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Abstract

In this paper, we explore a general Aggregated Gradient
Langevin Dynamics framework (AGLD) for the Markov
Chain Monte Carlo (MCMC) sampling. We investigate the
nonasymptotic convergence of AGLD with a unified analy-
sis for different data accessing (e.g. random access, cyclic
access and random reshuffle) and snapshot updating strate-
gies, under convex and nonconvex settings respectively. It is
the first time that bounds for I/O friendly strategies such as
cyclic access and random reshuffle have been established in
the MCMC literature. The theoretic results also indicate that
methods in AGLD possess the merits of both the low per-
iteration computational complexity and the short mixture time.
Empirical studies demonstrate that our framework allows to
derive novel schemes to generate high-quality samples for
large-scale Bayesian posterior learning tasks.

1 Introduction

We focus on the Langevin dynamics based Markov Chain
Monte Carlo (MCMC) methods for sampling the parameter
vector θ ∈ R

d from a target posterior distribution

p∗ � p(θ|{zi}Ni=1) ∝ p(θ)

N∏
i=1

p(zi|θ), (1)

where p(θ) is some prior of θ, zi’s are the data points ob-
served, and p(zi|θ) is the likelihood function. The Langevin
dynamics Monte Carlo method (LMC) adopts the gradient
of log-posterior in an iterative manner to drive the distribu-
tion of samples to the target distribution efficiently (Roberts
and Stramer 2002; Roberts, Tweedie, and others 1996;
Mattingly, Stuart, and Higham 2002). To reduce the com-
putational complexity for large-scale posterior learning
tasks, the Stochastic Gradient Langevin Dynamics method
(SGLD), which replaces the expensive full gradient with
the stochastic gradient, has been proposed (Welling and
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Teh 2011). While such scheme enjoys a significantly re-
duced per-iteration cost, the mixture time, i.e., the total num-
ber of iterations required to achieve the correction from
an out-of-equilibrium configuration to the target posterior
distribution, is increased, due to the extra variance intro-
duced by the approximation (Dalalyan and Karagulyan 2017;
Dalalyan 2017b).

In recent years, efforts are made to design variance-
control strategies to circumvent this slow convergence issue
in the SGLD In particular, borrowing ideas from variance
reduction methods in the optimization literature (Johnson
and Zhang 2013; Defazio, Bach, and Lacoste-Julien 2014;
Lei and Jordan 2017), the variance-reduced SGLD vari-
ants exploit the high correlations between consecutive it-
erates to construct unbiased aggregated gradient approxi-
mations with less variance, which leads to better mixture
time guarantees (Dubey et al. 2016; Zou, Xu, and Gu 2018b).
Among these methods, SAGA-LD and SVRG-LD (Dubey et
al. 2016) are proved to be the most effective ones when
high-quality samples are required (Chatterji et al. 2018;
Zou, Xu, and Gu 2019). While the nonasymptotic conver-
gence guarantees for SVRG-LD and SAGA-LD have been
established, it is difficult to seamlessly extend these analyses
to cover other Langevin dynamics based MCMC methods
with different efficient gradient approximations.

• First of all, different delicate Lyapunov functions are
designed for SVRG-LD and SAGA-LD to prove the
nonasymptotic convergence to the stationary distribution.
Due to the different targets of optimization and MCMC,
the mixture-time analysis is not a simple transition of the
convergence rate analysis in optimization. The lack of a
unified perspective of these variance-reduced SGLD al-
gorithms makes it difficult to effectively explore other
variance-reduced estimators used in optimization (e.g.,
HSAG (Reddi et al. 2015)) for Langevin dynamics based
MCMC sampling. In particular, customized Lyapunov
functions need to be designed if new variance-reduced
estimators are adopted.

• Second, existing theoretical analysis relies heavily on the
randomness of the data accessing strategy to construct an
unbiased estimator of the true gradient. In practice, the
random access strategy entails heavy I/O cost, i.e., lots of
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data swap between the memory and the disk, when the
dataset is too large to fit into memory, thereby renders
existing incremental Langevin dynamics based MCMC
algorithms heavily impractical for sampling tasks in the
big data scenario. While other data accessing strategies
such as cyclic access and random reshuffle are known to be
disk I/O friendly (Xie et al. 2018), existing analysis can not
be directly extended to algorithms with these strategies.

Contributions Motivated by such imperatives, we propose
a general framework named Aggregated Gradient Langevin
Dynamics (AGLD), which maintains a historical snapshot set
of the gradient to construct more accurate gradient approxi-
mations than SGLD. AGLD possesses a three-step structure:
Data-Accessing, Sample-Searching, and Snapshot-Updating.
Different Data-Accessing (e.g. random access, cyclic access
and random reshuffle) and Snapshot-Updating strategies can
be utilized in this framework. By appropriately implement-
ing these two steps, we can obtain several practical gradient
approximations, including those used in existing methods
like SVRG-LD and SAGA-LD. Under mild assumptions, a
unified mixture-time analysis of AGLD is established, which
holds as long as each component of the snapshot set is up-
dated at least once in a fixed duration. We list our main
contributions as follows.

• We first analyze the mixture time of AGLD under the as-
sumptions that the negative log-posterior f(x) is smooth
and strongly convex and then extend the analysis to the
general convex case. We also provide theoretical analysis
for nonconvex f(x). These results indicate that AGLD
has similar mixture time bounds as LMC under similar
assumptions, while the per-iteration computation is much
less than that of LMC. Moreover, the analysis provides a
unified bound for a wide class of algorithms with no need
to further design dedicated Lyapunov functions for differ-
ent Data-Accessing and Snapshot-Updating strategies.

• For the first time, mixture time guarantee for cyclic ac-
cess and random reshuffle Data-Accessing strategies is
provided in the Langevin dynamics based MCMC liter-
ature. This fills the gap of practical use and theoretical
analyses, since cyclic access is I/O friendly and often used
as a practical substitute for random access when the dataset
is too large to fit into memory.

• We develop a novel Snapshot-Updating strategy, named
Time-based Mixture Updating (TMU), which enjoys the
advantages of both the Snapshot-Updating strategies used
in SVRG-LD and SAGA-LD: it always updates compo-
nents in the snapshot set to newly computed ones as in
SAGA-LD and also periodically updates the whole snap-
shot set to rule out the out-of-date ones as in SVRG-LD.
Plugging TMU into AGLD, we derive novel algorithms to
generate high-quality samples for Bayesian learning tasks.

Simulated and real-world experiments are conducted to
validate our analysis. Empirical results demonstrate the
advantages of proposed variants over the state-of-the-art.

2 Preliminaries

2.1 Wasserstein Distance and Mixture Time

We use the 2-Wasserstein (W2) distance to evaluate the ef-
fectiveness of our methods. Specifically, the W2 distance
between two probability measures ρ and ν is defined as

W2
2 (ρ, ν) = inf

π∈Γ(ρ,ν)
{
∫

‖x− y‖22dπ(x, y)}.

Here, (x, y) are random variables with distribution density
π and Γ(ρ, ν) denotes the collection of joint distributions
with ρ and ν as its marginals. In this paper, we say K is the
ε-mixture time of a Monte Carlo sampling procedure if for
every k ≥ K, the distribution p(k) of the sample generated
in the k-th iteration satisfies W2(p

(k), p∗) ≤ ε.

2.2 Stochastic Langevin Dynamics

By using the discretization of certain dynamics, dynamics
based MCMC methods allow us to efficiently sample from
the target distribution. A large portion of such works are
based on the Langevin Dynamics (Parisi 1981)

dθ(t) = −∇θf(θ(t))dt+
√
2dB(t), (2)

where ∇f is called the drift term, B(t) is a d-dimensional
Brownian Motion and θ(t) ∈ R

d is the state variable.
The classic Langevin dynamics Monte Carlo method

(LMC) generates samples {x(k)} in the following manner:

x(k+1) = x(k) − η∇f(x(k)) +
√

2ηξ(k), (3)

where x(k) is the time discretization of the continuous time
dynamics θ(t), η is the stepsize and ξ(k) ∼ N(0, Id×d) is
the d-dimensional Gaussian variable. The distribution p(k) of
sample x(k) is shown to converge weakly to the target distri-
bution p∗ (Dalalyan 2017a; Raginsky, Rakhlin, and Telgarsky
2017).

To alleviate the expensive full gradient computation in
LMC, the Stochastic Gradient Langevin Dynamics (SGLD)
replaces ∇f(x(k)) in (3) by the stochastic approximation

g(k) =
N

n

∑
i∈Ik

∇fi(x
(k)), (4)

where Ik is the set of n indices drawn from [N ] i.i.d. in
iteration k and each fi(θ) = − log p(θ|zi)− log p(θ)/N , for
i ∈ [N ]. Although the g(k) is always an unbiased estimator
of the full gradient, the non-diminishing variance results in
the inefficiency of sample-space exploration and slows down
the convergence to the target distribution.

To overcome such difficulty, SVRG-LD and SAGA-LD
(Dubey et al. 2016; Chatterji et al. 2018; Zou, Xu, and Gu
2019) use the two different variance-reduced gradient esti-
mators of ∇f(x), which utilize the component gradient in-
formation of the past samples. While possessing similar low
per-iteration component gradient computation as in SGLD,
the mixture time bound of SVRG-LD and SAGA-LD are
shown to be similar to that of LMC (Chatterji et al. 2018).
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Algorithm 1 Aggregated Gradient Langevin Dynamics

Require: initial iterate x(0), stepsize η, Data-Accessing
strategy, and Snapshot-Updating strategy.

1: Initialize Snapshot set A(0) = {α(0)
i }Ni=1, where α(0)

i =

∇fi(x
(0)).

2: for k = 0 to K − 1 do
3: Sk = Data-Accessing(k).
4: Sample-Searching: find x(k+1) according to (5).
5: A(k+1) = Snapshot-Updating(A(k), x(k), k, Sk).
6: end for

3 Aggregated Gradient Langevin Dynamics

In this section, we present our general framework named Ag-
gregated Gradient Langevin Dynamics (AGLD). Specifically,
AGLD maintains a snapshot set consisting of component gra-
dients evaluated in historical iterates. The information in the
snapshot set is used in each iteration to construct a gradient
approximation which helps to generate the next iterate. Note
that iterates generated during the procedure are samples of
random variables, whose distributions converge to the target
distribution. At the end of each iteration, the entries in the
snapshot set are updated according to some strategy. By cus-
tomizing the steps in AGLD with different strategies, we can
derive different algorithms. Concretely, AGLD is comprised
of the following three steps, where the first and third steps
can accept different strategies as inputs.

i Data-Accessing: select a subset of indices Sk from [N ]
according to the input strategy.

ii Sample-Searching: construct the aggregated gradient
approximation g(k) using the data points indexed by Sk

and the historical snapshot set, then generate the next
iterate (the new sample) by taking one step along the
direction of g(k) with an injected Gaussian noise. Specif-
ically, the (k + 1)-th sample is obtained in the following
manner

x(k+1) = x(k) − ηg(k) +
√

2ηξ(k), (5)

where ξ(k) is a Gaussian noise, η is the stepsize, and

g(k) =
∑
i∈Sk

N

n
(∇fi(x

(k))− α
(k)
i ) +

N∑
i=1

α
(k)
i . (6)

Here, α(k)
i ’s are components in the snapshot set A(k).

iii Snapshot-Updating: update historical snapshot set ac-
cording to the input strategy.

We summarize AGLD in Algorithm 1. While our mixture
time analyses hold as long as the input Data-Accessing and
Snapshot-Updating strategies meet Requirements 1 and 2, we
describe in detail several typical qualified implementations
of these two steps below.

3.1 The Data-Accessing Step

We make the following requirement on the Data-Accessing
step to ensure the convergence of W2 distance between the
sample distribution p(k) and the target distribution p∗.

Requirement 1. In every iteration, each point in the dataset
has been visited at least once in the past C iterations, where
C is some fixed positive constant.

We note that Requirement 1 is general and covers three
commonly used data accessing strategies: Random Access
(RA), Random Reshuffle (RR), and Cyclic Access (CA).

RA: Select uniformly n indices from [N ] with replacement;

RR: Select sequentially n indices from [N ] with a permu-
tation at the beginning of each data pass;

CA: Select n indices from [N ] in a cyclic way.

RA is widely used to construct unbiased gradient approxima-
tions in gradient-based Langevin dynamics methods, which
is amenable to theoretical analysis. However, in big data sce-
narios when the dataset does not fit into the memory, RA is
not memory-friendly, since it entails heavy data exchange
between memory and disks. On the contrary, CA strategy pro-
motes the spatial locality property significantly and therefore
reduces the page fault rate when handling huge datasets using
limited memory (Xie et al. 2018). RR can be considered as
a trade-off between RA and CA. However, methods with
either CA or RR are difficult to analyze in that the gradient
approximation is commonly not an unbiased estimator of the
true gradient (Shamir 2016).

It can be verified that these strategies satisfy Requirement
1, For RR, in the k-th iteration, all the data points have been
accessed in the past 2N/n iterations. For CA, all the data
points are accessed in the past N/n iterations. Note that, RA
satisfies the Requirement 1 with C = O(N logN) w.h.p.,
according to the Coupon Collector Theorem (Dawkins 1991).

3.2 The Snapshot-Updating Step

The Snapshot-Updating step maintains a snapshot set A(k)

such that in the k-th iteration, A(k) contains N records α(k)
i

for ∇fi(y
(k)
i ) where y

(k)
i is some historic iterate y

(k)
i = x(j)

with j ≤ k. Additionally, for our analyses to hold, the input
strategy should satisfy the following requirement.

Requirement 2. The compents in the gradient snapshot set
A(k) should have been updated in the past D iterations, i.e.
α
(k)
i ∈ {∇fi(x

(j))}kj=k−D, where D is a fixed constant.

This requirement guarantees that α(k)
i ’s are not far from

the ∇fi(x
(k))’s and thus can be used to construct a proper ap-

proximation of ∇f(x(k)). The Snapshot-Updating step tries
to strike a balance between the approximation accuracy and
the computation cost. Specifically, in each iteration, updating
a larger portion of the N entries in the snapshot set would
lead to a more accurate gradient approximation at the cost of
a higher computation burden. In the following, we list three
feasible Snapshot-Updating strategies considered in this pa-
per:Periodically Total Update (PTU), Per-iteration Partial
Update (PPU), and Time-based Mixture Update (TMU).

PTU: This strategy operates in an epoch-wise manner: at
the beginning of each epoch all the entries in the snapshot
set are updated to the current component gradient α(k)

i =

∇fi(x
(k)), and in the following D−1 iterations the snapshot
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Strategy 2 PTU(A(k), x(k), x(k+1), k, Sk)

for i = 1 to N do
α
(k+1)
i = I{mod (k+1,D)=0}∇fi(x

(k+1)) + I{mod (k+1,D) �=0}α
(k)
i

end for
return Ak+1

Strategy 3 PPU(A(k), θ(k), k, Sk)

for i = 1 to N do
α
(k+1)
i = I{i∈Sk}∇fi(x

(k)) + I{i/∈ik}α
(k)
i

end for
return Ak+1

set remains unchanged (see Strategy 2). Such synchronous
update to the snapshot set allows us to implement PTU in
a memory efficient manner. In the k-th iteration, PTU only
needs to store the iterate x̃ and its gradient ∇f(x̃) where
x̃ = xk−mod(k,D), as we can obtain the snapshot entry α

(k)
i

via a simple evaluation of the corresponding component
gradient at x̃ in the calculation of g(k). Therefore the PTU
strategy is preferable when storage is limited.

PPU: This strategy substitutes α
(k)
i by ∇fi(x

(k)) for
i ∈ Sk in the k-th iteration (see Strategy 3). This partial
substitution strategy together with Requirement 1 can en-
sure the Requirement 2. The downside of PPU is the extra
O(d ·N) memory used to keep the snapshot set A(k). Fortu-
nately, in many applications of interests, ∇fi(x) is actually
the product of a scalar and the data point zi, which implies
that only O(N) extra storage is needed to store N scalars.
TMU: This strategy updates the whole A once every D

iterations and substitutes α(k)
i by ∇fi(x

(k)) in the k-th it-
eration (see Strategy 4). TMU possesses the merits of both
PPU and PTU: it updates components of gradient snapshot
set in Sk to newly computed one in each iteration as PPU,
and also periodically updates the whole snapshot set as PTU
in case that there exist indices unselected for a long time.

Remark 1. PPU is the Snapshot-Updating strategy used in
SAGA-LD and PTU is the strategy used in SVRG-LD (Dubey
et al. 2016). To the best of our knowledge, TMU has never
been proposed in the MCMC literature before. Note that
the HSAG Snapshot-Updating strategy proposed by Reddi
et al. (2015) also satisfies our requirement, and we omit the
discussion of it due to the limit of space.

3.3 Derived Algorithms

By plugging the aforementioned Data-Accessing and
Snapshot-Updating strategies into AGLD, we derive several
practical algorithms. We name the algorithms by ”Snapshot-
updating - Data-Accessing”, e.g. TMU-RA uses TMU as the
Snapshot-Updating strategy and RA as the Data-Accessing
strategy. Note that we recover SAGA-LD and SVRG-LD with
PPU-RA and PTU-RA, respectively. In the following section,
we provide unified analyses for all derived algorithms under
different regularity conditions. We emphasize that, in the ab-
sence of the unbiasedness of the gradient approximation, our

Strategy 4 TMU(A(k), θ(k), k, Sk)

for i = 1 to N do
if mod(k + 1, D) = 0 then

α
(k+1)
i = ∇fi(x

(k+1))
else
α
(k+1)
i = I{i∈Sk}∇fi(x

(k)) + I{i/∈Sk}α
(k)
i

end if
end for
return Ak+1

mixture time analyses are the first to cover algorithms with
the I/O friendly cyclic data accessing scheme.

4 Theoretical Analysis

In this section, we provide the mixture time analysis for
AGLD. The detailed proofs of the theorems are postponed to
the long version of this paper due to the limit of space.

4.1 Analysis for AGLD with strongly convex f(x)
We first investigate the W2 distance between the sample
distribution p(k) of the iterate x(k) and the target distribution
p∗ under the smoothness and strong convexity assumptions.

Assumption 1 (Smoothness). Each individual fi is M̃ -
smooth. That is, fi is twice differentiable and there exists
a constant M̃ > 0 such that for all x, y ∈ R

d

fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉+ M̃

2
‖x− y‖22. (7)

Accordingly, we can verify that the summation f of f ′
is is

M -smooth with M = M̃N .
Assumption 2 (Strong Convexity). The sum f is μ-strongly
convex. That is, there exists a constant μ > 0 such that for
all x, y ∈ R

d,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ μ

2
‖x− y‖22. (8)

Note that these assumptions are satisfied by many Bayesian
sampling models such as Bayesian ridge regression, Bayesian
logistic regression and Bayesian Independent Component
Analysis, and they are used in many existing analyses of
Langevin dynamics based MCMC methods (Dalalyan 2017b;
Baker et al. 2017; Zou, Xu, and Gu 2018b; Chatterji et al.
2018).
Theorem 1. Under Assumption 1, 2 and Requirement 2,
AGLD outputs sample x(k) with its distribution p(k) satisfying
W2(p

(k), p∗)≤ε for any k≥K=Õ(ε−2) with η=O(ε2).
Remark 2. Under this assumption, the ε-mixture time K
of AGLD has the same dependency on ε as that of LMC
(Dalalyan 2017b). Note that we hide the dependency of other
regularity parameters such as μ, L and N in the O(·) for
simplicity. Actually, AGLD methods with CA/RR have a worse
dependency on these parameters than algorithms with RA.
However, when the dataset does not fit into the memory, the
sequential data accessing nature of CA enjoys less I/O cost
than random data accessing, which makes CA based AGLD
methods have a better time efficiency than the RA based ones.
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The bound of the mixture time for AGLD with RA can be
improved under the Lipschitz-continuous Hessian condition.
Assumption 3. [Lipschitz-continuous Hessian] There exists
a constant L > 0 such that for all x, y ∈ R

d

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖2.
Theorem 2. Under Assumption 1, 2, 3 and Requirement 2,
AGLD methods with RA output sample x(k) with its distri-
bution p(k) satisfying W2(p

(k), p∗) ≤ ε for any k ≥ K =
O(log(1/ε)/ε) by setting η = O(ε).

Additionally, when we adopt the random data accessing
scheme, the mixture time of the newly proposed TMU-RA
method can be written in a more concrete form, which is
established in the following theorem.
Theorem 3. Under Assumption 1, 2, 3 and denote κ = M/μ.
TMU-RA outputs sample x(k) with its distribution p(k) satis-
fying W2(p

(k), p∗) ≤ ε for any k ≥ K = Õ(κ3/2
√
d/(nε))

if we set η < εn
√
μ/(M

√
dN), n ≥ 9, and D = N .

Remark 3. Note that the component gradient complexity
to achieve W2(p

(k), p∗) ≤ ε in TMU-RA is Tg = Õ(N +

κ3/2
√
d/ε), which is the same as those of SAGA-LD (Chat-

terji et al. 2018) and SVRG-LD (Zou, Xu, and Gu 2018b).
Practically, in our experiments, TMU based variants always
have a better empirically performance than the PPU based
and PTU based counterparts as the entries in the snapshot
set maintained by TMU is more up-to-date.

4.2 Extension to general convex f(x)
Following a similar idea from (Zou, Xu, and Gu 2018a),
we can extend AGLD to drawing samples from densities
with general convex f(x). Firstly, we construct the following
strongly convex approximation f̂(x) of f(x),

f̂(x) = f(x) + λ‖x‖2/2.
Then, we run AGLD to generate samples with f̂(x) until the
sample distribution p(K) satisfies W2(p

(K), p̂∗) ≤ ε/2 where
p̂∗ ∝ e−f̂(x) denotes stationary distribution of Langevin
Dynamics with the drift term ∇f̂ (check 2 for definition).
If we choose a proper λ to make W2(p̂

∗, p∗) ≤ ε/2, then
by the triangle inequality of the W2 distance, we have
W2(p

(K), p∗) ≤ W2(p
(K), p∗) + W2(p̂

∗, p∗) ≤ ε. Thus,
we have the following theorem.
Theorem 4. Suppose the assumptions in Theorem 1 hold
and further assume the target distribution p∗ ∝ e−f has
bounded forth order moment, i.e. Ep∗ [‖x‖42] ≤ Ûd2. If we
choose λ = 4ε2/(Ûd2) and run the AGLD algorithm with
f̂(x) = f(x) + λ‖x‖2/2, we have W2(p

(k), p∗) ≤ ε for any
k≥K= Õ(ε−8). If we further assume that f has Lipschitz-
continuous Hessian, then SVRG-LD, SAGA-LD, and TMU-
RA can achieve W2(p

(K), p∗)≤ε in K = Õ(ε−3) iterations.

4.3 Theoretical results for nonconvex f(x)
In this subsection, we characterize the ε-mixture time of
AGLD for sampling from densities with nonconvex f(x).
The following assumption is necessary for our theory.

Assumption 4. [Dissipative] There exists constants a, b > 0
such that for all x ∈ R

d, the sum f satisfies

〈∇f(x), x〉 ≥ b‖x‖22 − a.

This assumption is typical for the ergodicity analysis of
stochastic differential equations and diffusion approxima-
tions. It indicates that, starting from a position that is suffi-
ciently far from the origin, the Langevin dynamics (2) moves
towards the origin on average. With this assumption, we estab-
lish the following theorem on the nonasymptotic convergence
of AGLD for nonconvex f(x).
Theorem 5. Under Assumption 1, 4, and Requirement 2,
AGLD outputs sample x(k) with distribution p(k) satisfying
W2(p

(k), p∗) ≤ ε for any k≥K=Õ(ε−4) with η = O(ε4).

Remark 4. This Õ(ε−4) result is similar to the bound for
LMC sampling from nonconvex f(x) (Raginsky, Rakhlin,
and Telgarsky 2017). Note that, as pointed out by (Raginsky,
Rakhlin, and Telgarsky 2017), vanilla SGLD fails to converge
in this setting.

5 Related Work

In this section, we briefly review the literature of Langevin
dynamics based MCMC algorithms.

By directly discretizing the Langevin dynamics (2),
Roberts, Tweedie, and others (1996) proposed to use
LMC (3) to generate samples of the target distribution. The
first nonasymptotic analysis of LMC was established by
Dalalyan (2017b), which analyzed the error of approximat-
ing the target distribution with strongly convex f(x) in the
total variational distance. This result was soon improved by
Durmus, Moulines, and others (2017). Later, Durmus and
Moulines (2016) and Cheng and Bartlett (2018) established
the convergence of LMC in the 2-Wasserstein distance and
KL-divergence, respectively. While the former works focus
on sampling from distribution with (strongly-)convex f(x),
Raginsky, Rakhlin, and Telgarsky (2017) investigated the
nonasymptotic convergence of LMC in the 2-Wasserstein
distance when f(x) is nonconvex.

With the increasing amount of data size in modern ma-
chine learning tasks, SGLD method(Welling and Teh 2011),
which replaces the full gradient in LMC with a stochastic
gradient (Robbins and Monro 1951), has received much at-
tention. Vollmer, Zygalakis, and others (2015) analyzed the
nonasymptotic bias and variance of SGLD using Poisson
equations, and Dalalyan and Karagulyan (2017) proved the
convergence of SGLD in the 2-Wasserstein distance when
the target distribution is strongly log-concave. Despite the
great success of SGLD, the large variance of stochastic
gradients may lead to unavoidable bias (Baker et al. 2017;
Betancourt 2015; Brosse, Durmus, and Moulines 2018). To
overcome this, Teh, Thiery, and Vollmer (2016) proposed to
decrease the step size to alleviate the bias and proved the
asymptotic rate of SGLD in terms of Mean Square Error
(MSE). Dang et al. (2019) utilized an approximate MH cor-
rection step, which only uses part of the whole data set, to
decrease the influence of variance.

Another way to reduce the variance of stochastic gradients
and save gradient computation is to apply variance-reduction
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Figure 1: Gaussian Mixture Model. The red line denotes the projection of the target distribution p∗.

Table 1: Statistics of datasets used in our experiments.

DATASET DIMENSION DATASIZE

YEARPREDICTIONMSD 90 515,345
SLICELOACTION 384 53500
CRITEO 999,999 45,840,617
KDD12 54,686,45 149,639,105

techniques. Dubey et al. (2016) used two different variance-
reduced gradient estimators of ∇f(x), which utilize the com-
ponent gradient information of the past samples, and devised
SVRG-LD and SAGA-LD algorithms. They proved that these
two algorithms improve the MSE upon SGLD. Chatterji et al.
(2018) and Zou, Xu, and Gu (2019) studied the nonasymp-
totic convergence of these methods in the 2-Wasserstein dis-
tance when sampling from densities with strongly convex
and nonconvex f(x), respectively. Their results show that
SVRG-LD and SAGA-LD can achieve similar ε-mixture time
bound as LMC w.r.t. ε, while the per-iteration computational
cost is similar to that of SGLD. There is another research
line which uses the mode of the log-posterior to construct
control-variate estimates of full gradients (Baker et al. 2017;
Bierkens, Fearnhead, and Roberts 2016; Nagapetyan et al.
2017; Chatterji et al. 2018; Brosse, Durmus, and Moulines
2018). However, calculating the mode is intractable for large-
scale problems, rendering these methods impractical for real-
world Bayesian learning tasks.

6 Experiments

We follow the experiment settings in the literature (Zou, Xu,
and Gu 2018b; Dubey et al. 2016; Chatterji et al. 2018;
Welling and Teh 2011; Zou, Xu, and Gu 2019) and con-
duct empirical studies on two simulated experiments (sam-
pling from distribution with convex and nonconvex f , respec-
tively) and two real-world applications (Bayesian Logistic
Regression and Bayesian Ridge Regression). Nine instances
of AGLD are considered, including SVRG-LD (PTU-RA),
PTU-RR, PTU-CA, SAGA-LD (PPU-RA), PPU-RR, PPU-
CA, TMU-RA, TMU-RR, and TMU-CA. We also include
LMC, SGLD, SVGR-LD+ (Zou, Xu, and Gu 2018b), SVRG-
RR+ and SVRG-CA+1 as baselines. Due to the limit of space,
we put the experiment sampling from distribution with con-
vex f in our long version. The statistics of datasets are listed

1SVRG-RR+ is the random reshuffle variant of SVRG-LD+, and
SVRG-CA+ is the cyclic access variant of SVRG-LD+.

in Table 1.

6.1 Sampling for Gaussian Mixture Distribution

In this simulated experiment, we consider sampling from
distribution p∗ ∝ exp(−f(x)) = exp(−∑N

i=1 fi(x)/N),
where each component exp(−fi(x)) is defined as
exp(−fi(x)) = e−‖x−ai‖2

2/2 + e−‖x+ai‖2/2, ai ∈ R
d. It

can be verified that exp(−fi(x)) is proportional to the PDF
of a Gaussian mixture distribution. According to (Dalalyan
2017b), when the parameter ai is chosen such that ‖ai‖2 ≥ 1,
fi(x) is nonconvex. We set the sample size N = 500
and dimension d = 10, and randomly generate parameters
ai ∼ N(μ,Σ) with μ = (2, · · · , 2)T and Σ = Id×d.

In this experiment, we fix the Data-Accessing strategy to
RA in AGLD and compare the performance of LMC, SGLD,
SVRG-LD, SAGA-LD and TMU-RA algorithms. We run
all algorithms for 2× 104 data passes, and make use of the
iterates in the last 104 data passes to visualize distributions.

In Figure 1, we report the 2D projection of the densi-
ties of random samples generated by each algorithm. It can
be observed that all three AGLD methods, i.e., SVRG-LD,
SAGA-LD and TMU-RA, can well approximate the target
distribution in 2 × 104 data passes, while the distributions
generated by LMC and SGLD have obvious deviation from
the true one. Moreover, the results show that the sample prob-
ability of TMU-RA approximates the target distribution best
among the three AGLD methods.

6.2 Bayesian Ridge Regression

Bayesian ridge regression aims to predict the response y ac-
cording to the covariate x, given the dataset Z = {xi, yi}Ni=1.
The response y is modeled as a random variable sampled from
a conditional Gaussian distribution p(y|x,w) = N(wTx, λ),
where w denotes the weight variable and has a Gaussian prior
p(w) = N(0, λId×d). By the Bayesian rule, one can infer
w from the posterior p(w|Z) and use it to make the predic-
tion. Two publicly available benchmark datasets are used for
evaluation: YearPredictionMSD and SliceLocation2.

In this task, we fix the Data-Accessing strategy to RA and
compare the performance of different Snapshot-Updating
strategies. To have a better understanding of the newly-
proposed TMU Snapshot-Updating strategy, we also inves-
tigate the performance of TMU type methods with different
Data-Accessing strategies.

2https://archive.ics.uci.edu/ml/index.php
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Figure 2: Bayesian Ridge Regression.
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Figure 3: Bayesian Logistic Regression.

By randomly partitioning the dataset into training (4/5)
and testing (1/5) sets, we report the test Mean Square Error
(MSE) of the compared methods on YearPredictionMSD in
Fig. 2. The results for SliceLocation are similar to that of
YearPredictionMSD, and are postponed to the Appendix due
to the limit of space. We use the number of effective passes
(epoch) of the dataset as the x-axis, which is proportional
to the CPU time. From the first three columns of the figure,
we can see that (i) TMU-type methods have the best perfor-
mance among all the methods with the same Data-Accessing
strategy, (ii) SVRG+ and PPU type methods constantly out-
perform LMC, SGLD, and PTU type methods. These results
validate the advantage of TMU strategy over PPU and PTU.
The last column of Figure 2 shows that TMU-RA outper-
forms TMU-CA/TMU-RR, when the dataset is fitted to the
memory. These results imply that the TMU-RA is the best
choice if we have enough memory.

6.3 Bayesian Logistic Regression

Bayesian Logistic Regression is a robust binary classification
task. Let Z = {xi, yi}Ni=1 be a dataset with yi ∈ {−1, 1}
denoting the sample label and xi ∈ R

d denoting the sam-
ple covariate vector. The conditional distribution of label y
is modeled by p(y|x,w) = φ(yiw

Txi), where φ(·) is the
sigmoid function and the prior of w is p(w) = N(0, λId×d).

We focus on the big data setting, where the physical mem-
ory is insufficient to load the entire dataset. Specifically, two
large-scale datasets criteo (27.32GB) and kdd12 (26.76GB)
are used 3 and we manually restrict the available physical

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

memory to 16 GB and 8 GB for simulation.
We demonstrate that CA strategy is advantageous in such

setting by comparing 6 AGLD methods with either CA or RA
in the experiment, namely, SVRG-LD, PTU-CA, SAGA-LD,
PPU-CA, TMU-RA, and TMU-CA. We also include LMC,
SGLD, SVRG-LD+, and SVRG-CA+ as baseline. Methods
with the RR strategy have almost identical performance as
their RA counterparts and are hence omitted. The average test
log-likelihood versus execution time are reported in Fig. 3.
The empirical results show that methods with CA outperform
their RA counterparts. As the amount of physical memory
gets smaller (from 16 GB to 8GB), the time efficiency of CA
becomes more apparent. The results also show that TMU has
better performance than other Snapshot-Updating strategies
with the same Data-Accessing strategy.

7 Conclusion and Future Work

In this paper, we proposed a general framework called Ag-
gregated Gradient Langevin Dynamics (AGLD) for Bayesian
posterior sampling. A unified analysis for AGLD is provided
without the need to design different Lyapunov functions for
different methods individually. In particular, we establish
the first theoretical guarantees for cyclic access and random
reshuffle based methods. By introducing the new Snapshot-
Updating strategy TMU, we derive some new methods under
AGLD. Empirical results validate the efficiency and effective-
ness of the proposed TMU in both simulated and real-world
tasks. The theoretical analysis and empirical results indicate
that TMU-RA would be the best choice if the memory is
sufficient and TMU-CA would be used, otherwise.
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