mahalanobis distance (De Maesschalck, Jouan-
Rimbaud, and Massart 2000). Here we applied the squared
euclidean distance function D(z, z′) = ‖z − z′‖2 to mea-
sure the distance between the time series embeddings. The
probabilities over classes are based on the similarity between
class prototype and time series; therefore, we multiply −1
in front of the distance function. Then the training of our
model can proceed by minimizing the negative log proba-
bility J(Θ) = − log pΘ(y = k|x) of the true class via the
Adam algorithm (Kingma and Ba 2014).

4.5 Semi-supervised TapNet

We now extend our supervised TapNet approach into its
semi-supervised setting (Semi-TapNet) by utilizing the un-
labeled data in the training phase. The unlabeled data can

help to improve the estimation of the class prototype when
the training data is scarce.

Let H̃ =
[
h̃1 . . . , h̃|S̃|

] ∈ R|S̃|×d be a matrix of time
series embeddings of unlabeled data, where S̃ is the set of
indices for unlabeled data samples and h̃i ∈ R1×d is the
embedding vector for the ith data sample in the unlabeled set.
Then the prototype embedding of class k can be presented by
a weighted sum of labeled and unlabeled data as follows:

ck =

∑
i Ak,iHk,i +

∑
i Ãk,iH̃k,i∑

i Ak,i +
∑

i Ãk,i

(5)

Similar to the supervised version, we also learn instance
weight for the unlabeled data samples. Here Ãk,i is the
weight of the ith unlabeled data sample for class k, and H̃k,i

is the corresponding embedding of the data sample. The at-
tention vector Ãk of class k for unlabeled data can be com-
puted by the same attention mechanism as Equation (3) with
different trainable parameters w̃k ∈ Ru×1 and Ṽk ∈ Ru×d

as follows:

Ãk = softmax

(
w̃T

k tanh
(
ṼkH̃

T
k

))
, (6)

Then we apply the class prototype updated by unlabeled data
into a probability distribution over class in Equation (4) to
train the semi-supervised model.

5 Experiments

In this section, the performance of the proposed model, Tap-
Net, is evaluated. We begin by introducing the evaluation
setting, with details on the datasets, metrics, and baselines
we use in our experiments. Then the performance of the
proposed model in terms of supervised and semi-supervised
classification accuracy is evaluated against several existing
methods. Finally, the analyses on class prototype and ran-
dom dimension permutation are elaborated. All the experi-
ments are conducted on a single Tesla P100 GPU with 16GB
memory. The source code and more experimental results are
public to the research community and it can be accessed at
https://github.com/xuczhang/tapnet.

5.1 Experimental Settings

Datasets We evaluate the proposed method on 18 datasets
from latest multivariate time series classification archive
(Bagnall et al. 2018)1.

The archive consists of real-world multivariate time series
data collected from different applications such as Human
Activity Recognition, Motion classification, ECG/EEG sig-
nal classification. The dimension of tested multivariate time
series ranges from two dimensions in trajectory classifica-
tion data to 963 dimensions in the traffic flow classification
task. The length of the time series ranges from 8 to 3,000.
The datasets also have a large size range from 27 to 10,992.

1Datasets are available at http://timeseriesclassification.com.
We exclude data with extremely long length, high dimen-
sion size and in-balance split. More details can be found at
https://github.com/xuczhang/tapnet.
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Table 2: Performance Comparison in UEA Multivariate Time Series Dataset

Dataset TapNet MLSTM
-FCN

WEASEL
+MUSE ED-1NN DTW-

1NN-I
DTW-1NN-

D
ED-1NN
(norm)

DTW-
1NN-I
(norm)

DTW-1NN-
D

(norm)
ArticularyWordRecognition 0.987 0.973 0.99 0.97 0.98 0.987 0.97 0.98 0.987

AtrialFibrillation 0.333 0.267 0.333 0.267 0.267 0.2 0.267 0.267 0.22
BasicMotions 1 0.95 1 0.675 1 0.975 0.676 1 0.975

CharacterTrajectories 0.997 0.985 0.99 0.964 0.969 0.99 0.964 0.969 0.989
FaceDetection 0.556 0.545 0.545 0.519 0.513 0.529 0.519 0.5 0.529

HandMovementDirection 0.378 0.365 0.365 0.279 0.306 0.231 0.278 0.306 0.231
Heartbeat 0.751 0.663 0.727 0.62 0.659 0.717 0.619 0.658 0.717

MotorImagery 0.59 0.51 0.5 0.51 0.39 0.5 0.51 N/A 0.5
NATOPS 0.939 0.889 0.87 0.86 0.85 0.883 0.85 0.85 0.883
PEMS-SF 0.751 0.699 N/A 0.705 0.734 0.711 0.705 0.734 0.711
PenDigits 0.98 0.978 0.948 0.973 0.939 0.977 0.973 0.939 0.977
Phoneme 0.175 0.11 0.19 0.104 0.151 0.151 0.104 0.151 0.151

SelfRegulationSCP2 0.55 0.472 0.46 0.483 0.533 0.539 0.483 0.533 0.539
SpokenArabicDigits 0.983 0.99 0.982 0.967 0.96 0.963 0.967 0.959 0.963

StandWalkJump 0.4 0.067 0.333 0.2 0.333 0.2 0.2 0.333 0.2
Avg. Rank 1.15 4.23 3.23 5.76 5.15 4.46 6.15 5.38 4.7
Wins/Ties 12 1 4 0 0 1 0 1 0

Metrics For each dataset, we compute the classification
accuracy as the evaluation metric. We also compute the av-
erage rank and the number of Win/Ties to compare different
methods.

Comparison Methods We compare our proposed ap-
proach with eight different benchmark approaches, includ-
ing the latest bag-of-patterns model based multivariate time
series classification approach (Schäfer and Leser 2017),
deep learning framework(Karim et al. 2018), and common
distance-based classifiers. Note that it has been shown in
previous work (Schäfer and Leser 2017)(Karim et al. 2018)
that these approaches are equivalent or better than many
other feature-based approaches such as SMTS (Baydogan
and Runger 2015), gRSF (Baydogan and Runger 2016), and
LPS (Karlsson, Papapetrou, and Boström 2016). The de-
tails of the benchmarks we use are provided as follows:
1) WEASEL-MUSE (Schäfer and Leser 2017): The lat-
est bag-of-patterns (BOP) based framework for multivari-
ate time series classification. We use the source code pro-
vided by the authors.2 The approach is run under the recom-
mended setting provided by the authors (Schäfer and Leser
2017). 2) MLSTM-FCN (Karim et al. 2018): The latest
general deep-learning framework for multivariate time se-
ries classification. The model consists of an LSTM layer
and stacked CNN layer along with a Squeeze-and-Excitation
block to generate latent features. We use the source code
provided by the authors.3 The approach is run using the de-
fault parameter setting (Karim et al. 2018). 3) 1NN-ED and
1NN-ED(norm): One nearest neighbor classifier with Eu-
clidean distance with and without data normalization. This
is the most popular baseline used for time series classifica-
tion. 4) 1NN-DTW-i and 1NN-DTW-i(norm): dimension-
independent dynamic time warping with and without nor-
malization: The nearest neighbor classifier computes dis-
tances based on the sum of Dynamic Time Warping dis-
tance for every dimension. 5) 1NN-DTW-D and 1NN-

2https://github.com/patrickzib/SFA
3https://github.com/titu1994/MLSTM-FCN

DTW-D(norm): dimension-dependent dynamic time warp-
ing (Shokoohi-Yekta, Wang, and Keogh 2015) with and
without normalization. This is a variation of the DTW-i ap-
proach that directly computes DTW distance based on multi-
dimension points instead of treating each dimension sepa-
rately.

5.2 Classification Performance Evaluation

The classification accuracy, the average rank, and number
of Wins/Ties of each method is shown in Table 2. The
results “N/A” in the table indicate the corresponding ap-
proach is incapable of running the results due to mem-
ory or computational issues. The best accuracy for each
dataset is denoted with boldface. Overall, our approach out-
performs all the other baseline approaches in terms of av-
erage rank. TapNet achieves the best overall average rank
of 1.15, which is significantly better than the existing state-
of-the-art approach WEASEL+MUSE with the average rank
3.23. In terms of the number of wins/ties, TapNet achieves
12 wins (or ties), the best among all eight classifiers while
WEASEL+MUSE achieves 4 wins/ties and the deep learn-
ing model, MLSTM-FCN, wins (or ties) in one datasets.
From the results, we found TapNet can achieve better per-
formance in most datasets containing a small amount of data
(e.g., the StandWalkJump dataset, which only contains 12
training samples). However, MLSTM-FCN often gets over-
all better performance in high dimensional datasets (e.g.,
SpokenArabicDigits). In contrast, TapNet can get better per-
formance in both large and small datasets. Compared to
WEASEL+MUSE, we found TapNet can achieve better per-
formance in most high dimensional or large time series,
whereas WEASEL+MUSE may not be able to execute due
to a memory issue. This is because WEASEL+MUSE needs
to generate symbols (words) for every sub-sequence per
length per dimension. In the high-dimensional time series,
the dictionary size can increase dramatically, which makes
it hard for the approach to handle large datasets.
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Table 3: Performance of Semi-Supervised TapNet
Dataset (Training/Test) TapNet Semi-

TapNet

Handwriting 0.3565 0.3882(150/850)

UWaveGestureLibrary 0.894 0.903(120/320)

ArticularyWordRecognition 0.987 0.993(275/300)

StandWalkJump
0.4 0.4(12/15)

JapaneseVowels 0.965 0.968(270/370)

5.3 Semi-Supervised Performance

We next demonstrate that the Semi-TapNet model intro-
duced in this paper can further improve the performance of
classification. We evaluation the performance of our model
on five datasets that have a significantly imbalanced train-
ing/test split.

The classification accuracy results of TapNet and Semi-
TapNet in these 5 datasets are shown in Table 3. Semi-
TapNet outperforms TapNet in 4 out of the 5 selected
datasets. Only one dataset, StandWalkJump, shows no im-
provement.

Semi-TapNet can achieve better performance in datasets
that have a significantly larger number of test samples com-
pared with training samples. For example, in the Handwrit-
ing dataset, which has 850 test samples and 150 training
samples, Semi-TapNet can improve classification accuracy
from 0.3565 to 0.3882 (approximately 9% improvement),
whereas in the ArticularyWordRecognition and Japane-
seVowels datasets, which have less imbalanced training/test
splits and numbers of samples, the improvement is relatively
small (from 0.987 to 0.993 and from 0.965 to 0.968, respec-
tively). The results indicate that Semi-TapNet can outper-
form TapNet when the dataset contains a limited amount of
labeled data but a larger amount of unlabeled data.

5.4 Inspection of Class Prototype

In this section, we visualize the class prototypes and their
corresponding time series embeddings to demonstrate the
effectiveness of our trained low-dimensional time series em-
bedding. We use the t-SNE algorithm (Maaten and Hinton
2008) to visualize the 300-dimension time series embed-
ding in the form of two-dimensional images. We use dif-
ferent colors to isolate different classes, and we use ◦ and
× markers to represent the training and testing samples, re-
spectively. The class prototype is shown by the � mark.
Figure 3 shows the embeddings learned for the Character-
trajectories dataset, which contains 1422 training samples
and 1436 testing samples in 20 different classes. From the
results, we can conclude that: 1) the distances between data
samples from different classes are much larger than the dis-
tances from the same class, which means we can easily use
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Figure 3: Class Prototype Inspection: visualize the 300-
dimension multivariate time series embeddings in a two-
dimensional image by t-SNE. The class prototype is marked
by �.

the learned multivariate time series embeddings to classify
the time series; and 2) the low-dimensional time series em-
beddings give us a more interpretable perspective to under-
stand the issues of the classifier. For instance, we can see that
the embeddings between class 3 and 6 are too close to sepa-
rate the two classes. In fact, some testing examples in class
6 are misclassified to class 3 and vice versa. It does help to
identify the issue of a classifier and take further actions such
as adding more training samples in the two classes.

6 Conclusion

In this paper, we present a novel distance-based deep learn-
ing framework, named TapNet, for the multivariate time se-
ries classification problem. In particular, we propose a novel
attentional prototype network to train the low-dimensional
feature representations based on their distances to class pro-
totype with limited training labels. Moreover, a random
group permutation method is designed to learn the inter-
active features in multivariate dimensions combined with
multi-layer convolutional networks. Additionally, we pro-
pose a semi-supervised model, Semi-TapNet, to utilize the
unlabeled data in improving the classification performance
when training samples are scarce. The experimental results
demonstrate that our model can achieve the highest average
rank on tested datasets in the public UEA archive compared
to eight state-of-the-art methods.
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