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Abstract

Bayesian deep learning is recently regarded as an intrin-
sic way to characterize the weight uncertainty of deep neu-
ral networks (DNNs). Stochastic Gradient Langevin Dynam-
ics (SGLD) is an effective method to enable Bayesian deep
learning on large-scale datasets. Previous theoretical studies
have shown various appealing properties of SGLD, ranging
from the convergence properties to the generalization bounds.
In this paper, we study the properties of SGLD from a novel
perspective of membership privacy protection (i.e., prevent-
ing the membership attack). The membership attack, which
aims to determine whether a specific sample is used for train-
ing a given DNN model, has emerged as a common threat
against deep learning algorithms. To this end, we build a the-
oretical framework to analyze the information leakage (w.r.t.
the training dataset) of a model trained using SGLD. Based on
this framework, we demonstrate that SGLD can prevent the
information leakage of the training dataset to a certain extent.
Moreover, our theoretical analysis can be naturally extended
to other types of Stochastic Gradient Markov Chain Monte
Carlo (SG-MCMC) methods. Empirical results on different
datasets and models verify our theoretical findings and sug-
gest that the SGLD algorithm can not only reduce the infor-
mation leakage but also improve the generalization ability of
the DNN models in real-world applications.

Introduction

Bayesian deep learning has received increasing attention
from the research community over the past few years, due
to its effectiveness to capture weight uncertainty and allevi-
ate overfitting in deep neural networks (DNNs) (Blundell et
al. 2015; Li et al. 2016a). The key ingredient of Bayesian
deep learning is sampling from the Bayesian posterior. To
enable the posterior sampling, there are typically two differ-
ent types of approaches, namely, Stochastic Variational In-
ference (SVI) and Stochastic Gradient Markov Chain Monte
Carlo (SG-MCMC). One representative work of SVI is
Bayes-by-Backprop (Blundell et al. 2015) that enables the
variational inference of DNNs. These SVI based methods in
the realm of deep learning always assume that the Bayesian
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posterior can be decomposed into separable Gaussian dis-
tributions, which may lead to non-negligible approximation
error and underestimation of the weight uncertainty (Li et
al. 2016a). Such SVI based approaches can hardly scale to
large datasets and difficult to handle complex model struc-
tures, thus limit their applicability for deep learning models.

To enable Bayesian learning at scale, SG-MCMC is pro-
posed as an alternative to SVI (Welling and Teh 2011; Chen,
Fox, and Guestrin 2014). Stochastic Gradient Langevin Dy-
namics (SGLD) is one of the most popular SG-MCMC
methods. The key idea of SGLD is applying stochastic opti-
mization (Robbins and Monro 1951) to Langevin Dynam-
ics (Neal and others 2011), which is implemented by in-
jecting proper Gaussian noise to the gradient estimation of
a mini-batch sampled from the training dataset (Welling
and Teh 2011). SGLD can also be regarded as an effec-
tive way to approximately sample from the Bayesian pos-
terior distribution (Sato and Nakagawa 2014). It has been
successfully applied to a number of real-world applications,
such as language modeling (Gan et al. 2017) and shape
classification (Li et al. 2016b). Among these practical ap-
plications, various theoretical studies have shown different
appealing properties of SGLD (Sato and Nakagawa 2014;
Mou et al. 2018). Most of these theoretical works focus on
analyzing the convergence properties of SGLD. Besides the
convergence properties, some recent works also attempted to
study the generalization bounds of SGLD (Mou et al. 2018;
Pensia, Jog, and Loh 2018).

In this paper, we specifically study the properties of
SGLD from the perspective of membership privacy. Some
recent studies showed that a well-trained DNN model may
unintentionally expose the private information of the train-
ing dataset (Fredrikson, Jha, and Ristenpart 2015; Shokri et
al. 2017). The membership attack (Shokri et al. 2017) has
emerged as a common threat to detect the membership infor-
mation of the training dataset armed with the learned model.
Given the trained model and a specific sample, the member-
ship attack aims to infer whether this given sample is used
for training the given model. Our work is motivated by some
recent works that study the connection between the overfit-
ting and the information leakage of DNNs, which shows that
the less overfitting a model is, the less information is dis-
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closed by the model (Wu et al. 2019a; Yeom et al. 2018;
Wu et al. 2019b).

To this end, we first build the theoretical framework to an-
alyze the information leakage of the learned model. Specifi-
cally, we employ the optimal membership attack proposed in
a previous work (Sablayrolles et al. 2019) as a workhorse to
compute the membership privacy leakage loss. This loss can
be used for quantitatively characterizing the model’s vulner-
ability to the membership attack. Based on the theoretical
framework, we then prove that, for a model trained using
SGLD, its membership privacy leakage loss can be bounded
in expectation by a uniform constant for arbitrary samples.
This finding further indicates that the model trained using
SGLD can prevent the membership attack to a certain extent
(formalized in Theorem 1).

The most related work to ours was conducted by Wang,
Fienberg, and Smola (2015), in which they introduced DP-
SGLD that satisfies the differential privacy protocol (Dwork
2011). Our work differs from this work in two aspects. First,
our theoretical analysis can be conducted without modi-
fying the vanilla SGLD algorithm and can be easily ex-
tended to other SG-MCMC methods. Second, differential
privacy is a strict requirement for most real applications
and leads to a significant performance drop to meet the
given privacy budget. DP-SGLD suffers such a performance
drop (Wang, Fienberg, and Smola 2015). In contrast, we
relax the requirement of differential privacy and focus on
studying membership privacy (instead of differential pri-
vacy) afforded by SGLD. Moreover, Our theoretical anal-
ysis can be further naturally extended to other types of SG-
MCMC methods, such as Stochastic Gradient Hamiltonian
Monte Carlo (SGHMC) (Chen, Fox, and Guestrin 2014).

To verify our theoretical findings, we perform member-
ship attacks on different real-world datasets to evaluate the
information leakage of models trained with different op-
timization methods (e.g. SGD and SGLD). Empirical re-
sults show that SGLD can significantly reduce the informa-
tion leakage of the training dataset in contrast to SGD and
its variants. Besides, we also observe that SGLD can pre-
vent DNNs from overfitting in some cases, which implicitly
verifies the connection between overfitting and information
leakage (Yeom et al. 2018).

In summary, our contributions are three folds:
• We introduce a theoretical framework to analyze the

membership information leakage of a well-trained DNN
model.

• With the theoretical framework, we show that the model
trained using SGLD can prevent the membership attack to
a certain extent.

• Our framework provides a uniform interpretation for
some previous theoretical results by incorporating them
into our framework.

The rest of this paper is organized as follows. We first pro-
vide a brief review of the related work. We then demonstrate
the theoretical analysis, including the membership privacy
analysis framework and our main theoretical results, fol-
lowed by the the empirical results to validate our theoretical
findings. Finally, we conclude our work in the last section.

Related Work

Bayesian Deep Learning. Avoiding overfitting of the deep
learning model is a longstanding goal for the research com-
munity. Bayesian deep learning is recently regarded as an
intrinsic way to eliminate overfitting through ensembling
models sampled from the Bayesian posterior (i.e. approx-
imate Bayesian inference) (Blundell et al. 2015). As the
Bayesian posterior is always intractable in practice, there
are normally two different ways to approximate the posterior
sampling, i.e. Stochastic Variational Inference (SVI) (Blun-
dell et al. 2015) and Stochastic Gradient Markov Chain
Monte Carlo (SG-MCMC) (Welling and Teh 2011; Chen,
Fox, and Guestrin 2014). The key idea of SVI based meth-
ods is to use a parameterized variational distribution to ap-
proximate the real posterior. The approximation can be fur-
ther transformed into an optimization problem. To bring this
idea into the realm of deep learning, previous works al-
ways come at the assumption that the Bayesian posterior of
the parameters can be decomposed into separable Gaussian
distributions (Blundell et al. 2015; Li et al. 2016a). How-
ever, this assumption is always violated, which leads to non-
negligible approximation error (Li et al. 2016a). An alterna-
tive way is to use SG-MCMC methods. In contrast to SVI
based methods, the key idea of SG-MCMC is to approx-
imately sample from the real posterior instead of directly
approximating the posterior (Welling and Teh 2011). There
are various SG-MCMC methods, including Stochastic Gra-
dient Langevin Dynamics (SGLD) and Stochastic Gradi-
ent Hamiltonian Monte Carlo (SGHMC) (Chen, Fox, and
Guestrin 2014). In this paper, we focus on studying privacy
related properties of SGLD, one of the most commonly used
SG-MCMC methods.
SGLD. The idea of combining stochastic optimization
(Robbins and Monro 1951) and Langevin Dynamics (Neal
and others 2011) was first presented in the work (Welling
and Teh 2011), in which the authors proposed Stochas-
tic Gradient Langevin Dynamics (SGLD) to efficiently per-
form Bayesian learning on large-scale datasets. In contrast to
SGD, SGLD injects proper Gaussian noise into the gradient
estimation to avoid collapsing to just the maximum a poste-
rior (MAP) solution. Since then, many variants of SGLD are
introduced to improve the vanilla SGLD algorithm. For ex-
ample, Li et al. (2016a) proposed pSGLD, imposing a pre-
conditioner to the optimization process for improving the
convergence efficacy of SGLD. Besides the algorithmic im-
provements of SGLD, there are a number of works focusing
on applying SGLD to various applications (Li et al. 2016b;
Gan et al. 2017). For instance, Gan et al. (2017) pro-
posed using SGLD to mitigate the overfitting of RNN mod-
els and achieved remarkable performances on several lan-
guage modeling tasks. Among the above-mentioned works,
there is another research direction to study the theoreti-
cal properties of SGLD. One of the most important prop-
erties of SGLD is that it can approximate the sampling
from the posterior distribution (Sato and Nakagawa 2014;
Chen, Ding, and Carin 2015). This property has been theo-
retically studied in different works. A popular way is to con-
duct the approximation analysis of SGLD from the perspec-
tive of stochastic differential equations. A recent research
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trend considers the generalization bound of the SGLD al-
gorithms under different assumptions (Mou et al. 2018;
Pensia, Jog, and Loh 2018). In this paper, we take a totally
different view, to study SGLD from the aspect of member-
ship privacy.
Membership Attack. The privacy leakage issue of machine
learning models has attracted ever-rising interests from both
the machine learning and security communities. Recently,
membership attacks have arisen as a common threat model
against machine learning algorithms (Leino and Fredrikson
2019; Shokri et al. 2017; Long et al. 2018). A pioneering
work (Shokri et al. 2017) investigated the risk of member-
ship attacks on different machine learning models. Specifi-
cally, they developed a shadow training technique to obtain
an attack model in the black-box setting (i.e., without know-
ing the machine learning model structure and parameters).
Carlini et al. (2018) proposed a metric to measure the vulner-
ability of deep learning models. A recent work (Sablayrolles
et al. 2019) introduced the concept of the optimal attack and
employed the Bayes theorem to derive a formulation for the
attack. In this paper, we take the membership attack as the
workhorse for evaluating the information leakage of deep
learning models trained using SGLD.

Theoretical Analysis
In this section, we theoretically analyze the properties of the
SGLD algorithm from different aspects that are related to
privacy protection. We first introduce some basic notations
and settings, including the SGLD algorithm and the mem-
bership attack. Then we build the theoretical framework to
characterize the information leakage of the trained model.
Based on the framework, we demonstrate the main theo-
retical finding of this paper, i.e., the model trained using
SGLD can preserve the membership privacy (preventing the
membership attack). At last, we provide some other theoret-
ical perspectives and show how to incorporate them into our
framework, which helps us to give a uniform understanding
of the SGLD algorithm.

Notation and Setting

We start with basic notations and settings. In this paper, we
focus on the classification task. Note that our analysis can
be easily extended to other types of learning problems, such
as regression. In a supervised classification task, there is a
labeled training dataset D = {(xi, yi)}Ni=1, where x denotes
the input data (e.g. an image in the image classification task)
and y denotes the associated label. For simplicity, we denote
zi = (xi, yi) as a data-label pair or a sample. The goal of
a deep learning model M (e.g. a DNN model) is to assign a
probability to each possible label y, i.e. M is a probabilistic
model that computes p(y|x;θ) = f(x,θ), where θ denotes
the weight parameters of M and f denotes the inference of
M. A typical loss used for optimizing θ is the negative log-
likelihood which satisfies the following equation:

L(D,θ) =
∑
zi∈D

l(zi,θ), (1)

where l(z,θ) is the negative log-likelihood over the individ-
ual sample z = (x, y), i.e. l(z,θ) = − log(p(y|x;θ)).

SGLD. SGLD can be regarded as an effective optimization
method that incorporates uncertainty into the weight param-
eter. Based on the above notations, we can define the updat-
ing rule of SGLD as:

θt+1 = θt − (
εt
2
∂θL(Bt,θt) + ηt), ηt ∼ N (0, εtI), (2)

L(Bt,θt) = − log p(θt) +
|D|
|Bt|

∑
zi∈Bt

l(zi,θt), (3)

where p(θt) is the prior of θt and εt is the step size.
N (0, εtI) denotes the Gaussian distribution. L(Bt,θt) can
be seen as a stochastic approximation of Equation (1), which
is to compute the negative log-likelihood over the mini-batch
Bt that is randomly selected from the whole dataset D.

Previous studies always assume the step size decreases to-
wards zero at the rate that satisfies some conditions (Welling
and Teh 2011). Due to this assumption, intuitively, the op-
timization process of SGLD can be divided into two phases
in terms of the step size. In the initial phase, the stochas-
tic gradient noise1 will dominate the optimization process
due to the large step size. The SGLD algorithm in this phase
can be seen as an efficient stochastic gradient descent algo-
rithm. The initial phase is also called as the burn-in phase
in the literature (Welling and Teh 2011). In the later phase,
the injected Gaussian noise will dominate the process as the
step size gets smaller. The parameter obtained by the SGLD
algorithm in this phase can be seen as sampling from the
true posterior distribution. More rigorous descriptions can
be found in prior works (Welling and Teh 2011).
Membership Attack. The membership attack refers to in-
ferring whether a specific sample is used for training the
model. Formally, given a specific sample z = (x, y) and
a DNN model M with the parameter θ, the attacker aims
to compute the probability that the sample belongs to the
training data. Here we denote the probability as P (m =
1|z,θ), where m refers to the sample’s membership and
m = 1 indicates that the sample is in the training dataset.
Besides the knowledge of the trained model, the attacker
may also hold an extra dataset S , which consists of sam-
ples from the training/hold-out datasets. We call this dataset
“shadow dataset” borrowed from the prior work2. We de-
note this dataset as S = {(zi,mi)}ni=1, where each zi is
a sample of (xi, yi) and mi represents the membership of
this sample. The samples with mi = 1 are from the train-
ing dataset, otherwise, are from the hold-out dataset. Based
on the above setting, the attacker can employ the shadow
dataset S to assist the membership inference, which is to
compute the probability P (m = 1|z,θ,S). Based on the
previous work (Sablayrolles et al. 2019), we call the ex-
act value of P (m = 1|z,θ,S) as the optimal attack. In
practice, the optimal attack is always intractable thus previ-
ous works have proposed different methods to approximate
P (m = 1|z,θ,S) (Sablayrolles et al. 2019). In what fol-
lows, we introduce our theoretical framework to analyze the
information leakage (in the aspect of membership privacy)
of the learned deep learning models.

1The noise is caused by the random sampling.
2This can also be seen as the side information in the literature.
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Membership Privacy Analytical Framework

We further assume the ratio of training samples3 in S is λ.
Thus we can give a trivial attack solution that proceeds as
P (m = 1|z,θ,S) ≈ P (m = 1) = λ. In contrast to the
optimal attack mentioned above, we call this attack as the
trivial attack, since this attack gets nothing other than the
macroscopical information of the shadow dataset. We can
define the membership privacy leakage (Mpl) loss of a given
sample as:

Mpl(z, θ,S) = max(P (m = 1|z,θ,S)− λ, 0). (4)

In the above equation, when P (m = 1|z,θ,S) ≤ λ, the op-
timal attack infers that the sample z is not from the training
dataset. Thus we set the Mpl loss to zero since the optimal
attack do not induce the membership leakage of the training
dataset. The expectation of the Mpl loss over all possible
samples (i.e. Ez[Mpl(z,θ,S)]) can evaluate the difference
between the optimal attack and the trivial attack. Obviously,
the smaller the expectation of the Mpl loss is, the less infor-
mation of the training dataset is revealed by the model (i.e.
the optimal attack is more similar to the trivial attack). To
compute the loss, we need to give an implicit formulation
of the optimal attack. In this paper, we introduce a modified
version of the formulation proposed by Sablayrolles et al.
(2019). To this end, we first define the posterior distribution
over the parameter (while S is given) by:

pS(θ) = p(θ|ST ),ST = {(zi,mi) ∈ S : mi = 1}. (5)

With a slight modification of the prior work (Sablayrolles et
al. 2019), we can obtain:
Lemma 1 (Sablayrolles et al. 2019) Given a learned model
with parameter θ, the shadow dataset S , and a specific sam-
ple z, the Mpl loss can be computed using:

P (m = 1|z,θ,S) = σ(s(z,θ, pS) + tλ), (6)

where tλ is log(
λ

1− λ
) and σ(t) := 1/(1 + e−t) is the sig-

moid function. We call s the measure score which satisfies
the following equations:

tp(z) = − logEθ∼pe
−l(z,θ),

s(z,θ, p) = tp(z)− l(z,θ).
We can further use the Lipschitz continuity of σ that |σ(u)−
σ(v)| ≤ |u− v|/4 and λ = σ(tλ) to bound the Mpl loss by:

Mpl(z,θ,S) ≤ max(s(z,θ, pS)/4, 0). (7)

The proof of Equation (7) can be found in the appendix.
Equation (7) points out that the Mpl loss can be bounded
by the measure score. Intuitively, the value of tp(z) can be
seen as a threshold which is used for comparing with the loss
function with respect to z and the trained parameter θ. From
Equation (7), if the negative log-likelihood of the given sam-
ple z is close to the threshold, i.e., l(z,θ) ≈ tp(z), then the
measure score is close to zero, thus the optimal attack can

3Training samples are those from the training dataset.

not obtain any information other than the prior knowledge
(i.e., P (m = 1) = λ). And when the measure score is sub-
stantially greater/less than zero (i.e., the loss of the given
sample is much lower/higher than the threshold), the opti-
mal attack can gain non-trivial membership information on
z, i.e., P (m = 1|z,θ) � λ.

To enable the analysis on the SGLD algorithm, we need to
consider the case of model ensemble used for approximat-
ing Bayesian inference. We further reformulate the above
Equation (7) based on two facts. First, we can use Jensen’s
inequality to obtain:

tp(z) ≤ Eθ∼p[l(z,θ)]. (8)

Second, we note that, when the sample z and parameter θ
are given, the value of l(z,θ) explicitly depends on the pre-
dicted probability with respect to the label y. Here, we de-
note the predicted probability as ŷ = f(x,θ). With a slight
notation abuse, we rewrite the value of l(z,θ) as l̃(y, ŷ).
In the case of SGLD ensemble, ŷ can be obtained by av-
erage outputs of models produced by the SGLD algorithm.
Then, combining with Equation (8) and slightly modifying
the above derivation (i.e. replacing θ with ŷ ), we can refor-
mulate the inequality in Equation (7) as:

M̃pl(z, ŷ,S) ≤ max(s̃(z, ŷ, pS)/4, 0), (9)

where:

s̃(z, ŷ, pS) = Eθ∼pS [l(z,θ)]− l̃(y, ŷ), (10)

where ŷ is the average output of models sampled using
SGLD. In contrast to Equation (7) that can only be applied
to the context of the single model, we can leverage Equa-
tion (9) to analyze the information leakage of the ensembled
models4. This is appealing for the analysis of SGLD, since
its key feature is to approximate the Bayesian inference via
ensembling the models produced by SGLD after the burn-in
phase (Welling and Teh 2011).

Uniform Bound for the Mpl Loss

Up to now, we can leverage the above analytical framework
to quantify the information leakage of the trained model in
terms of the membership privacy loss. In this part, for the
model trained using SGLD, we aim to give a uniform bound
of the Mpl loss for arbitrary sample in the worst case. Here,
the worst case refers to the shadow dataset S held by the at-
tack is a leave-one-out version of the original training dataset
D, i.e., S is obtained by removing one sample from D. With-
out loss of generality, we assume the removed sample is zn,
i.e. S = D/zn. Here, we assume that the samples in S are
all from the training dataset, since the posterior pS (Equa-
tion (5)) does not depend on the samples from the hold-out
set. The analysis can be easily extended to other scenarios
(e.g., S has samples from the hold-out dataset). To intro-
duce the following results, we first give a commonly used as-
sumption presented in the prior work (Wang, Fienberg, and
Smola 2015).

4Because Equation (9) only depends on the output vector.
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Assumption 1 We assume z is sampled from the space
Z and θ is sampled from the SGLD algorithm. This as-
sumption limits the negative log-likelihood to be bounded,
i.e., supz∈Z,θ |l(z,θ)| ≤ B. The step sizes {εt} in Equa-
tion (2) decrease and satisfy: 1)

∑∞
t=1 εt = ∞, and 2)

limL→∞

∑L
t=1 ε

2
t

St
= 0, where St =

∑L
t=1 εt is the sum

of the step sizes.
Formally, based on the above settings, we introduce the main
theoretical finding as the following theorem:
Theorem 1 (Uniform bound in expectation) Given S =
D/zn and model parameters {θt}t0+L

t=t0 generated by SGLD
after the burn-in phase that starts from the t0-th itera-
tion. We denote the sampling process as θ ∼ SGLD. ŷ is
the weighted average output using these parameters, i.e.,
ŷ =

∑t0+L
t=t0

εt
SL

f(x,θt), where SL =
∑t0+L

t=t0
εt . Under

Assumption 1, we can bound the expectation of the Mpl loss
for any sample z by a uniform constant MSGLD:

ESGLD[M̃pl(z, ŷ,S)] ≤ MSGLD, (11)

MSGLD =
B

4
(e2B − 1) +O(

1

SL
+

∑t0+L
t=t0

ε2t
SL

). (12)

The expectation is with respect to the randomness of SGLD
(i.e., sampling different parameters to compute the predicted
value ŷ). Here, for simplicity, Theorem 1 is for the case
of decreasing-step-size (Welling and Teh 2011) and we can
easily extend this theorem to the case of constant-step-size
based on the prior work (Sato and Nakagawa 2014). Briefly,
Theorem 1shows that the bound is dominated by the recip-
rocal of the sum of the step sizes. Thus, the bound will de-
crease as the sum of the step sizes increases. This is consis-
tent with the fact that increasing the step size will increase
the injected noise, and thus preventing the privacy leakage.
To given a proof of Theorem 1, we first introduce two lem-
mas.
Lemma 2 (Bound of the leave-one-out error) (Mou et al.
2018) Given S = D/zn, under Assumption 1, we can bound
the leave-one-out error (i.e. the posterior average difference
with respect to these two datasets) as:

|Eθ∼pS [l(z,θ)]− Eθ∼pD [l(z,θ)]| ≤ B(e2B − 1). (13)

The proof of Lemma 2 can be found in the appendix.
The following lemma is based on previous finite-time er-

ror analysis of SGLD (Chen, Ding, and Carin 2015).
Lemma 3 (Finite-time error analysis) (Chen, Ding, and
Carin 2015) Given model parameters {θt}Lt=t0 ∼ SGLD
generated by SGLD after the burn-in phase and the pre-
dicted value l̂ =

∑t0+L
t=t0

εt
SL

l(z,θt). SL =
∑t0+L

t=t0
εt is the

sum of the step sizes. Then we have:

|ESGLD[l̂]−Eθ∼pD [l(z,θ)]| = O(
1

SL
+

∑t0+L
t=t0

ε2t
SL

). (14)

Here, with the help of the above two lemmas, we demon-
strate the roadmap to accomplish the proof of Theorem 1.
The details of the proof can be found in the appendix.
Proof 1 (Sketch proof of Theorem 1): Based on Equa-
tion (9), we can first bound the measure score, which can
be further used for bounding the Mpl loss.

To bound the measure score, we can decompose Equa-
tion (10) into the leave-one-out error and the approximation
error:

s̃(z, ŷ, pS) = Eθ∼pS [l(z,θ)]− Eθ∼pD [l(z,θ)]︸ ︷︷ ︸
leave−one−out error

+ Eθ∼pD [l(z,θ)]− l̃(y, ŷ)︸ ︷︷ ︸
approximation error

.

Then we can obtain the bounds for these two errors indi-
vidually. First, we notice that the leave-one-out error can be
bounded based on Lemma 1. Then the approximation error
can be further decomposed into:

Eθ∼pD [l(z,θ)]− l̂︸ ︷︷ ︸
Factor1

+ l̂ − l̃(y, ŷ)︸ ︷︷ ︸
Factor2

.

Note that factor 1 can be bounded via Lemma 2 when tak-
ing the expectation over parameters generated by SGLD (the
boundedness is ensured by Assumption 1 and Lemma 3
jointly).

The boundedness of factor 2 is ensured by the bounded-
ness of the negative log-likelihood and the boundedness of
the variance of SGLD (see details in the appendix).

Therefore we can obtain the bound of the measure score
in the context of SGLD model ensemble.

Other Theoretical Perspectives

A View From Generalization. Previous works have vali-
dated the connection between the overfitting and the infor-
mation leakage of DNN models (Wu et al. 2019a; Yeom et
al. 2018). In the realm of membership privacy, Long et al.
(2018) also pointed out that overfitting is a sufficient con-
dition for exposing membership information of the training
dataset. This finding inspires us to understand why SGLD
works for preventing the membership attack from the view
of the generalization theory. Specifically, based on the prior
work (Mou et al. 2018), we can prove that SGLD can pro-
vide the property of uniform stability. Armed with the stabil-
ity learning theory (Shalev-Shwartz et al. 2010), Mou et al.
(2018) further provided an expectation bound for the gener-
alization error of the SGLD algorithm. Since the generaliza-
tion error can be bounded, it is challenging for the attacker
to notice the output’s (w.r.t. the model) difference between
the training and hold-out datasets, which further prevents the
membership attack (e.g., the threshold attack conducted in
our experiments). Therefore, from the view of the general-
ization bound, we can understand the effectiveness of SGLD
to prevent the membership attack.

Evaluation

Experimental Settings

In this section, we conduct empirical studies to verify our
theoretical finding, i.e., training models using SGLD can al-
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leviate the information leakage of the training dataset. We
first present our experimental settings, including descrip-
tions of the datasets, models, and the attack method. Then
we demonstrate the main numerical results. At last, we
present some discussions with further insights.
Datasets. In this paper, we choose datasets from scenarios
where data privacy is important, such as financial and medi-
cal data analysis. Specifically, we select two datasets as our
benchmarks, namely, German Credit dataset (Dua and Graff
2017) and IDC dataset5.

The German Credit dataset consists of 1, 000 applications
for credit cards. Each application is labeled with good or bad
credit. We consider the classification task to identify “good
credit” applications. We randomly split the whole dataset
into training (400 applications), hold-out/validation (300 ap-
plications), and test (300 applications) sets. Here, the hold-
out dataset can be used for either validation or building the
“shadow” attack model (Shokri et al. 2017).

IDC dataset is used for invasive ductal carcinoma (IDC)
classification. This dataset contains 277,524 patches of 50×
50 pixels (198,738 IDC-negative and 78,786 IDC-positive).
Following the setting of the work (Leino and Fredrikson
2019), we split the whole dataset into training, valida-
tion (hold-out), and test sets. To be specific, the training
dataset consists of 10, 788 positive patches and 29, 164 neg-
ative patches. The test dataset consists of 11, 595 positive
patches and 31, 825 negative patches. The remain patches
are used as the hold-out dataset.
Model Setup. For the German Credit dataset (Dua and Graff
2017), we choose a three-layer fully-connected neural net-
work as the model architecture. For comparison, we train
the model using both SGLD and SGD variants. All these
training strategies share the following hyper-parameters: the
mini-batch is set to 32 and the epoch number is set to 30. The
learning rate decreases by half every 5 epochs. For SGLD,
the variance of the prior is set to 1.0. The initial learning rate
is set to 1× 10−3.

For the IDC dataset, since the training dataset comprises
image data, we choose a typical residual convolutional neu-
ral network, ResNet-18 (He et al. 2016). The mini-batch is
set to 128 and the epoch number is set to 100. Data augmen-
tation is not used. The learning rate decreases by half every
20 epochs. For SGLD, the variance σ2 of the prior is set to
1.0. The initial learning rate is set to 1× 10−4.
Attack Setup. The key part of our experiments is to quan-
titatively evaluate the information leakage of the model
trained using different methods. In practice, we found that a
straightforward attack, threshold attack (Yeom et al. 2018),
suffices to support our theoretical findings. The threshold at-
tack has already been used in various previous works (Yeom
et al. 2018). This attack is based on the intuition, i.e., a sam-
ple with lower loss is more likely to belong to the training
dataset. We denote A as the attacker and the threshold attack
proceeds as follows (here, we use the consistent notations as
in the theoretical analysis):

• Given a specific sample z and its predicted probability ŷ

5http://www.andrewjanowczyk.com/
use-case-6-invasive-ductal-carcinoma-idc-segmentation/

computed by the model.

• A calculates the normalized loss n = l̃(y, ŷ)/B, where B
is the bound for the negative log-likelihood.

• A selects a threshold t and outputs 1 (indicates the sample
is a training sample) if n ≤ t. Otherwise, it outputs 0.

The threshold attack is evaluated on the training dataset and
the test dataset. Note that we can choose different threshold
t to obtain different attack models. Naturally, we can plot
the ROC curve of these attack results and use the area un-
der the ROC curve (AUC) as an indicator of the information
leakage. Moreover, we assume that the attacker can obtain
the average value of l̃(y, ŷ) on the training dataset. Thus we
can directly use this value as a threshold to build the attack
model, and compute the F1 score and accuracy of the at-
tack model to quantify the amount of information leakage.
In summary, we use three metrics to evaluate the informa-
tion leakage of a learned model, namely, the AUC value, the
F1 score, and the accuracy.

Experimental Results

In Table 1 and 2, Dropout denotes adding Dropout lay-
ers into the network architecture. For ResNet-18, we insert
Dropout between convolutional layers and set the drop ra-
tio to 0.3 following the work (Zagoruyko and Komodakis
2016). SGLD+ represents ensembling models obtained by
SGLD. In practice, we found that ensembling 3 models suf-
fices to our case, thus we use the models obtained in the last
three iterations and average their outputs for the final predic-
tion. In contrast to the decreasing step size discussed in the
theoretical analysis, we use the constant step size in practice
following prior works (Sato and Nakagawa 2014). For a fair
comparison with SGLD+, we also apply the same ensemble
strategy to the case of SGD (denoted as SGD+).
German Credit Dataset. The overall results of the German
Credit dataset are shown in Table 1. We observe that the use
of SGLD can prevent the information leakage of the train-
ing dataset, based on the above attack metrics for evaluating
the information leakage. In contrast to SGD, SGLD signif-
icantly reduces the AUC score of the threshold attack from
0.677 to 0.536, while achieves comparable model accuracy.
We can also observe consistent performance boost and in-
formation leakage reduction when model ensemble is used.
For example, SGLD+ decreases the F1 score of the threshold
attack (from 0.598 to 0.564) while achieves a slight model
accuracy increase (from 0.736 to 0.751).
IDC Dataset. The overall results are shown in Table 2.
SGLD can significantly reduce the information leakage in
contrast to SGD, in terms of the aforementioned metrics for
evaluating the attack performance. For example, compared
with SGD, SGLD remarkably reduces the AUC value of
threshold attack from 0.669 to 0.641 while achieving com-
parable model accuracy. We also observe a slight model ac-
curacy improvement when the ensemble strategy is used (see
the results of SGLD+). It is worth noting that Dropout is not
effective in reducing the information leakage and improv-
ing the performance in this case (see more discussions in the
following subsection).
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Table 1: Results of the threshold attack on the German Credit
dataset. SGLD+ represents model ensemble.

Strategy Attack Metric Model Metric
AUC F1 Acc Train Test Gap

SGD 0.677 0.685 0.646 1.000 0.734 0.266
SGD+ 0.677 0.684 0.645 1.000 0.720 0.280

Dropout 0.527 0.567 0.527 0.859 0.747 0.112
RMSprop 0.589 0.677 0.627 0.965 0.749 0.216

SGLD 0.536 0.598 0.539 0.811 0.736 0.075
SGLD+ 0.536 0.564 0.526 0.839 0.751 0.087
pSGLD 0.551 0.600 0.550 0.858 0.753 0.105

pSGLD+ 0.550 0.568 0.539 0.859 0.758 0.101

Table 2: Results of the threshold attack on the IDC dataset.
SGLD+ represents model ensemble.

Strategy Attack Metric Model Metric
AUC F1 Acc Train Test Gap

SGD 0.669 0.716 0.646 0.993 0.823 0.170
SGD+ 0.665 0.714 0.638 0.998 0.837 0.161

Dropout 0.662 0.711 0.634 0.994 0.818 0.176
RMSprop 0.674 0.715 0.652 0.992 0.818 0.174

SGLD 0.641 0.669 0.620 0.973 0.817 0.156
SGLD+ 0.643 0.658 0.617 0.981 0.825 0.156
pSGLD 0.652 0.697 0.641 0.982 0.824 0.158

pSGLD+ 0.648 0.692 0.640 0.987 0.830 0.157

All these empirical results validate our theoretical find-
ings, i.e., the model trained using SGLD can preserve mem-
bership privacy to a certain extent.

Discussions

In this part, we provide some discussions on our experiments
for further insights.
SGLD Variants. The vanilla SGLD algorithm updates all
parameters with the same step size, which always leads to
inefficient optimization since these parameters have differ-
ent curvature. pSGLD (Li et al. 2016a) solves this problem
by applying the preconditioner to each parameter in the op-
timization process. In this paper, we also demonstrate some
numerical results of pSGLD. Since pSGLD can be seen as
a noisy version of the RMSprop algorithm, we also show
the results of RMSprop. From Table 1, we observe that pS-
GLD can improve the test accuracy in contrast to the vanilla
SGLD. We infer that the accuracy boost comes from the use
of the preconditioner which can improve the optimization
efficiency. However, the accuracy boost accompanies with
more information leakage in terms of the above attack met-
rics. For example, comparing with SGLD, pSGLD increases
the AUC value of the attack model from 0.536 to 0.551.
From the updating rule of pSGLD (Li et al. 2016a), pSGLD
uses more information of the gradient compared with SGLD,
which causes the increase of the information leakage.
Effectiveness of Dropout. As shown in Table 1 and 2,
Dropout demonstrates different effects on these two tasks
since two different types of model architectures are used.

According to previous works, Dropout is less effective on
the fully convolutional neural network in which the fully-
connected layer only exists in the last layer. (Ghiasi, Lin,
and Le 2018). This conclusion coincides with our observa-
tion, i.e., the Dropout cannot boost the performance on the
ResNet-18 model for the IDC classification. On the contrary,
in the case of the German Credit dataset, one notable ob-
servation is that Dropout can also drastically reduce the in-
formation leakage (see Dropout in Table 1). This result is
not surprising to us, since Dropout can be seen as an im-
plicit Bayesian inference based on the prior work (Gal and
Ghahramani 2016). This suggests that we can use Dropout
as an effective way to preserve the membership privacy for
fully-connected networks (i.e. multilayer perceptron).
Other Attacks. In the above analysis, we found that the sim-
ple threshold attack suffices to detect some useful member-
ship information in our case. We also conduct experiments
on other membership attack methods, such as shadow train-
ing method proposed in the prior work (Shokri et al. 2017).
And we found that SGLD is also effective to prevent such an
attack in practice.

Conclusions

In this paper, we provided a novel perspective to study the
properties of SGLD from the membership privacy. To this
end, we first built the theoretical framework to analyze the
information leakage of a learned model. We then employed
this framework to prove that the model learned using SGLD
can prevent the membership attack to a certain extent. Ex-
periments on different real-world datasets have verified our
theoretical findings. Moreover, our paper shed light on an
interesting perspective of membership privacy to explain be-
haviors of various deep learning algorithms, which indicates
a new direction for the explainable deep learning research.
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