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Abstract

Towards the challenging problem of semi-supervised node
classification, there have been extensive studies. As a frontier,
Graph Neural Networks (GNNs) have aroused great interest
recently, which update the representation of each node by ag-
gregating information of its neighbors. However, most GNNs
have shallow layers with a limited receptive field and may not
achieve satisfactory performance especially when the number
of labeled nodes is quite small. To address this challenge, we
innovatively propose a graph few-shot learning (GFL) algo-
rithm that incorporates prior knowledge learned from auxiliary
graphs to improve classification accuracy on the target graph.
Specifically, a transferable metric space characterized by a
node embedding and a graph-specific prototype embedding
function is shared between auxiliary graphs and the target,
facilitating the transfer of structural knowledge. Extensive
experiments and ablation studies on four real-world graph
datasets demonstrate the effectiveness of our proposed model
and the contribution of each component.

1 Introduction

Classifying a node (e.g., predicting interests of a user) in
a graph (e.g., a social network on Facebook) in a semi-
supervised manner has been challenging but imperative, inas-
much as only a small fraction of nodes have access to annota-
tions which are usually costly. Drawing inspiration from tra-
ditional regularization-based (Zhu, Ghahramani, and Lafferty
2003) and embedding-based (Perozzi, Al-Rfou, and Skiena
2014) approaches for graph-based semi-supervised learn-
ing, graph neural networks (GNN) (Kipf and Welling 2017;
Veličković et al. 2018) have attracted considerable interest
and demonstrated promising performance recently.

To their essential characteristics, GNNs recursively update
the feature of each node through aggregation (or message
passing) of its neighbors, by which the patterns of graph
topology and node features are both captured. Nevertheless,
considering that adding more layers increases the difficulty of
training and over-smoothens node features (Kipf and Welling
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2017), most of existing GNNs have shallow layers with a
restricted receptive field. Therefore, GNNs are inadequate
to characterize the global information, and work not that
satisfactorily when the number of labeled nodes is especially
small.

Inspired by recent success of few-shot learning, from a
innovative perspective, we are motivated to leverage the
knowledge learned from auxiliary graphs to improve semi-
supervised node classification in the target graph of our inter-
est. The intuition behind lies in that auxiliary graphs and the
target graph likely share local topological structures as well
as class-dependent node features (Shervashidze et al. 2011;
Koutra, Joshua T., and Faloutsos 2013). For example, an ex-
isting social network group of co-workers at Google offer
valuable clues to predict interests of users in a newly emerged
social network group of co-workers at Amazon.

Yet it is even more challenging to achieve few-shot learn-
ing on graphs than on independent and identically dis-
tributed data (e.g., images) which exisiting few shot learn-
ing algorithms focus on. The two lines of recent few-shot
learning works, including gradient-based methods (Finn,
Abbeel, and Levine 2017; Ravi and Larochelle 2016) and
metric-based methods (Snell, Swersky, and Zemel 2017;
Vinyals et al. 2016), formulate the transferred knowledge
as parameter initializations (or a meta-optimizer) and a met-
ric space, respectively. None of them, however, meets the
crucial prerequisite of graph few-shot learning to succeed,
i.e., transferring underlying structures across graphs.

To this end, we propose a novel Graph Few-shot Learning
(GFL) model. Built upon metric-based few-shot learning, the
basic idea of GFL is to learn a transferable metric space in
which the label of a node is predicted as the class of the
nearest prototype to the node. The metric space is practically
characterized with two embedding functions, which embed
a node and the prototype of each class, respectively. Specifi-
cally, first, GFL learns the representation of each node using
a graph autoencoder whose backbone is GNNs. Second, to
better capture global information, we establish a relational
structure of all examples belonging to the same class, and
learn the prototype of this class by applying a prototype GNN
to the relational structure. Most importantly, both embedding
functions encrypting structured knowledge are transferred
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from auxiliary graphs to the target one, to remedy the lack
of labeled nodes. Besides the two node-level structures, note
that we also craft the graph-level representation via a hier-
archical graph representation gate, to enforce that similar
graphs have similar metric spaces.

To summarize, our main contributions are: (1) to the best
of our knowledge, it is the first work that resorts to knowl-
edge transfer to improve semi-supervised node classification
in graphs; (2) we propose a novel graph few-shot learning
model (GFL) to solve the problem, which simultaneouly
transfers node-level and graph-level structures across graphs;
(3) comprehensive experiments on four node classification
tasks empirically demonstrate the effectiveness of GFL.

2 Related Work

In this section, we briefly introduce the relevant research lines
of our work: graph neural network and few-shot learning.

Graph Neural Network Recently, a variety of graph neu-
ral network models (GNN) have been proposed to exploit
the structures underlying graphs to benefit a variety of
applications (Kipf and Welling 2017; Zhang et al. 2019;
Tang et al. 2019; Huang et al. 2019; Liu et al. 2019;
Gao, Wang, and Ji 2018). There are two lines of GNN meth-
ods: non-spectral methods and spectral methods. The spec-
tral methods mainly learn graph representations in the spec-
tral domain (Defferrard, Bresson, and Vandergheynst 2016;
Henaff, Bruna, and LeCun 2015; Bruna et al. 2013; Kipf
and Welling 2017), where the learned filters are based on
Laplacian matrices. For non-spectral methods, the basic idea
is to develop an aggregator to aggregate a local set of fea-
tures (Veličković et al. 2018; Hamilton, Ying, and Leskovec
2017). These methods have achieved great success in several
graph-based tasks, such as node classification and graph clas-
sification. Thus, in this paper, we are motivated to leverage
GNN as the base architecture to learn the node and graph
representation.

Few-Shot Learning Few-shot/Zero-shot learning via
knowledge transfer has achieve great success in a variety
of applications (Li et al. 2019; 2018; Yao et al. 2019a). There
are two popular types of approaches for few-shot learning: (1)
gradient-based few-shot learning methods, which aim to learn
a better initialization of model parameters that can be updated
by a few gradient steps in future tasks (Finn, Abbeel, and
Levine 2017; Finn, Xu, and Levine 2018; Lee and Choi 2018;
Yao et al. 2019b) or directly use a meta-optimizer to learn the
optimization process (Ravi and Larochelle 2016); (2) metric-
based few-shot learning methods, which propose to learn
a generalized metric and matching functions from training
tasks (Snell, Swersky, and Zemel 2017; Vinyals et al. 2016;
Yang et al. 2018; Bertinetto et al. 2019). Our proposed GFL
falls into the second category. These traditional metric-based
few-shot learning methods are dedicated to independent and
identically distributed data, between which no explicit inter-
actions exists.

3 Preliminaries

Graph Neural Network A graph G is represented as (A,
X), where A ∈ {0, 1}n×n is the adjacent matrix, and
X = {x1, . . . ,xn} ∈ R

n×h is the node feature matrix. To
learn the node represetation for graph G, an embedding func-
tion f with parameter θ are defined. In this work, following
the “message-passing” architecture (Gilmer et al. 2017), the
embedding function fθ is built upon graph neural network
(GNN) in an end-to-end manner, which is formulated as:

H(l+1) =M(A,H(l);W(l)), (1)

where M is the message passing function and has a series
of possible implementations (Hamilton, Ying, and Leskovec
2017; Kipf and Welling 2017; Veličković et al. 2018), H(l+1)

is the node embedding after l layers of GNN and W(l) is
learnable weight matrix of layer l. The node feature X is
used as the initial node embedding H(1), i.e., H(1) = X.
After stacking L graph neural network layers, we can get the
final representation Z = fθ(A,X) = H(L+1) ∈ R

h′
. For

simplicity, we will use Z = GNN(A,X) to denote a GNN
with L layers.

The Graph Few-Shot Learning Problem Similar as the
traditional few-shot learning settings (Snell, Swersky, and
Zemel 2017; Vinyals et al. 2016; Finn and Levine 2018),
in graph few-shot learning, we are given a sequence of
graphs {G1, . . . ,GNt

} sampled from a probability distribu-
tion E over tasks (Baxter 1998). For each graph Gi ∼ E .
we are provided with a small set of nsi labeled support
nodes set Si = {(xsi

i,j , y
si
i,j)}n

si

j=1 and a query nodes set
Qi = {(xqi

i,j , y
qi
i,j)}n

qi

j=1, where yi,j ∈ {1, ...K} is the cor-
responding label. For each node j in query set Qi, we are
supposed to predict its corresponding label by associating
its embedding fθ(A,xqi

i,j) : R
h → R

h′
with representation

(fθ(A,xsi
i,j), y

si
i,j) in support set Si via the similarity measure

d. Specifically, in prototypical network (Snell, Swersky, and
Zemel 2017), the prototype cki for each class k is defined
as cki =

∑
x
si
i,j∈Sk

i
fθ(A,xsi

i,j)/|Sk
i |, where Sk

i denotes the

sample set in Si of class k and |Sk
i | means the number of

samples in Sk
i . For each graph Gi, the effectiveness on query

set Qi is evaluated by the loss Li =
∑

k Lk
i , where:

Lk
i = −

∑

(x
qi
i,j ,y

qi
i,j)∈Qk

i

log
exp(−d(fθ(A,xqi

i,j), c
k
i ))∑

k′ exp(−d(fθ(A,xqi
i,j), c

k′
i ))

, (2)

where Qk
i is the query set of class k from Qi. The goal

of graph few-shot learning is to learn a well-generalized
embedding function fθ from previous graphs which can be
used to a new graph with a small support set. To achieve this
goal, few-shot learning often includes two-steps, i.e., meta-
training and meta-testing. In meta-training, the parameter
θ of embedding function fθ is optimized to minimize the
expected empirical loss over all historical training graphs,
i.e., minθ

∑Nt

i=1 Li. Once trained, given a new graph Gt, the
learned embedding function fθ can be used to improve the
learning effectiveness with a few support nodes.
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4 Methodology

In this section, we elaborate our proposed GFL whose frame-
work is illustrated in Figure 1. The goal of GFL is to adapt
graph-structured knowledge learned from existing graphs to
the new graph Gt by exploiting the relational structure in both
node-level and graph-level. In the node level, GFL captures
the relational structure among different nodes. In part (a) of
Figure 1, for each class k, the corresponding relational struc-
ture is constructed by the samples in Sk

i and a prototype GNN
(PGNN) is proposed to learn its prototype representation. For
graph-level structures, GFL learns the representation of a
whole graph and ensures similar graphs have similar struc-
tured knowledge to be transferred. Specifically, as illustrated
in part (b) (see Figure 2 for more detailed structure of part
(b)), the parameters of PGNN highly depend on the whole
graph structure which is represented in a hierarchical way.
The matching loss is finally computed via the similarity mea-
sure d. To enhance the stability of training and the quality of
node representation, we further introduce the auxiliary graph
reconstruction structure, i.e., the part (c). In the remaining of
this section, we will detail the three components, i.e., graph
structured prototype, hierarchical graph representation gate
and auxiliary graph reconstruction.

4.1 Graph Structured Prototype

In most of the cases, a node plays two important roles in a
graph: one is locally interacting with the neighbors that may
belong to different classes; the other is interacting with the
nodes of the same class in relatively long distance, which
can be globally observed. For example, on a biomedical
knowledge graph, it is necessary to model both (1) the local
structure among disease nodes, treatment nodes, gene nodes,
and chemical nodes, and (2) the structure between disease
nodes describing their co-occurrence or evolutionary relation-
ship, as well as the structure between gene nodes describing
their co-expression. The embedding results Zi of graph Gi

describes the first role of local heterogeneous information.
And we need to learn the prototype of each class (as defined
in Section 3) for the second role of global homogeneous in-
formation. It is non-trivial to model the relational structure
among support nodes and learn their corresponding proto-
type, we thus propose a prototype GNN model denoted as
PGNN to tackle this challenge.

Given the representation of each node, we first extract the
relational structure of samples belong to class k. For each
graph Gi, the relational structure Rk

i of the sample set Sk
i can

be constructed based on some similarity metrics, such as the
number of k-hop common neighbors, the inverse topological
distance between nodes. To improve the robustness of Rk

i and
alleviate the effect of outlier nodes, we introduce a threshold
μ. If the similarity score w between a pair of nodes is smaller
than μ, we set it to a fixed value μ0, i.e., w = μ0 (μ0 < μ).
Then, the PGNN is used to model the interactions between
samples in the Sk

i , i.e., PGNNφ(Rk
i , fθ(Sk

i )), where PGNN
is parameterized by φ. Note that, PGNNφ(Rk

i , fθ(Sk
i )) is

a representation matrix, and we use j to indicate the j-th
node representation. Thus, the graph structured prototype is

calculated as follows,

cki = Pooln
ski

j=1(PGNNφ(Rk
i , fθ(Sk

i ))[j]), (3)

where Pool operator denotes a max or mean pooling operator
over support nodes and nski represents the number of nodes
in support set Sk

i .

4.2 Hierarchical Graph Representation Gate

The above prototype construction process is highly deter-
mined by the PGNN with the globally shared parameter φ.
However, different graphs have their own topological struc-
ture, motivating us to tailor the globally shared information
to each graph. Thus, we learn a hierarchical graph represen-
tation for extracting graph-specific information and incorpo-
rate it with the parameter of PGNN through a gate function.
Before detailing the structure, we first illustrate the impor-
tance of the hierarchical graph representation: the simple,
node level representation for a graph can be insufficient for
many complex graph structures, especially those high-order
structures that widely exist and are valuable in real-world
applications (Morris et al. 2019).

Figure 2 illustrates the detailed structure of hierarchi-
cal graph representation gate. First, following the popular
method of hierarchical graph modeling (Ying et al. 2018),
the hierarchical graph representation for each level is accom-
plished by alternating between two level-wise stages: the
node assignment and the representation fusion (see part (a)
in Figure 2).
Node Assignment In the assignment step, each low-level
node is assigned to high-level community. In level r of graph
Gi, we denote the number of nodes as Kr, the adjacency
matrix as Ar

i , the feature matrix as Xr
i . For the kr-th node in

r-th level, the assignment value pk
r→kr+1

i from node kr to
node kr+1 in (r + 1)-th level is calculated by applying soft-
max function on the output of an assignment GNN (AGNN)
as follows,

pk
r→kr+1

i =
exp(AGNN(Ar

i ,X
r
i )[k

r, kr+1])
∑Kr+1

k̄r+1=1 exp(AGNN(Ar
i ,X

r
i )[k

r, k̄r+1])
, (4)

where AGNN(Ar
i ,X

r
i )[k

r, kr+1] ∈ R
1 denotes the assign-

ment representation value from node kr in level r to node
kr+1 in level r + 1. The whole assignment matrix includ-
ing every assignment probability pk

r→kr+1

i is denoted as
Pr→r+1

i ∈ R
Kr×Kr+1

.
Representation Fusion After getting the assignment ma-
trix Pr→r+1

i ∈ R
Kr×Kr+1

, for level r + 1, the adjacent
matrix is defined as Ar+1

i = (Pr→r+1
i )TAr

iP
r→r+1
i and

the feature matrix is calculated by applying assignment ma-
trix on the output of a fusion GNN (FGNN), i.e., Xr+1

i =

(Pr→r+1
i )TFGNN(Ar

i ,X
r
i ). Then, the feature representa-

tion hr+1
i of level r+ 1 can be calculated by aggregating the

representation of all nodes, i.e.,

hr+1
i = PoolK

r+1

kr+1=1((P
r→r+1
i )TFGNN(Ar

i ,X
r
i )[k

r+1]), (5)

where Xr+1
i [kr+1] = (Pr→r+1

i )TFGNN(Ar
i ,X

r
i )[k

r+1]
denotes the feature representation of node kr+1.
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Figure 1: The framework of proposed GFL including three components. (a) Graph structured prototype: we extract the graph
relation structure for the support set Sk

i of each class k and use a prototype GNN (PGNN) to learn its representation cki ; (b)
Hierarchical graph representation gate: we learn the hierarchical representations of graph from level 1 to R, i.e., h1

i to hR
i , and

use the aggregated representation to modulate the parameters of PGNN; (c) Auxiliary graph reconstruction: we construct the
graph autoencoder to improve the training stability and the quality of node representation.
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Figure 2: The detailed framework of hierarchical graph rep-
resentation gate: (a) the basic block for learning hierarchi-
cal representation {h1

i , . . . ,h
R
i }; (b) aggregator to aggregate

{h1
i , . . . ,h

R
i }, where the learnable query vector qi is intro-

duced to calculate the attention weight β1 · · ·βR. Note that,
we only illustate the attention aggregator. (c) graph-specific
gate construction, where hi is used to calculate gate gi.

By calculating the representation of each level, we get the
representation set {h1

i , . . . ,h
R
i } which encrypts the graph

structure from different levels. Then, to get the whole graph
representation hi, the representation of each level is aggre-
gated via an aggregator AGG. In this work, we propose two
candidate aggregators: mean pooling aggregator and atten-
tion aggregator (see part (b) in Figure 2). For mean pooling
aggregator, the graph representation hi is defined as:

hi = AGGmean({h1
i , . . . ,h

R
i }) =

1

R

R∑

r=1

hr
i . (6)

Considering the representation of different levels may have
different contributions on the whole representation hi, for
attention aggregator, we first introduce a learnable query

vector as qi, and then the formulation is

hi = AGGatt({h1
i , . . . ,h

R
i }) =

R∑

r=1

β
r
i h

r
i =

R∑

r=1

qT
i hr

i∑R

r
′
=1

qT
i hr

′
i

h
r
i .

(7)
After the aggregating process, the final representation hi

is expected to be graph-specific. Inspired by previous find-
ings (Xu et al. 2015): similar graphs may activate similar
parameters (i.e., parameter φ of the PGNN), we introduce a
gate function gi = T (hi) (see part (c) in Figure 2) to tailor
graph structure specific information. Then, the global trans-
ferable knowledge (i.e., φ) is adapted to the structure-specific
parameter via the gate function, which is defined as follows:

φi = gi ◦ φ = T (hi) ◦ φ, (8)

where ◦ represents element-wise multiplication. gi = T (hi)
maps the graph-specific representation hi to the same space
of parameter φ, which is defined as:

gi = T (hi) = σ(Wghi + bg), (9)

where Wg and bg are learnable parameters. Thus, PGNNφ

in Eqn. (3) would be PGNNφi .

4.3 Auxiliary Graph Reconstruction

In practice, it is difficult to learn an informative node repre-
sentation using only the signal from the matching loss, which
motivates us to design a new constraint for improving the
training stability and the quality of node representation. Thus,
for the node embedding function fθ(·), we refine it by us-
ing a graph autoencoder. The reconstruction loss for training
autoencoder is defined as follows,
Lr(Ai,Xi) = ‖Ai −GNNdec(Zi)GNNT

dec(Zi)‖2F , (10)

where Zi = GNNenc(Ai,Hi) is the representation for
each node in graph Gi and ‖ · ‖F represents the Frobenius
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Algorithm 1 Training Process of GFL

Require: E: distribution over graphs; L: # of layers in hierar-
chical structure; α: stepsize; γ: balancing parameter for
loss

1: Randomly initialize Θ
2: while not done do
3: Sample a batch of graphs Gi ∼ E and its corresponding

adjacent matrices Ai and feature matrices Xi

4: for all Gi do
5: Sample support set Si and query set Qi

6: Compute the embedding fθ(Ai,Xi) and its recon-
struction error Lr(Ai,Xi) in Eqn. (10)

7: Compute the hierarchical representation
{h1

i , . . . ,h
R
i } in Eqn. (5) and gated parameter

φi in Eqn. (8)
8: Construct relational graphs {R1

i , ...,RK
i } for sam-

ples in Si and compute graph prototype {c1i , ..., cKi }
in Eqn. (3).

9: Compute the matching score using the query set Qi

and evaluate loss in Eqn. (2)
10: end for
11: Update Θ← Θ−α∇Θ

∑Nt
i=1 Li(Ai,Xi)+γLr(Ai,Xi)

12: end while

norm. Recalling the objectives for a prototypical network
in Section 3, we reach the optimization problem of GFL
as minΘ

∑Nt

i=1 Li + γLr(Ai,Xi), where Θ represents all
learnable parameters. The whole training process of GFL is
detailed in Alg. 1.

5 Experiments

In this section, we conduct extensive experiments to demon-
strate the benefits of GFL, with the goal of answering the
following questions: (1) Can GFL outperform baseline meth-

Table 1: Data Statistics.

Dataset Colla. Reddit Cita. Pubmed

# Nodes (avg.) 4,496 5,469 2,528 2,901
# Edges (avg.) 14,562 7,325 14,710 5,199
# Features/Node 128 600 100 500
# Classes 4 5 3 3
# Graphs (Meta-train) 100 150 30 60
# Graphs (Meta-val.) 10 15 3 5
# Graphs (Meta-test) 20 25 10 15

ods? (2) Can our proposed graph structured prototype and
hierarchical graph representation gate improve the perfor-
mance? (3) Can our approach learn better representations for
each class?

Dataset Description We use four datasets of different
kinds of graphs: Collaboration, Reddit, Citation and Pubmed.
(1): Collaboration data: Our first task is to predict research
domains of different academic authors. We use the collabo-
ration graphs extracted from the AMiner data (AMi 2019).
Each author is assigned with a computer science category

label according to the majority of their papers’ categories.
(2): Reddit data: In the second task, we predict communities
of different Reddit posts. We construct post-to-post graphs
from Reddit community data (Hamilton, Ying, and Leskovec
2017), where each edge denotes that the same user comments
on both posts. Each post is labeled with a community id. (3):
Citation data: The third task is to predict paper categories.
We derive paper citation graphs from the AMiner data and
each paper is labeled with a computer science category label.
(4): Pubmed data: Similar to the third task, the last task is to
predict paper class labels. The difference is that the citation
graphs are extracted from the PubMed database (Veličković
et al. 2018) and each node is associated with diabetes class
id. The statistics of these datasets are reported in Table 1.

Experimental Settings In this work, we follow the tradi-
tional few-shot learning settings (Finn, Abbeel, and Levine
2017; Snell, Swersky, and Zemel 2017). For each graph,
N labeled nodes for each class are provided as support set.
The rest nodes are used as query set for evaluating the per-
formance. Like (Kipf and Welling 2017), the embedding
structure (i.e., θ in Eqn. (3)) is a two-layer graph convolu-
tional structure (GCN) with 32 neurons in each layer. For
PGNN in Eqn. (3), each AGNN in Eqn. (4) and each FGNN
in Eqn. (5), we use one-layer GCN as the proxy of GNN. The
distance metric d is defined as the inner product distance. For
our proposed GFL, we use GFL-mean and GFL-att to repre-
sent the type of hierarchical representation aggregator (i.e.,
GFL-mean represents mean pooling aggregator in Eqn. (6)
and GFL-att represents attention aggregator in Eqn. (7)). The
threshold μ0 in Section 4.1 for constructing relation structure
of support set is set as 0.5.

Baseline Methods For performance comparison of node
classification, we consider three types of baselines: (1) Graph-
based semi-supervised methods including Label Propaga-
tion (LP) (Zhu and Ghahramani 2002) and Planetoid (Yang,
Cohen, and Salakhudinov 2016); (2) Graph representation
learning methods including Deepwalk (Perozzi, Al-Rfou,
and Skiena 2014), node2vec (Grover and Leskovec 2016),
Non-transfer-GCN (Kipf and Welling 2017). Note that, for
Non-transfer-GCN, we train GCN on each meta-testing graph
with limited labeled data rather than transferring knowledge
from meta-training graphs; (3) Transfer/few-shot methods
including All-Graph-Finetune (AGF), K-nearest-neighbor
(K-NN), Matching Network (Matchingnet) (Vinyals et al.
2016), MAML (Finn, Abbeel, and Levine 2017), Prototyp-
ical Network (Protonet) (Snell, Swersky, and Zemel 2017).
Note that, for All-Graph-Finetune and K-NN methods, follow
the settings of (Triantafillou et al. 2019), we first learn the
parameters of the embedding structure by feeding all meta-
graphs one by one. Then, we finetune the parameters or use
K-NN to classify nodes based on the learned parameters of
embedding structure. Each transfer/few-shot learning method
uses the same embedding structure (i.e., two layers GCN) as
GFL.

5.1 Results

Overall Results For each dataset, we report the averaged
accuracy with 95% confidence interval over meta-testing
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Table 2: Comparison between GFL and other node classification methods on four graph datasets. Performance of Accuracy±95%
confidence intervals on 10-shot classification are reported.

Model Collaboration Reddit Citation Pubmed

LP (Zhu and Ghahramani 2002) 61.09± 1.36% 23.40± 1.63% 67.00± 4.50% 48.55± 6.01%
Planetoid (Yang, Cohen, and Salakhudinov 2016) 62.95± 1.23% 50.97± 3.81% 61.94± 2.14% 51.43± 3.98%

Deepwalk (Perozzi, Al-Rfou, and Skiena 2014) 51.74± 1.59% 34.81± 2.81% 56.56± 5.25% 44.33± 4.88%
node2vec (Grover and Leskovec 2016) 59.77± 1.67% 43.57± 2.23% 54.66± 5.16% 41.89± 4.83%
Non-transfer-GCN (Kipf and Welling 2017) 63.16± 1.47% 46.21± 1.43% 63.95± 5.93% 54.87± 3.60%

All-Graph-Finetune (AGF) 76.09± 0.56% 54.13± 0.57% 88.93± 0.72% 83.06± 0.72%
K-NN 67.53± 1.33% 56.06± 1.36% 78.18± 1.70% 74.33± 0.52%
Matchingnet (Vinyals et al. 2016) 80.87± 0.76% 56.21± 1.87% 94.38± 0.45% 85.65± 0.21%
MAML (Finn, Abbeel, and Levine 2017) 79.37± 0.41% 59.39± 0.28% 95.71± 0.23% 88.44± 0.46%
Protonet (Snell, Swersky, and Zemel 2017) 80.49± 0.55% 60.46± 0.67% 95.12± 0.17% 87.90± 0.54%

GFL-mean (Ours) 83.51± 0.38% 62.66± 0.57% 96.51± 0.31% 89.37± 0.41%
GFL-att (Ours) 83.79± 0.39% 63.14± 0.51% 95.85± 0.26% 88.96± 0.43%

graphs of 10-shot node classification in Table 2. Comparing
with graph-based semi-supervised methods and graph repre-
sentation learning methods, first, we can see that transfer/few-
shot methods (i.e., AGF, K-NN, Matchingnet, MAML, Pro-
tonet, GFL) significantly improve the performance, show-
ing the power of knowledge transfer from previous learned
graphs. Second, both GFL-mean and GFL-att achieve the best
performance than other transfer/few-shot methods on four
datasets, indicating the effectiveness by incorporating graph
prototype and hierarchical graph representation. In addition,
as a metric distance based meta-learning algorithm, GFL
not only outperforms other algorithms from this research
line (i.e., Matchingnet, Protonet), but also achieves better
performance than MAML, a representative gradient-based
meta-learning algorithm.

Ablation Studies Since GFL integrates three essential
components (i.e., graph structured prototype, hierarchical
graph representation gate, auxiliary graph reconstruction), we
conduct extensive ablation studies to understand the contribu-
tion of each component. Table 3 shows the results of ablation
studies on each dataset, where the best results among GFL-
att and GFL-mean are reported as GFL results. Performance
of accuracy are reported in this table. For the graph struc-
tured prototype, in (M1a), we first report the performance
of protonet for comparison since Protonet use mean pooling
of node embedding instead of constructing and exploiting
relational structure for each class.

To show the effectiveness of hierarchical graph represen-
tation gate, we first remove this component and report the
performance in (M2a). The results are inferior, demonstrating
that the effectiveness of graph-level representation. In addi-
tion, we only use the flat representation structure (i.e., R = 1)
in (M2b). The results show the effectiveness of hierarchical
representation.

For auxiliary graph reconstruction, we remove the decoder
GNN and only use the encoder GNN to learn the node rep-
resentation in (M3). GFL outperforms (M3) as the graph
reconstruction loss refines the learned node representation
and enhance the stability of training.

(a) : Collaboration (b) : Reddit

(c) : Citation (d) : Pubmed

Figure 3: Effect of support set size, which is represented by
shot number N

5.2 Sensitivity Analysis

In this section, we analyze the sensitivities of the model to the
size of the support set, threshold μ in the construction of the
graph prototype, and the similarity function for constructing
relational structure Rk

i .

Effect of Support Set Size We analyze the effect of the
support set size, which is represented by the shot number N .
For comparisons, we select two representative few-shot learn-
ing methods: Protonet (metric-learning based model) and
MAML (gradient-based model). The results of each dataset
are shown in Figure 3a-3d. We notice that when the support
set size is small, Protonet performs worse than MAML. One
potential reason could be that Protonet is sensitive to outliers,
as it calculates prototype by averaging values over samples
with equal weights. Thus, more data is expected to derive
a reliable prototype. However, by extracting the relational

6661



Table 3: Results of Ablation Study. Performance of Accuracy±95% confidence intervals are reported. We select the best
performance of GFL-mean and GFL-att as GFL in this table.

Ablation Model Collaboration Reddit Citation Pubmed

(M1a): use the mean pooling prototype (i.e., protonet) 80.49± 0.55% 60.46± 0.67% 95.12± 0.17% 87.90± 0.54%

(M2a): remove the hierarchical representation gate 82.63± 0.45% 61.99± 0.27% 95.33± 0.35% 88.15± 0.55%
(M2b): use flat representation rather than hierarchical 83.45± 0.41% 62.55± 0.65% 95.76± 0.37% 89.08± 0.47%

(M3): remove the graph reconstruction loss 82.98± 0.37% 62.58± 0.47% 95.63± 0.27% 89.11± 0.43%

GFL (Ours) 83.79± 0.39% 63.14± 0.51% 96.51± 0.31% 89.37± 0.41%

(a) : Class 1: GFL (Ours) (b) : Class 2: GFL (Ours) (c) : Class 3: GFL (Ours) (d) : Class 4: GFL (Ours)

(e) : Class 1: Protonet (f) : Class 2: Protonet (g) : Class 3: Protonet (h) : Class 4: Protonet

Figure 4: Embedding visualization of positive (cyan nodes) and negative (grey nodes) data samples for each class.

Table 4: Effect of threshold μ in relational structure construc-
tion of graph prototype. Results of Accuracy are reported.

μ Collaboration Reddit Citation Pubmed

0.5 83.79% 63.14% 96.51% 89.37%
0.6 83.26% 63.43% 96.19% 89.42%
0.7 83.31% 63.17% 95.35% 89.60%
0.8 83.14% 63.21% 95.18% 89.21%

structure among samples of the same class, our algorithm is
more robust and achieves best performance in all scenarios.

Table 5: Effect of different similarity functions for calculating
relational structure Rk

i . Results of Accuracy are reported.

Method Collab. Reddit Cita. Pubmed

Jaccard 82.98% 62.71% 95.18% 88.91%
Adamic-Adar 83.70% 62.87% 95.49% 89.21%
PageRank 84.14% 63.08% 95.93% 90.02%
Top-k CN 83.79% 63.14% 96.51% 89.37%

Effect of Threshold μ in Graph Prototype Construction
We further analyze the effect of threshold μ for construct-
ing relational structure of the graph prototype. The results

of μ = {0.5, 0.6, 0.7, 0.8} are reported in Table 4. In this
table, the best threshold varies among different datasets. The
effectiveness of the threshold demonstrates that the proposed
model is robust to outliers.

Effect of Different Similarity Functions for Constructing
Relational Structure Rk

i We further analyze the effect
of different similarity functions for constructing relational
structure of the graph prototype. Jaccard Index, Adamic-
Adar (Adamic and Adar 2003), PageRank and Top-k Com-
mon Neighbors (Top-k CN) are selected and the results are
reported in Table 5. Note that, in previous results, we all use
Top-k CN as similarity function. The results show that GFL
is not very sensitive to the similarity on a dataset may be
achieved by different functions.

5.3 Analysis of Learned Representation

To better compare the learned representation of our model
and Protonet, for each class, we use t-SNE (Maaten and
Hinton 2008) to visualize the embedding (i.e., fθ) of positive
samples (belong to this class) and 1000 negative samples
(not belong to this class). The results of GFL and Protonet
on collabration data are shown in Figure 4. Compared with
Protonet, in this figure, we can see that our model can better
distinguish the positive and negative samples.
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6 Conclusion

In this paper, we introduce a new framework GFL to improve
the effectiveness of semi-supervised node classification on
a new target graph by transferring knowledge learned from
auxiliary graphs. Built upon the metric-based few-shot learn-
ing, GFL integrates local node-level and global graph-level
knowledge to learn a transferable metric space charaterized
by node and prototype embedding functions. The empirical
results demonstrate the effectiveness of our proposed model
on four node classification datasets.
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