The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Mastering Complex Control in MOBA Games with Deep Reinforcement Learning

Deheng Ye,' Zhao Liu,' Mingfei Sun,'* Bei Shi,! Peilin Zhao,'! Hao Wu,'* Hongsheng Yu,'
Shaojie Yang,' Xipeng Wu,' Qingwei Guo,' Qiaobo Chen,! Yinyuting Yin,' Hao Zhang,'
Tengfei Shi,'! Liang Wang,' Qiang Fu,' Wei Yang,' Lanxiao Huang’

ITencent AI Lab, Shenzhen, China
2Tencent Timi Studio, Chengdu, China
{dericye, ricardoliu, mingfeisun, beishi, masonzhao, alberthwu, yannickyu, shaojieyang, haroldwu, leoqwguo,
ciaochen, mailyyin, howezhang, francisshi, enginewang, leonfu, willyang, jackiechuang } @tencent.com

Abstract

We study the reinforcement learning problem of complex ac-
tion control in the Multi-player Online Battle Arena (MOBA)
1v1 games. This problem involves far more complicated state
and action spaces than those of traditional 1v1 games, such
as Go and Atari series, which makes it very difficult to search
any policies with human-level performance. In this paper, we
present a deep reinforcement learning framework to tackle
this problem from the perspectives of both system and al-
gorithm. Our system is of low coupling and high scalability,
which enables efficient explorations at large scale. Our algo-
rithm includes several novel strategies, including control de-
pendency decoupling, action mask, target attention, and dual-
clip PPO, with which our proposed actor-critic network can
be effectively trained in our system. Tested on the MOBA
game Honor of Kings, the trained Al agents can defeat top
professional human players in full 1v1 games.

Introduction

Deep reinforcement learning (DRL) has been widely used
for building agents to learn complex control in competi-
tive environments. In the competitive setting, a considerable
amount of existing DRL research adopt two-agent games
as the testbed, i.e., one agent versus another (1v1). Among
them, Atari series and board games have been widely stud-
ied. For example, a human-level agent for playing Atari
games is trained with deep Q-networks (Mnih et al. 2015).
The incorporation of supervised learning and self-play into
the training brings the agent to the level of beating human
professionals in the game of Go (Silver et al. 2016). And re-
cently, a more general DRL method is further applied to the
Chess and Shogi 1v1 games (Silver et al. 2017).

In this paper, we move on to one type of 1v1 games that
has the next level of complexity, i.e., the MOBA 1v1 games.
As we know, RTS games are considered as a grand challenge
for Al research (Vinyals et al. 2019; Silva and Chaimowicz
2017). MOBA 1v1 is a real-time strategy (RTS) game that
requires highly complex action control. Compared with tra-
ditional 1v1 games, e.g., board and Atari, MOBA 1v1 games
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Table 1: Comparing Go and MOBA 1v1
Go 1vl MOBA 1v1
25015() ~ 1036()
(250 pos available, 150
decisions per game on average)

3361 ~, 1170
(361 pos, 3 states each)

Game

1018000 (100+ discretized actions,

Action space 9,000 frames per game)

22000 5 10900 (2 heroes,
(1000+ pos)*(2+ states))

little

State space

Human player data rich, high-quality

Peculiarity long-term tactics real-time, complex control

have far more complicated environments and controls. Take
the MOBA 1v1 games in Honor of Kings as an example, the
magnitude of states and actions involved can reach to 10%%°
and 1018990 while these in Go are 10'7° and 103%° (Silver
et al. 2016), illustrated in Table 1.

Besides, the complexity of MOBA 1vl1 also comes from
the playing mechanism. To win a game, in the partially ob-
servable environment, agents must learn to plan, attack, de-
fend, control skill combos, induce, and deceive the oppo-
nents. Apart from the player’s and the opponent’s agent,
there exists many more game units, e.g., creeps and turrets.
This creates challenge to the target selection which requires
delicate sequences of decision making and corresponding
action controls. Furthermore, different heroes in a MOBA
game have very different playing methods. The action con-
trol can completely change from hero to hero, which calls
for robust and unified modeling. Last but not least, there
lacks high-quality human game data for MOBA 1v1 which
makes supervised learning unfeasible, because players gen-
erally use the 1v1 mode to practice heroes, while the MOBA
5v5 mode is used for formal matches in mainstream MOBA
games, like Dota and Honor of Kings. Note that in this paper
we focus on MOBA 1v1 games rather than MOBA 5v5 as
the latter emphasizes more on the team collaborative strat-
egy of all agents than the action control of any single agent.
In this regard, the MOBA 1v1 setting is more appropriate to
study the problem of complex control in games.

To handle these challenges, we design a deep reinforce-
ment learning framework, together with a set of algorithm-
level innovations, to enable efficient explorations at mas-
sive scale for multi-agent competitive environments like



MOBA 1v1 games. We design a neural network architec-
ture including the encoding of multi-modal inputs, the de-
coupling of inter-correlations in controls, exploration prun-
ing mechanism, and attack attention, to consider the ever-
changing game situations in MOBA 1v1 games. To evaluate
the upper limit and the robustness of the trained Al agents
thoroughly, we invite professional players and a variety of
top-amateur human players to compete with our Al agents.
We also compare our method with existing state-of-the-art
works on building MOBA 1v1 agents (Jiang, Ekwedike, and
Liu 2018).
Our contributions are as follows:

e We present a systematic and thorough study on building
Al for playing MOBA 1vI games, which require highly
complex action control of agents. On system aspect, we
develop a deep reinforcement learning framework which
provides scalable and off-policy training. On algorithm
aspect, we develop an actor-critic neural network for mod-
eling MOBA action controls. Our network optimizes with
a multi-label proximal policy algorithm (PPO) objective,
and is featured with the decoupling of control depen-
dency, an attention mechanism for target selection, action
mask for efficient exploration, LSTM for learning skill
combos, and an improved version of PPO, called dual-clip
PPO, for ensured training convergence.

e Extensive experiments show that the trained Al agent can
defeat top professional human players on different hero
types, tested on the 1v1 mode of Honor of Kings, a popu-
lar MOBA game.

Preliminaries
Notation

We focus on the two-agent world for multi-agent Markov
games (Bansal et al. 2017), which can be extended to multi-
ple agents. We use the tuple (S, O, A, P,r, pp,~y) to denote
an infinite-horizon, discounted Markov Decision Process,
where S is the state space, O is the observable state space of
each agent, A is the action space, P : S x A — S denotes
the state transition probability, r : S x A — R represents the
reward function, pp : S — R is the distribution of the initial
state sg, and v € (0,1] is the discount factor. A stochas-
tic policy 7 is a mapping O x A — [0, 1]. In our complex
control problem, each agent aims to maximize the cumula-
tive reward returns, i.e., the objective E [ ZtT=o ~or(se, at)] ,
where 7' is the time horizon.

Related Work

Multi-agent control with reinforcement learning has two set-
tings: cooperative setting and competitive setting. Our work
belongs to the latter. A large proportion of existing works
use games as the testbed for RL advances.

For the cooperative setting, a survey is done by (Panait
and Luke 2005). Recently, Foerster et al. (2016) study
multi-agent cooperation to solve riddles with recurrent Q-
networks. Collaborative agents for playing 3D FPS games
have also been explored (Jaderberg et al. 2019; Lample and
Chaplot 2017). Another recent work builds a macro-strategy
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model for guiding multi-agents in MOBA 5v5 games using
supervised learning (Wu et al. 2018).

For the competitive setting, 1v1l games are heavily stud-
ied. A typical work is AlphaGo (Silver et al. 2016), which
combines supervised learning and RL. RL has also been suc-
cessfully applied to Atari games (Mnih et al. 2015), which
contain both single-agent games, and multi-agent games like
the 1vl Pong game. Further, He et al. (2016) focus on op-
ponent modeling in competitive setting via deep Q-learning,
using a simulated soccer game and a trivia game as testbed.
Tampuu et al. (2017) use deep Q-learning to train the 1vl
Pong game agents. Bansal et al. (2017) construct four 1vl
games in MuJoCo environment to analyze the emergent
complexity in multi-agent competition.

Comparing to these, we study RL systems with a more
complex competitive setting, i.e., the MOBA 1vl games.
One published state-of-the-art work on this line proposes a
monte-carlo tree search (MCTS) based RL method for play-
ing MOBA 1v1, which uses the game Honor of Kings as
testbed (Jiang, Ekwedike, and Liu 2018). Recently, OpenAl
announced an Al for playing DOTA2 (DOTA2 is a popu-
lar MOBA game) that can defeat professionals. The techni-
cal details are not open yet, an overview is posted (OpenAl
2018). Apart from this, our work presents the first system-
atic investigation focusing on the action controls of agents
in complex games (micro-management in esports). We play
1vl full game in Honor of Kings, i.e., the game ends until the
home base destroyed; And further, the robustness and scal-
ability of our method have been thoroughly tested, as our
method has been applied to train various hero types, includ-
ing Mage, Marksman, Warrior, etc. As mentioned, playing a
different MOBA hero is like playing a different game.

This work is also related to research on building Al agents
for playing StarCraft 1vl games which have been signifi-
cantly explored (Ontanén et al. 2013; Robertson and Watson
2014). By comparison, StarCraft 1v1 games are of a differ-
ent kind of complexity, i.e., MOBA 1v1 is known for the
complex action control of heroes which is in the scope of
this paper, while StarCraft 1v1 measures more on the strat-
egy to control many game units simultaneously.

System Design

In this section, we first present an overview of our proposed
framework for MOBA 1v1, and then describe each module.
To make our presentation easier, we first introduce our sys-
tem design in this section, and leave the algorithm design for
the next section.

Considering the fact that complex agent control prob-
lems can introduce high variance of stochastic gradients,
e.g. the MOBA 1v1 games, large batch size is necessary
to speed up the training (McCandlish et al. 2018). Thus,
we design a scalable and loosely-coupled system architec-
ture to construct the utility of data parallelism. Specifically,
our architecture consists of four modules, i.e., Reinforce-
ment Learning (RL) Learner, Artificial Intelligence (AI)
Server, Dispatch Module and Memory Pool, as shown in
Fig. 1. AI Server implements how the AI model interacts
with the environment. The Dispatch Module is a station
for sample collection, compression and transmission. The



Game State
Info Feature

Action
Probability

Action
Mask

[ > .
[
Al Server with Game Env \
self-play y
L Dispatch

RL Learner

Policy network

Value network

GPUs with All-Reduce

: Memory Pool &

Figure 1: Overview of our System Design

Memory Pool is the data storage module, which provides
training instances for the RL Learner. Note that these mod-
ules are decoupled and can be flexibly configured, so that our
researchers can focus on the algorithm design and the logic
of the environment. Such a system design is also applica-
ble to other multi-agent competitive problems. The details
of these modules are provided as follows:

Al Server covers the interaction logic between game en-
vironment and the Al model. Al server generates episodes
via self-play with mirrored policies (Silver et al. 2017). The
opponent policy sampling is similar to (Bansal et al. 2017).
Based on the features extracted from game state, hero ac-
tion is predicted using Boltzman exploration (Cesa-Bianchi
et al. 2017), i.e., sampling based on softmax distribution.
The sampled action is then forwarded to the game core for
execution. After execution, the game core returns the corre-
sponding reward value and the next state continuously. In
use, one Al Server will bind one CPU core. Because the
game logic deduction runs on CPUs, we also run the model
inference on CPUs to save the IO cost. In order to gener-
ate episodes efficiently, we build a CPU version of the fast
inference library FeatherCNN !. FeatherCNN can automati-
cally convert Al models trained from mainstream tools like
Tensorflow and Caffe, to a customized format for inference.

Each Dispatch Module is bounded with several Al
Servers on the same machine. It is a server that collects data
samples from Al Servers, consisting of reward, feature, ac-
tion probabilities, etc. These samples are firstly compressed
and packed, and then send to Memory Pools. The Mem-
ory Pool is also a server. Its internals are implemented as
a memory efficient circular queue for data storage. It sup-
ports samples of varied lengths, and data sampling based on
the generated time.

The RL Learner is a distributed training environment. To
accelerate policy update using large batch sizes, multiple RL
Learners are integrated to parallelly fetch data from the same
number of Memory Pools. The gradients in the RL learners
are averaged through the ring allreduce algorithm (Sergeev
and Balso 2018). To reduce IO cost, RL Learners commu-

"FeatherCNN is a state-of-the-art inference engine for mobile
devices: https://github.com/Tencent/FeatherCNN
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nicate with Memory Pools using shared memory instead of
socket, which can deliver 2-3 times of speed boosting. The
trained models from the RL Learners are rapidly synchro-
nized to Al Servers in a peer-to-peer manner.

In our system, the experiences generation is decou-
pled from the parameters learning. This flexible mecha-
nism makes Al Servers and RL learners scalable with high
throughput. To avoid the bottleneck of communication cost
between learners and actors, our trained models are synchro-
nized to Al Servers via peer-to-peer from our master RL
Learner. To smooth data storage and transmission, we de-
sign two mediators, i.e., the Dispatch Server and the Mem-
ory Pool Server. In practice, we can scale to millions of CPU
cores and thousands of GPUs effortlessly. Note that such de-
sign differs from existing system designs like IMPALA (Es-
peholt et al. 2018). In IMPALA, parameters are distributed
across the learners, and actors retrieve the parameters from
all the learners in parallel.

Algorithm Design

In the RL Learner, an actor-critic network is implemented
to model the action control dependencies in MOBA 1vl
games. Figure 2 illustrates this network, the state and ac-
tions. To train this network efficiently and effectively, sev-
eral novel strategies are proposed. First, the rarget atten-
tion mechanism is designed in this network to help with
the target selection in MOBA combats. Second, LSTMs are
leveraged for the hero to learn the skill combos which are
critical to create severe and instant damage. Third, the de-
coupling of control dependencies is conducted to form a
multi-label proximal policy optimization (PPO) objective.
Forth, a game-knowledge-based pruning method, called ac-
tion mask, is developed to guide explorations during the re-
inforcement process. Finally, a dual-clipped version of the
PPO algorithm is proposed to guarantee convergence with
large and deviated batches (Schulman et al. 2017). The de-
tails of our network are provided in the remaining para-
graphs.

First, the network encodes image features f;, vector fea-
tures f,, and game state information f, (the observable
game states) as encodings h;, h,,, and hy using convolutions,
fully-connections, and fully-connections (FC), respectively.
Specifically, after a few layers of FC/ReLu, the encoding of
fu 1s splitted into two parts: the representation of the unit and
the attention keys of our target. To handle the varied number
of units, the same type units are mapped to a feature vector
of fixed length by max-pooling. Then the concatenation of
hi, hy for all types, and hy is represented as the encoding
vector of an observable game state. The state encoding is
then mapped to the final representation h g7y by a LSTM
cell, which further takes the temporal information into con-
sideration. hz s is sent to a FC layer to predict the action
a. The target unit ¢ of action a is predicted by a target at-
tention mechanism over every unit. This mechanism treats
a FC output of hzs7as as the query, the stack of all unit en-
codings as the keys hy.ys, and calculate the target attention
as:

p(tla) = Softmax(FC(hrsrm) - hgeys) (1)
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Figure 2: Illustrations of state, action, policy and value. A state s € S covers three types of information: local image info (e.g.,
obstacles in 2D), observable unit attributes (e.g., hero type, health point), and observable game state info (e.g., game time,
turrets destroyed, etc.), i.e., s = [f;, fu, fg]. An action a € A in a MOBA 1v1 game specifies two items: the content (i.e., the
action button to press, the Move_X, the Move_Y, Offset_X, and Offset_Y) and the target game unit. The action buttons include
move, attack, skill releasing, etc. The policy 7y is modeled by FCs and an LSTM, which also predicts the values.

where p(t|a) is the attention distribution over units and the
dimension of p(t|a) is the number of units in the state.

Second, it is very hard to explicitly model the inter-
correlations among different labels in one action of MOBA
games in the multi-label policy network, e.g. the correlation
between the direction of a skill (Offset_X and Offset_Y),
and the skill type (Button). To solve this issue, we treat
each label in an action independently to decouple their inter-
correlations, i.e., the decoupling of control dependencies.
Before decoupling the inter-correlations, the PPO objective
without clipping is:

W@(at\st) A:|
71-(901‘1(at|3t) A

where the expectation Et[] indicates an empirical average
over a finite batch of samples, stochastic policy 7y predicts
the probability of taking action a; at state s;, and Ay is an
estimator of the advantage function at timestep ¢. Suppose
each action a = (a°,...,a™==1), then the objective after

action decoupling becomes:
(4)
mo(a; ' |se)
loblod ]

N,—1
I’IlBaX Z ]Es’awm’om[ (4)
i=0 T o1 (at |St)

This decoupled objective brings two advantages. First,
it simplifies the policy structure. Specifically, the pol-
icy network can be defined without considering the inter-
correlations as this dependency can be post-processed. Sec-
ond, it increases the diversity of actions. As each compo-
nent has its independent own channel of value output, the
actions can be significantly diversified, thus inducing more
explorations during training. Furthermore, to force diversity
of exploration, we randomize the positions of both agents
during training at the beginning of the game.

However, the action decoupling further increases the com-
plexity of policy training, while it is originally very high due
to the vast action and state spaces in MOBA 1v1 games. To
improve the training efficiency, an action mask is proposed

@

m(?X IE570/\"71-90&1 |:
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to incorporate the correlations between action elements at
the final output layers of the policy based on prior knowl-
edge of experienced human player, which helps prune the
exploration of RL. Specifically, our action mask helps elim-
inate several unreasonable aspects: 1) physically forbidden
areas on map, e.g., suppose the predicted action is to move
towards a direction, which cannot be performed as that di-
rection is occupied by obstacles in the map; 2) skill or attack
availability, e.g., the predicted action to release a skill within
Cool Down time shall be eliminated; 3) being controlled by
enemy hero skill or equipment effects; 4) hero-/item-specific
restrictions.

Dual-clip PPO Let r4(f) denote the probability ratio

molarlse) . Because the ratio r4(6) can be extremely large,
Togq (@t|se)

maximization of the RL objective may lead to an excessively
large policy deviation. To alleviate this issue, the standard
PPO algorithm (Schulman et al. 2017) involves a ratio clip
as follows:

LP(9) = E, [min (rt(e)/it, clip(r¢(0), 1—e, 1+€)At):| ,
“4)
to penalize extreme changes to the policy.

However, in large-scale off-policy training environments
like our framework, the trajectories are sampled from vari-
ous sources of policies, which may differ considerably from
the current policy 7. In such situations, the standard PPO
will fail to work with such deviations since it was originally
proposed for on-policy (Schulman et al. 2017). For exam-
ple, when Wg(a§1)|8t) > Wg(),d(agz)|st), the ratio r4(#) is a
huge number. When A, < 0, such a large ratio r,(8) will
introduce a big and unbounded variance since 7 (G)At < 0.
As a result, even using the objective of PPO, the new pol-
icy deviates significantly from the old policy, which makes
it very difficult to insure the policy convergence. We thus
propose a dual-clipped PPO algorithm to support large-scale
distributed training, which further clip the ratio r;(6) with a
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Figure 3: (a) Standard PPO (clip with ¢); (b) Our Proposed
Dual-clip PPO ( clip with € and ¢ when A; < 0)

lower bound of the value ,(6) Ay, illustrated in Fig. 3. When
A < 0, the new objective of our dual-clipped PPO is:

E, [max (min (rt (9)/1,5, clip(r,g(G)7 1—¢1+ E)Ai) , cAt)]

&)

where ¢ > 1 is a constant indicating the lower bound.

Experiments
System Setup

We test our method by using the 1vl mode in Honor
of Kings, which is the most popular MOBA game nowa-
days, and has been actively used as the testbed for re-
cent RL advances (Eisenach et al. 2019; Wang et al. 2018;
Jiang, Ekwedike, and Liu 2018).

Our framework runs over a total number of 600,000 CPU
cores encapsulated in Dockers and 1,064 Nvidia GPUs (a
mixture of Tesla P40 and V100). The volume of our frame-
work allows parallel experiments. We have 1600 vector fea-
tures containing observable unit attributions and game in-
formation, and 2 channels of image features read from game
core (the obstacle channel and the hero position channel).
We mainly use vectors to represent observations as they they
are lightweight. We adopt FP16 for data transmission to save
bandwidth, and revert to FP32 for training. To train one hero,
we use 48 P40 GPU cards and 18,000 CPU cores. The mini-
batch size per GPU card is 4096. The time step and unit
size of the LSTM are 16 and 1024, respectively. We train
using full rollouts, i.e., one episode ends until the termina-
tion of the game, and we use zero-start, i.e., the agent starts
the game from Frame 0. The training speed is about 80000
samples per second per GPU card. We use the game core of
Honor of Kings directly to execute the game. With the high
throughput of our framework, we have experiences collected
per day per hero is about 500 years human data in the 1vl
mode of Honor of Kings.

We use Adam optimizer with initial learning rate 0.0001.
In the dual-clipped PPO, the two clipping hyperparameters ¢
and c are set as 0.2 and 3, respectively. The discount factor is
set as 0.997. For the case of Honor of Kings, this discount is
valuing future rewards with a half-life of about 46 seconds.
We use generalized advantage estimation (GAE) (Schulman
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Table 2: Information of human professional testers. Here
“the league” refers to the Honor of Kings Professional
League, known as KPL.

Info

professional, a.k.a, best Mage in the league

Player

eStarPro.Cat

QGhappy.Hurt  professional, a.k.a, best Marksman in the league
TS.NuanYang professional, famous top Assassin player
QGhappy.Fly  professional, a.k.a best Warrior in the league
WE.762 professional, famous top Warrior player

et al. 2015) for reward calculation, and we set A = 0.95 in
GAE to reduce the variance caused by delayed effects.

To evaluate the trained AI’s ability in real world, we de-
ploy the Al model into Honor of Kings to play against pro-
fessional and top-amateur human players. We predict ac-
tions via the Al model every 133 ms which is about the re-
sponse time of top-amateur players. We also compare our
Al with baseline methods used in existing works (Jiang, Ek-
wedike, and Liu 2018) for playing 1vl games in Honor of
Kings, including behavior-tree (implemented as the internal
Al in the game), MTCS and its variants. We also use Elo
rating (Coulom 2008) for comparing different versions of
models, similar to that of AlphaGo (Silver et al. 2016).

Experimental Results

Exploring the Upper Limit of Control Ability
We invite 5 top professional Honor of Kings hu-
man players to play BO5 (best of five) matches
against our Al. They are QGhappy.Hurt, WE.762,
TS.NuanYang, QGhappy.Fly, eStarPro.Cat
(name in CLUB . PLAYER format). The information of these
players are briefed in Table 2.

Table 3 shows the match results. Note that these pro-
fessional players play the heroes they are specialized in.
We see that our Al can defeat professional players on
heroes of various types. Take the Mage hero DiaoChan
for instance, our Al defeats eStarPro.Cat with the score
3:0. eStarPro.Cat is the current best Mage player in
the professional league, and is particularly good at control-
ling DiaoChan. DiaoChan controlled by Al dominates the
game. It achieves 5 kills per game, but gets killed only 1.33
times on average. The game lasts for 6 minutes and 56 sec-
onds on average. Al also prevails significantly in terms of
gold and experience gained in game.

Evaluating the Robustness of Control Ability We fur-
ther evaluate whether the policies learned by our Al could
counter to a diversity of top human players. In ChinaJoy
2019, we held large public matches where the public was
allowed to face off against our Al, from Aug. 2 to Aug. 5,
2019, held in Shanghai, China 2. We showcased eight Al
heroes of different types in total. Human players who de-
feat Al in 1vl games will be rewarded with a 600 USD
smart phone. Participants must have demonstrated rankings
in Honor of Kings as the entry condition (top 1% minimum).
The statistics results of our public experiment are provided

This event was held jointly by Vivo, Qualcomm and Tencent.



Table 3: Match Statistics of our Al vs. Professional Players on Different Types of Heroes

Hero DiaoChan DiRenjie LuNa HanXin HuaMulan
Hero Type Mage Marksman Warrior+Mage Assassin Warrior
Score 3:0 (AL:eStarPro.Cat)  3:0 (A:QGhappy.Hurt)  3:0 (AL:QGhappy.Fly)  3:1 (AL:TS.NuanYang) 3:0 (AI:WE.762)
Kill 5.0:1.3 2.3:0.7 2.7:1.0 2.5:1.5 4.0:1.3
Game Length 6’56” 6'23” 7°53” 6’41~ 6°48”
Gold/min 852.7:430.6 869.3:606.6 969.7:724.0 954.1:754.2 945.2:654.2
Exp/min 900.0:573.0 895.3:661.7 979.0:817.2 965.4:802.5 921.4:723.1
Table 4: Results of Al vs. Various Top Human Players Table 5: Results of Ablation Experiments
Hero Name Hero Type #Matches #Win Rate Item Win rate vs Base Time to converge
TN -
1IKE€NnJie argKsman ©0
HuaMuLan ~ Warrior 256 256 100% Base + AM 30.5% 65h
HanXin Assassin 21 220 99.55% Base + TA 75% 90 h
LuNa Warrior+Mage 260 260 100% Base + LSTM 73% 100 h
HouYi Marksman 79 78 98.70% Full version 90% 80 h
LuBan Marksman 354 354 100%
SunWukong  Assassin 221 219 99.09%
2100 2096 99 81% 1750 - Professional level

in Table 4. Our AI achieves a 99.81% win rate among 2100
matches, with only 4 games lost. Five of the eight heroes
achieve a 100% win rate through hundreds of matches.

Comparison with Baselines We also compare our
method with existing methods. As mentioned, a recent work
applies monte-carlo tree search (MCTS) based RL to build
Al for playing 1vl games in Honor of Kings (Jiang, Ek-
wedike, and Liu 2018). Particularly, they built four Al
agents with MCTS and its variants, which are named as
“FBTS”, “NR”, “DPI”, and “AVI”, respectively. Their eval-
uation method is to compare which of these agents can de-
feat the same baseline opponent faster, while the detailed
match statistics have not been reported. Specifically, their
baseline opponent consists of six Marksman heroes that can
be defeated by the internal “DiRenlJie” Al, implemented us-
ing behavior-trees. Following the same experiment settings,
we compare the averaged length of time for our Al to de-
feat the same baseline opponent. The result is shown in Fig.
4. We see that the Al trained from our method significantly
outperforms the FBTS, NR, DPI, AVI and the internal Al

ES o ©
| '

15 frames = 1 second
N

Frames until Win (x 1000)

Our Al FBTS NR DPI
Methods

g
Internal Al

i
AVI

Figure 4: Comparing Averaged Time Length to Defeat the
Same Baseline Opponent
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Progression During Training In Fig. 5, we show the
change of Elo rating during training, using the Marksman
hero “DiRenlJie” as a case. We observe that the Elo score
grows with the training length and becomes relatively steady
after about 80 hours. Further, the growth rate of Elo is in-
versely proportional to training time. With about 6 hours
training, the Al begins to defeat the internal behavior-tree
based Al with 100% win rate. The Al ability rapidly in-
creases to King Player’s level (top 1% human player for
Honor of Kings) after about 30 hours, and becomes com-
parable to professionals after 70 hours.

Ablation Study We conduct ablation experiments to un-
derstand the effect of different components and settings in
our method.

We first analyze three components from the model net-
work, including the action mask (AM), target attention (TA)
and LSTM we developed. In Table 5, we show the results
of a tournament between different “DiRenJie” Al versions
using the same amount of training resources. The Full ver-
sion refers to the strongest Al we trained, while the Base
version means the Full version without the aforementioned
three components. We see that using action mask can largely
reduce the training time, while achieving the same Al abil-
ity as the Base (win rate 50.5%). We see that the TA and the



LSTM are both useful to improve the Al ability.

We also analyze hyperparameter settings. Particularly, we
compare full rollouts (FR) with partial rollouts (PR) with
fixed N frames, and we compare random initial frame (RIF)
with zero-start (ZS), i.e., selecting random frame of the
whole game as the start of the Markov decision process
(RIF) versus starting from the beginning of the game (ZS).
We find that: 1) FR improves the AI’s ability to a large mar-
gin, with which the win rate increases to 70%~80% when
compared to PR with 1000, 2000 and 3000 frames; 2) RIF
can speed up the convergence by 15% but at a cost of slightly
lower Al ability (win rate 40% when compared to ZS).

Conclusion and Future Work

In this paper, we present a deep reinforcement learning
(DRL) approach to handle the complex action control of
agents in MOBA 1v1 games, from the perspectives of both
system and algorithm. We propose a scalable and off-policy
DRL system architecture for massive episode exploration.
We propose an actor-critic multi-label neural network, con-
taining several strategies for modeling MOBA combats, and
a dual-clipped version of the PPO algorithm for ensuring
convergence. The resulting Al from our framework can de-
feat top professional esports players in MOBA 1v1 games,
tested on the popular MOBA game Honor of Kings.

As a next step, we will make our framework and algo-
rithm open source, and the game core of Honor of Kings
accessible to the community to facilitate further research on
complex games; and we will also provide part of our com-
puting resources via virtual cloud for public use 3.

Appendix
MOBA 1v1 Games

Real-time Strategy (RTS) games are considered as a grand
challenge for Al research (Vinyals et al. 2019). MOBA is
one type of RTS games, and is the most played game type
(Mora-Cantallops and Sicilia 2018). Popular MOBA games
include Dota, Honor of Kings, League of Legends, etc.

MOBA 1vl mode is a pure arena for competing one’s
level of action control. The formal 1v1 matches, for fair-
ness, are mirror games, i.e., two players pick the same hero
and control their own hero individually to fight against each
other. When the game begins, each player sets out from
the base, gains gold and experience by killing or destroy-
ing other game units (e.g., enemy heroes, creeps, turrets).
The goal is to destroy the opponent’s turrets and base while
protecting own turrets and base. Briefly, creeps are a small
group of computer-controlled creatures periodically travel
along the predefined lane to attack the opponent. Turrets,
i.e., defensive buildings, are designed to attack any creeps
or heroes moving into their sight area. Heroes are player-
controlled units which can move around and have abilities
to release various attacks and healing skills.

Each MOBA hero requires very complicated control
mechanism, known as micro-management in esports. All

3By Nov. 21, 2019, the Beta version is open to 4 universities in
China for user feedback.
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Figure 6: Game UI of Honor of Kings 1vl. In the main
screen, there are four sub-parts: mini-map (A) on the top-
left, dashboard (B) on the top-right, movement controller
(C.1) on the bottom-left, and ability controller (C.2) on the
bottom-right, as highlighted in each box.

Table 6: Reward Design

Reward Weight Type Description

hp_point 2.0 dense the health point of hero
tower_hp_point  10.0 sparse the health point of turrets and base
money (gold)  0.008 dense  the gold gained

ep_rate 0.8 dense  the rate of mana

death -1.0 sparse  being killed

kill -0.5 sparse  kill an enemy hero

exp 0.008 dense the experience gained

last_hit 0.5 sparse last hitting to enemy units

reward_sum
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Figure 7: A case of reward change during training; the x-axis
is the training time in hours, the y-axis is reward; camp1 and
camp?2 refer to the two camps (teams) in MOBA games.

MOBA games have various types of heroes. For example,
in Honor of Kings, there are six types of heroes, including
Mage, Assassin, Warrior, Marksman, Tank, Support. Dif-
ferent hero types have different playing method. Generally,
Tank and Support are durable heroes and are mainly for de-



fense, thus not suitable for MOBA 1v1 solo games. The rest
four types are generally selected for MOBA 1v1 esports. In
Fig. 6, we show the UI of the MOBA game Honor of Kings
as an example.

Reward

All the trained 1v1 heroes use the same reward, shown in Ta-
ble 6. The reward design is inspired by OpenAl Five’s Dota
reward (OpenAl 2018). The reward is zero-sum, i.e., one’s
mean reward is subtracted from that of the opponent. Our
framework allows on-the-fly reward analysis during train-
ing. A case of the DiaoChan hero is shown in Fig. 7.
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