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Abstract

Recently, imbalanced data classification has received much
attention due to its wide applications. In the literature, ex-
isting researches have attempted to improve the classifica-
tion performance by considering various factors such as the
imbalanced distribution, cost-sensitive learning, data space
improvement, and ensemble learning. Nevertheless, most of
the existing methods focus on only part of these main as-
pects/factors. In this work, we propose a novel imbalanced
data classification model that considers all these main as-
pects. To evaluate the performance of our proposed model,
we have conducted experiments based on 14 public datasets.
The results show that our model outperforms the state-of-the-
art methods in terms of recall, G-mean, F-measure and AUC.

Introduction

In recent years, binary classification for imbalanced data
has received much attention (Castro and Braga 2013; Lin
et al. ) due to its wide applications in various domains
such as mortality prediction, and so on (Zhao et al. 2014;
Bhattacharya, Rajan, and Shrivastava 2017; Liu et al. 2018;
Nie et al. 2019; Liu et al. 2019; Lin et al. 2019; Xu et al. ).
A main characteristic of this problem is that, most of data
samples belong to one class while the rest belong to the
other. Typically, the class with most of samples is known
as the majority class, while the other is known as the mi-
nority class, which is often of significant value (Weiss 2004;
Alam et al. 2018; Quan et al. 2019).

Previous studies (Seiffert et al. 2010; Alam et al. 2018)
have shown that conventional machine learning methods
may fail to address the imbalanced data classification prob-
lem. To alleviate this, a lot of methods have been proposed
(Barua et al. 2014; Castro and Braga 2013; Alam et al.
2018). Generally, the existing methods can be divided into
three categories: sampling methods (including undersam-
pling and oversampling methods) (Chawla et al. 2002; Liu,
Wu, and Zhou 2009; Barua et al. 2014), cost-sensitive learn-
ing methods (Thai-Nghe, Gantner, and Schmidt-Thieme
2010; Castro and Braga 2013), and ensemble learning meth-
ods (Seiffert et al. 2010; Alam et al. 2018; Fang et al. 2019).
Yet, there remains several issues for each of these categories.
For example: (i) Undersampling methods remove samples
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from the majority class at the risk of losing important sam-
ples. Oversampling methods replicate minority samples for
several times, and thus they often overfit the data (He and
Garcia 2008). (ii) For cost-sensitive learning methods, it is
hard to obtain misclassification cost parameter for minor-
ity and majority classes (Dumpala, Chakraborty, and Kop-
parapu 2018). (iii) For ensemble learning methods, the ma-
jority voting is commonly adopted, which may result in bi-
ased results due to the existence of “unstable samples” (Wu
et al. 2017). Unstable samples have even chance of being
assigned to each class label by different classifiers. Apart
from the three categories, recent studies (Wang et al. 2018)
indicate that, for imbalanced datasets, the limited training
samples and their surrounding data space can improve the
classification results.

In this paper, we propose a novel model to address the
above limitations for the imbalanced binary classification
problem. Our model integrates sampling, data space con-
struction, cost-sensitive learning, and ensemble learning in
a principle way. Specifically, it consists of four main compo-
nents: (i) Data block construction component, which aims to
divide the datasets into balanced data blocks using both un-
dersampling and oversampling. (ii) Data space improvement
component, which transforms the data space so that the data
samples can be close to its £ nearest neighbors with the same
label, and separate the data samples from the other class
by a large margin. (iii) Adaptive weight adjustment compo-
nent, which obtains the class-wise weight for the ensemble
learning component, so as to alleviate the trouble incurred
by the “unstable samples”. (iv) Ensemble learning compo-
nents, which combines multiple base classifiers and obtains
the final results by weighted voting. To sum up, we make
two main contributions:

e We propose a novel model for imbalanced data classifica-
tion. To the best of our knowledge, this is the first attempt
to integrate the above four aspects together.

* We conduct extensive experiments to evaluate the perfor-
mance of our model. The results consistently show that
the proposed model achieves competitive performance
compared against several state-of-the-art models.

Next, we review previous works most related to ours.



Related Work

As mentioned before, previous works can be generally
classified into three categories: (i) sampling methods, (ii)
cost-sensitive learning methods, and (iii) ensemble learning
methods. In what follows, we review them briefly.

Sampling Methods

Sampling methods (Das, Krishnan, and Cook 2015) alle-
viate the class imbalance by adjusting the dataset, and so
they are essentially a kind of data preprocessing methods.
Particularly, they can be further categorized into two types:
undersampling and oversampling. Undersampling is to re-
move majority class samples from the data, so that the de-
gree of imbalance could be adjusted. The mainstream un-
dersampling methods are random undersampling (He and
Garcia 2008) and informed undersampling (Liu, Wu, and
Zhou 2009). Random undersampling removes a set of ma-
jority samples from the original data in a random manner
(He and Garcia 2008). This method is the simplest mecha-
nism for data distribution adjustment. However, it often in-
curs significant information loss (Liu, Wu, and Zhou 2009).
To alleviate the dilemma, informed undersampling meth-
ods (Liu, Wu, and Zhou 2009) combine other techniques
such as training multiple classifiers to adjust the imbal-
anced data distribution. Oversampling duplicates or gen-
erates minority samples to compensate the lack of minor-
ity samples. The mainstream oversampling methods include
random oversampling and synthetic oversampling. Random
oversampling randomly replicates a set of minority samples
from the original data. This sampling mechanism often over-
fits the data (Mease, Wyner, and Buja 2007). As for the syn-
thetic oversampling, it generates synthetic minority samples
using the existing samples. SMOTE (Chawla et al. 2002) and
MWMOTE (Barua et al. 2014) are representative synthetic
oversampling methods.

Compared to the works in this branch, our method uti-
lizes both random undersampling and random oversampling.
Specifically, we apply oversampling in the overall data block
construction phase to replicate the minority samples. How-
ever, in each block the minority samples appear for just once,
and so the overfitting phenomenon is alleviated to some ex-
tent. In addition, we use undersampling in the single data
block construction phase to include a part of majority sam-
ples in each data block. Overall, our method absorbs the ad-
vantages of undersampling and oversampling, alleviating in-
formation loss and overfitting.

Cost-Sensitive Methods

Cost-sensitive methods improve the classifier by applying
different costs for misclassifying different samples (Castro
and Braga 2013; Krawczyk 2016). For example, Thai et al.
(Thai-Nghe, Gantner, and Schmidt-Thieme 2010) propose
sampling techniques with cost-sensitive learning method in
support vector machine (SVM), and use cost-sensitive learn-
ing technique to optimize the cost ratio. Castro et al. (Cas-
tro and Braga 2013) incorporate prior knowledge into the
cost parameter, and apply such a parameter to a joint ob-
jective function to enhance imbalanced data classification.
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Figure 1: The architecture of our model.

Nikolaou et al. (Nikolaou et al. 2016) incorporate the shifted
decision threshold and calibrated probability estimation for
cost-sensitive learning in imbalanced data classification. Wu
et al. (Wu et al. 2017) use cost-sensitive multi-set feature
learning to learn discriminant features. Compared to the
works in this branch, our method does not directly utilize
different costs in the classification process. Instead, we use
the cost for the “overall gain” calculation (detailed later in
the paper). This allows us to obtain a weighting mechanism
which maximizes the overall gain.

Ensemble Learning Methods

Ensemble learning methods utilize multiple weak classifiers,
and combine them to obtain a strong classifier for classifica-
tion (Hastie, Tibshirani, and Friedman 2009). There are also
many ensemble learning methods for imbalanced data clas-
sification. For example, Seiffert ef al. (Seiffert et al. 2010)
propose a method that combines sampling techniques with
boosting algorithm for imbalanced data classification. Alam
et al. (Alam et al. 2018) use partitioning techniques to cre-
ate balanced data, and then apply an ensemble classifier for
classification and regression tasks. Compared to the works
in this branch, instead of assigning equal importance to each
classifier, our method incorporates class-wise weight into
the ensemble learning framework, which allows us to handle
incorrectly labelled data samples.

Besides conventional machine learning methods, there
emerges several imbalanced classification methods based on
deep learning (Khan et al. 2017; Huang et al. 2016). How-
ever, they focus on image data. Unlike image datasets, many
imbalanced datasets are limited in size and features, and thus
deep learning methods are not applicable in our setting.

Imbalance Data Classification Model

In this section, we first cover the architecture of our model,
and then elaborate and discuss each component.

Overview

Figure 1 depicts the architecture of our proposed model
named DDAE. As mentioned earlier, it contains four main
components: (i) Data Block Construction (DBC) compo-
nent, which is responsible for dividing the input data into
nearly balanced data blocks; (ii) Data Space Improvement



(DSI) component, which is used to make the & nearest neigh-
bors belong to the same class and separate the data sam-
ples from different classes by a large margin; (iii) Adaptive
Weight Adjusting (AWA) component, which is used to ad-
just the weights of samples from different classes; and (iv)
Ensemble Learning (EL) component, which is used to com-
bine multiple base classifiers by weighted voting.

The work flow of our method is as follows. Generally, we
partition a dataset into a training set and a test set. The first
step is to put the data from the training set into the DBC
component, obtaining a number of balanced data blocks.
Then, each data block is fed into the DSI component for
improving the data space. Meanwhile, the AWA component
computes the class-wise weights based on the data in each
block. After that, we apply a base classifier (kNN) to each
data block processed by DSI component, and the EL com-
ponent collaboratively use weights from AWA and the base
classifiers to generate the class labels. Finally, the trained
model is applied to the test set to perform the classification
tasks. Next, we present each component in detail.

Data Block Construction

We divide the data into multiple data blocks, so as to make
each data block balanced. In a nutshell, our method absorbs
the advantages of undersampling and oversamping methods,
alleviating information loss and overfitting to some extent.
Specifically, we partition the majority samples into several
subsets, each roughly of the same size as the set of minority
samples. Then, we use oversampling to replicate the minor-
ity samples and combine each copy with each subset of ma-
jority samples. As we only use part of the majority samples
in each data block, it can be considered as the undersampling
of the majority samples.

Formally, let N,,;y, (resp., N,,q;) be the number of mi-
nority (resp., majority) samples. Let Sy, (resp., Siaj)
be the set of minority (resp., majority) samples. Let § =
Niaj /Npin be the imbalanced ratio. Algorithm 1 shows
the pseudocodes of data block construction process. In this
algorithm, §* can be computed by |d| or [J].

Algorithm 1: Data blocks construction

Input: Dataset D
Output: A set B of §* data blocks

1: Obtain Nyin, Nmaj> Smin. and Sp,q; based on
D;
Divide Sy,q; into 6* chunks {Cy, Cs, ..., Cs- };
for i = 1to 0* do

Put C; and S,,,;, into an empty data block B;;

end for
return B = {By, By, ...}

AN

Data Space Improvement

To improve the data space, our model incorporates the met-
ric learning technique. Specifically, we adopt the large mar-
gin nearest neighbor (LMNN) algorithm (Weinberger and
Saul 2009). This algorithm learns a transformation matrix L
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and incorporates a loss function ¢(L), so that it can push
data samples of different classes away from the target sam-
ple, and pull data samples that have the same class label
close to the target sample. Specifically, the loss function is
as follows. (L) = (1= X)@puu (L) +A@pusn (L) where A is
a positive real number used as the weight for these two items
(i.e., pull and push). The first item ¢, (L) is computed as
pun(L) = EmeN(i) | L(x; — xj)”z, where N (i) is the k
nearest neighbor of data ¢ with the same class label as 7. It
penalizes large distances between the data sample and its k
nearest neighbors with the same class label. The second item
penalizes small distances between the data sample and oth-
ers with different class label. It is computed as @y, (L) =
Y (1= 0i)maz{0, 1+ L(s; — s;)[ = | L(si — s0)[1}
where ¢;; is used to determine whether data samples s; and
s; belong to the same class or not. More specifically, if they
are from the same class, then §;; = 1; otherwise, d;; = 0.

Adaptive Weight Adjustment

We first introduce some concepts and then present our adap-
tive weight adjustment (AWA) component in detail. For each
data sample s, its k nearest neighbors may be positive or
negative. When applying kNN classifiers, the label of s
may be ambiguous if the number of its positive and nega-
tive neighbors are roughly the same. More formally, we re-
fer to the absolute difference between the number of neg-
ative neighbors and that of positive neighbors as positive-
negative count difference (PNCD). If the PNCD is large
than a threshold 7 (it is conservatively set to 1 when £k is
odd; otherwise, it is set to 2 in our experiments), we refer to
such a sample s as the stable sample. Otherwise, we refer
to it as the unstable sample.

Most of the ensemble learning methods assign the same
weight to all the classifiers, and obtain the final result by
majority voting (Zhang and Ma 2012). Such a method may
incur biased results, due to the existence of unstable sam-
ples. To address this issue, we suggest an adaptive weight
adjustment mechanism to obtain better classification results.
In particular, we first introduce the unstable confusion ma-
trix, as shown in Table 1. In the matrix, ci,o (resp., c1,1)
denotes the number of unstable positive samples which are
predicted as negative (resp., positive). In contrast, cg o (resp.,
¢o,1) denotes the number of unstable negative samples which
are predicted as negative (resp., positive). Let Sy, (resp.,
Sheg) be the set of samples whose real labels are posi-
tive (resp., negative). Let Sg,; (resp., Sqm) be the number
of unstable samples whose positive predictions is greater
(resp., smaller) than negative predictions. One can obtain
the values in the matrix as follows: ¢10 = [Spos N Ssmils
C1,1 = ‘Spos mSgrt > Co,0 = |Sneg mssml|; and €o,1
|Sneg N Sgrel.

Table 1: Unstable confusion matrix

Sample Predict as negative Predict as positive
Positive C1,0 C1,1
Negative 0,0 Co,1




In imbalanced data classification, it is usual that the cost
(or importance) of the minority sample is larger than that of
the majority sample. Without loss of generality, we assume
the cost ratio between minority samples and majority sam-
ples is x. The basic idea of AWA is to adjust the weights
for the positive and negative outputs, and to maximize the
overall gain for the unstable confusion matrix.

In the initial stage, the default weight, denoted by Wy is
set to 1 in this paper. That is, we set the weight pair (1,1) as
the weights for negative and positive outputs, respectively.
Then, we attempt to adjust the weight of positive (resp.,
negative) outputs. Let gain,,,; be the overall gain when we
maintain the default weight. Let gain,os (resp., gain,.y) be
the overall gain if we increase the weight of positive (resp.,
negative) output. We compute these gains as follows.

galﬁmat = x*(c11—c1,0)+ (co0—co1)
9aingos = @x(c11+ o) +(=co0—co1) (1)
gQiNpeg = x*(—c1,1 —c1,0) + (co,0+¢o,1)

After that, we adjust the weight according to the maxi-
mum gain. If the maximum gain is gain,,q:, then we set
the new weight W,, = W, for both negative and positive
outputs. Otherwise, we choose the maximum gain gain,,s
(or gainyeq), and update its corresponding weight weight to
W, = Wy + A, where A is a small positive real number,
and W, is the weight threshold, which is computed as

(% +1)/(5 -1),

W :{ (5] + 1)/(15 ),

For example, if gain,,s is the maximum one, the weight pair
is updated to (W, W,,), and vice versa.

Finally, given the weight pairs obtained from all the
data blocks, the overall weight pair, denoted by W,
(W9, W}, is obtained based on the frequency of different
weight pairs. Particularly, if the ratio between the number of
non-default weight pairs and the number of all weight pairs
is smaller than a threshold v (it is empirically set to 0.2 in
the experiments), then we set W, = (W, Wy). Otherwise,
we further determine the number of “negative” non-default
weight pairs, which is in the form of (W,,, W), and the num-
ber of “positive” non-default weight pairs, which is in the
form of (Wy, W,,). If the former is larger than the latter, we
set W, = (W,,, Wy); otherwise, we set W, = (Wy, W,,).
Note that, we set W, = (W, W,,) when those two numbers
are equal, since the cost of minority (i.e., positive) samples
is larger than that of the majority (i.e., negative) samples.

if 6*mod2=0
otherwise

@)

Ensemble Learning

In ensemble learning, multiple classifiers together with the
voting mechanism are usually used to obtain the final pre-
diction results. As for binary classification problem, assume
that there are m classifiers { fo, f2, ..., fm—1}, and 2 classes
{co, c1}. If the ith classifier whose output is ¢; for sample s,
then f;7(s) = 1, where i € {0,1,...,m—1}and j € {0,1};
otherwise, it is 0. The voting mechanism can be described as
follows.
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F(s):{cm o Fe) 2 )

cq, otherwise

Unlike most of existing methods, which just count the

number of positive and negative labels, we use the weight

W, obtained in the AWA component to enhance the final
results. Specifically, our voting mechanism is as follows.

_ oo, WG £0(s) > W ST i (s)
F(s) = {cl, ¢ otherwise 0 S
Experiments

Experimental Setup

» Datasets. In our experiments, we employ 14 widely used
datasets. Among them, six datasets (including cml, kc3,
mwl, pcl, pc3, pcd4) are from OpenML (Vanschoren et
al. 2013), and they are open datasets for software defect
detection. The other eight datasets (including yeastlvs7,
abalone9vs18, yeast6, abalonel9, poker89vs6, wine3vsS,
abalone20, and poker8vs6) are from KEEL repository
(Fernandez, del Jesus, and Herrera 2009). Among them,
Yeast datasets are often used for predicting cellular local-
ization sites of proteins. The abalone datasets are used for
predicting the age of abalone. The two poker datasets are
used for poker hands prediction while the wine dataset is
used for wine quality prediction.

All the 14 datasets have various characteristics in terms of
instances, features and IR (Imbalance Ratio). The detailed
descriptions of these datasets are summarized in Table 2. In
addition, similar to previous works, for all experiments we
randomly split datasets into two parts: training set (70%) and
test set (30%).

Table 2: Summary of the datasets. Note that, the names of
the last two datasets are somewhat long, we use superscripts
to mark them, where # is short for the “winequalityred3vs5”
dataset, and  is short for the “abalone20vs8910” dataset.

Datasets # instances # features IR
cml 497 21 9.354
ke3 458 39 9.651
mwl 403 37 12
pcl 1109 21 13.4
pc3 1563 37 8.769
pcd 1458 37 7.191

yeastlvs7 459 7 14.3

abalone9vs18 731 8 16.405
yeasto 1484 8 41.4
abalonel9 4174 8 129.438
poker89vs6 1485 10 58.4
poker8vs6 1477 10 85.882
wine3vs5? 691 11 68.1
abalone20P 1916 8 72.692

» Baselines. To evaluate the performance of our method, we
compare it with the following state-of-the-art methods.



Table 3: G-mean, F-measure and AUC for IML, RP, CAdaMEC, MWMOTE and Our method (DDAE) on the 14 public datasets.

Note that, NA denotes invalid result.

Method IML RP CAdaMEC MWMOTE DDAE
m G- F-ms AUC| G- F-ms AUC| G- F-ms AUC| G- F-ms AUC| G- F-ms AUC
mean mean mean mean mean
cml 0.52 0.287 0.589] 0.758 0.567 0.762| 0.591 0.38 0.654| 0.623 0.407 0.663 | 0.775 0.58 0.776
ke3 0.805 0.652 0.814| 0.81 0.604 0.811| 0.772 0.625 0.792| 0.749 0.563 0.764| 0.823 0.625 0.823
mwl 0.635 0.345 0.653| 0.701 0.39 0.702| 0.721 0.446 0.728 | 0.721 0.446 0.728| 0.815 0.588 0.817
pecl 0.657 0.408 0.679| 0.803 0.556 0.807| 0.7 0.504 0.731|0.767 0.586 0.782| 0.819 0.573 0.83
pc3 0.578 0.342 0.582]0.726 0.513 0.726| 0.721 0.519 0.731| 0.646 0.426 0.671| 0.743 0.536 0.744
pcd 0.725 0.574 0.73 | 0.873 0.767 0.873| 0.826 0.699 0.828 | 0.772 0.621 0.778 | 0.804 0.676 0.813
yeastlvs7 0.716 0.471 0.718 ] 0.701 0.449 0.702| 0.755 0.603 0.78 | 0.745 0.574 0.768 | 0.841 0.649 0.841
abalone9vs18 0.709 0.375 0.719| 0.695 0.345 0.702| 0.697 0.49 0.736| 0.7 0.51 0.74 | 0.814 0.603 0.824
yeast6 0.798 0.407 0.805| 0.779 0.333 0.783 | 0.703 0.5 0.744|0.829 0.636 0.841| 0.883 0.421 0.883
abalonel9 0.626 0.037 0.628 | 0.771 0.065 0.773 0 NA 0.5 | 0407 0.143 0.579| 0.839 0.075 0.852
wine3vs5 0 NA 0.5 | 0.51 0.086 0.557| O NA 05 0 NA 049 | 0.55 0.156 0.62
abalone20 0.802 0.252 0.802| 0.898 0.314 0.904 | 0.628 0.385 0.693 | 0.446 0.227 0.598 | 0.964 0.556 0.965
poker89vs6 0.783 0.317 0.794 | 0.633 0.132 0.651| 0.913 0.862 0917 | 0.816 0.714 0.833| 0.968 0.517 0.968
poker8vs6 0.615 0.08 0.628 | 0.764 0.128 0.764| 0.707 0.556 0.75 | 0.707 0.556 0.75 | 0.95 0.317 0.951

e IML (Wang et al. 2018): It constructs a stable neigh-
borhood data space by using the iterative metric learning
technique, and it chooses the k-nearest neighbors (ENN)
algorithm as the classifier.

¢ RP (Alam et al. 2018): It is an recursive based ensem-
ble method for imbalanced data classification problem. It
converts the imbalanced data classification problem into
a variety of balanced data classification problems. In the
meanwhile, it uses the majority voting as the ensemble
rule to build an ensemble classifier.

¢ CAdaMEC (Nikolaou et al. 2016): It is based on a
cost-sensitive learning method (AdaMEC (Ting 2000;
Nikolaou and Brown 2015)) with proper calibration, and
it uses decision tree as the classifier.

* MWMOTE (Barua et al. 2014): It is a synthetic oversam-
pling method for imbalanced data classification problem.
Each sample from the minority class is assigned a weight
according to its Euclidean distance to the nearest majority
class sample. Then, it generates synthetic samples from
the weighted minority class.

» Evaluation metrics. For the imbalanced data classification
problem, two widely accepted common senses for a good
model are:

1. Tt should achieve high performance on comprehensive ac-
curacy metrics (e.g., G-mean, F-measure, AUC) that con-
sider samples from both the majority and the minority
classes.

Without harming the comprehensive metrics, it is essen-
tial for the model to correctly predict the labels for as
many samples from the minority class as possible. This
is because applications such as software defect detection,
the minority class (e.g., software defect) is considered to
be much more important than the majority class.

A common setting in imbalanced classification is that
the positive samples often refer to the minority class sam-
ples while the negative samples refer to the majority class
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(He and Garcia 2008). Based on this setting and the above
common senses, we adopt the following metrics: Recall,
G-mean, Fg-measure and AUC, as do the prior works
(He and Garcia 2008; Wang et al. 2018; Alam et al. 2018;
Nikolaou et al. 2016). Let TP, FN, FP, TN be the true
positives, false negatives, false positives and true negatives,
respectively. The above four metrics are defined as fol-
lows: (i) Recall = TPZ%, is motivated by the second
common sense and measures how many positive (minor-
ity) samples are correctly classified. Another explanation
of recall is the probability of detection for positive (minor-
ity) samples (Wang et al. 2018). In this paper, we use (ii)
G-mean = v Recall * TN R, which combines the recall
for both classes. Here, TN R = TN __ denotes the re-

. .. TN+FD
call for the negative (majority) class. (iii) )3 — measure =

(1+5?%) /32]: ;efgcsl’;ﬁ;i‘iggi 77> Which considers both precision

(TPZ’;%) and recall, and thus is a comprehensive metric of
classification accuracy. Here, [ trades precision for recall.
The higher the  is, the more important the Recall is. Be-
cause it is often more desirable to correctly classified the
minority class in the imbalanced classification problem, we
set § = 2. For simplicity, we use F-ms in the following ex-
periments to denote Fg — measure with 8 = 2. (iv) AUC
refers to the area under the ROC curve. In the ROC curve,
the x-axis corresponds to the false positive rate while the
y-axis corresponds to the true positive rate. One attractive
property of AUC is that it is not sensitive to class distri-
butions (Fawcett 2004), thus it is appropriate for the imbal-
anced classification setting.

» Parameter settings. Since both IML (Wang et al. 2018)
and MWMOTE (Barua et al. 2014) use kNN classifiers, we
vary k from 1 to 10, and we adopt the values of £ that achieve
the best performance. Other parameters are the same as that
in the original papers (Wang et al. 2018; Barua et al. 2014).
For our model, we tune each parameter by fixing the others.
Specifically, we vary \ within the range of [0.1, 1] and select



the values that lead to the best performance. Similarly, the
number of blocks can be either | TR] or [T R| and we set the
value that achieves the best performance. Besides, we set y
to 0.2 for all datasets and the cost ratio to [T R].

Overall Comparison against State-Of-The-Arts

We first report the performance of all the methods in terms
of comprehensive accuracy metrics in Table 3. In general,
our proposed method DDAE outperforms the state-of-the-
art methods on most of the 14 datasets. Especially in half
of the datasets (cml, mwl, pc3, yeastlvs7, abalone9vs18,
wine3vs5, abalone20), DDAE consistently performs better
than its competitors. It improves the G-mean, Fy and AUC
by up to 18.6%, 17.1%, 18.7%, respectively. The worst case
for our model is obtained on the pc4 dataset, in which the
imbalance ratio of pc4 is the smallest among all the datasets
as shown in Table 2. This phenomenon implies that our pro-
posed method tends to find out as many positive (minority)
samples as possible, and works better on highly skewed class
distributions. Nevertheless, the DDAE is still compatible — it
achieves close G-mean, F5 and AUC scores to the best base-
lines and outperforms two of the other baselines. It is also
worth noting that, on some of the datasets such as wine3vs3,
the number of positive samples are extremely small. IML,
CAdaMEC and MWMOTE classity all the samples as neg-
ative and fail to detect any of the positive samples. This re-
sults in a 0 G-mean and an invalid F-measure.

In order to showcase the capability of our model on de-
tecting positive samples, we report the recall for all the
methods on the 14 datasets in Table 4. DDAE performs the
best in all cases compared to the baselines. This essentially
demonstrates that our method is much more effective for
identifying positive samples. Especially, on several datasets
(e.g., abalone19, poker89vs6), DDAE achieves 100% recall,
which significantly outperforms the competitors. Although
some of the baselines (e.g., RP, CAdaMEC) perform well
in the comprehensive accuracy metrics, they are not able to
identify positive samples correctly.

Combining the observation from Table 3 and Table 4,
the proposed method improves the recall significantly while
maintaining competible performance in terms of compre-
hensive metrics such as G-mean, Fy and AUC. In many of
the cases, it achieves even higher G-mean and AUC than the
state-of-the-art methods.

Impact of parameters

Impact of A In the loss function ¢(L), the parameter \ is
used to determine the relative weight between the pull and
push terms. It is important to investigate the impact of A. To
achieve this, we plot the results by varying A from 0.1 to 1
on the cm1 and mw1 datasets in Figure 2(a) and 3(a). In gen-
eral, the curves of different metrics are in similar trends in
the same dataset, but the model acts differently on different
datasets, i.e., it achieves the best performance when A = 0.1
and A = 0.3 on cm1 and mw 1, respectively. This is because
the data distribution of different datasets are quite different.
If the samples from the two classes are highly overlapped
in the original feature space, pushing the two classes away
from each other is of great importance, i.e., we should set A
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Table 4: Recall for IML, RP, CAdaMEC, MWMOTE and
Our method (DDAE) on the 14 public datasets.

Datasets \IML\ RP \CAdaMEC\ MWMOTE \DDAE
cml 0.313]0.688| 0.375 0.438 0.813
kc3 0.692(0.846| 0.615 0.615 0.846
mw| 0.5 |0.75 0.625 0.625 0.75
pel 0.852]0.889| 0.519 0.63 0.963
pc3 0.51 10.735| 0.612 0.49 0.735
pcéd 0.814]0.881 0.78 0.678 0.932
yeastlvs7 0.667(0.667| 0.583 0.583 0.833
abalone9vs18| 0.6 | 0.6 0.5 0.5 0.7
yeast6 0.7 | 0.7 0.5 0.7 0.9
abalonel9 0.667|0.833 0 0.167 1
wine3vs5 0 (0.333 0 0 0.333
abalone20 0.8 1 0.4 0.2 1
poker89vs6  |0.667| 0.5 0.833 0.667 1
poker8vs6 0.5 | 0.75 0.5 0.5 1

at a large value. In contrast, we should decrease A to make
samples from the same class closer to each other when many
of the minority samples do not fall in the area dominated by
the majority class.

Impact of v The parameter v is used as a threshold term
to show the unstable ratio in the data. This parameter can
be used to decide whether we adopt the AWA component or
not. In this experiment, we vary 7y from 0.1 to 1 on the cml
and mw1 datasets. As we can see in Figure 2(b) and 3(b), the
performance of the model becomes stable as -y is above 0.3,
and v = 0.2 achieves the best performance in both datasets.
For the cm1 dataset, when ~ is above 0.2, recall, G-mean,
F-measure and AUC drop by 0.25, 0.077, 0.085 and 0.062,
respectively. For mw1 dataset, although recall increases by
moving 7 from 0.2 to 0.3, it sacrifices the F-measure by
around 0.058. If we take the overall performance into con-
sideration, the best choice is v = 0.2.

Impact of cost ratio In cost-sensitive learning methods,
how to choose an appropriate cost ratio between the two
classes remains a problem without any additional informa-
tion. The cost ratio depicts the importance of the costs be-
tween the two classes. For example, when the cost ratio is
set to 1, we treat the cost of samples from both classes are
of the same importance. Therefore, assigning an arbitrary
cost ratio to the data samples is controversial. However, as
we can see in 2(c) and 3(c), due to our proposed weighting
scheme the final results are insensitive to the choice of cost
ratio when it is in a reasonable range, e.g., from 2 to the
dataset’s imbalance ratio. This experiment implies that our
weighting scheme enhances the flexibility in choosing the
weight without any prior information for the data.

Impact of # blocks In this part, we conduct experiments
to illustrate the impact of the number of blocks on the cml
and mw1 datasets. Blocks are used for adjusting the imbal-
anced data distribution. As we can see from figures 2(d) and
3(d), as the number of blocks grows, the four metrics share
the same trend. Notably, in both datasets, the model achieves
good performance when the number of blocks is close to
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the imbalance ratio (10 for cml, 12 for mw1). In general,
with a small number of blocks, samples in each block are
still imbalanced, and thus result in significant performance
degradation. We can also notice that, the model achieves
promising results when the number of blocks is 4 and 5 on
the cm1 dataset, and 6, 7, 9, 10 and 11 on the mw1 dataset,
respectively. These observations imply the possibility to use
a smaller number of blocks rather than the imbalance ratio.
Although a smaller number of blocks brings imbalance to
some extent, the AWA component is effective to adjust the
weights of the slightly imbalanced samples.

Ablation Study

Our model contains four main components: Data Block
Construction (DBC), Data Space Improvement (DSI), Adap-
tive Weight Adjustment (AWA), and Ensemble Learning
(EL). To study the effectiveness of these components, we
implement several variants of our model: (i) DDAE-DBC,
which is obtained by removing the DBC component; in fact,
the variant DDAE-DBC also removes AWA and EL, since
AWA and EL depend on DBC; (ii) DDAE-DSI, which is ob-
tained by removing the DSI component; and (iii) DDAE-
AWA, which is obtained by removing the AWA component.
Note that, when the DBC component is used, it is neces-
sary to use the EL component. Therefore, there is no such
a variant “DDAE-EL”. Figure 4 plots the experimental re-
sults on the cml and mw1 datasets. We can observe that
all these variants perform significantly worse than the full
fledged version (i.e., DDAE) on both datasets, regardless of
G-mean, F-measure and AUC. The recall of DDAE is lower
than DDAE-AWA on the mw1 dataset. This is because recall
only focuses on the minority class while the AWA compo-
nent always considers the overall gain from both classes —
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improving the recall brings in more false positives, which
may decrease overall metrics such as F-measure. Overall,
the ablation study essentially demonstrates that the proposed
method integrates these components in a principle way to
take the advantages of each part. In addition, we also observe
that DDAE-DBC performs the worst. This reflects that the
DBC component plays a much more important role in terms
of the overall performance, because it provides the flexibility
to support AWA and EL.

Conclusions

We present a novel model that consists of four components,
which collaboratively contribute to classifying imbalanced
data more effectively. We have conducted experiments on 14
public datasets, showing that our model is effective and com-
petitive, compared with state-of-the-art methods. This study
opens several future research directions include 1) extending
the proposed model to multi-class classification problems;
2) utilizing clustering methods for improving classification
results; 3) incorporating other classifiers (e.g., SVM, neural



networks) into our model; 4) extending the proposed model
to other kinds of data, for example, image data, time series
data.
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