
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

An Objective for Hierarchical Clustering in
Euclidean Space and Its Connection to Bisecting K-means∗

Yuyan Wang,1 Benjamin Moseley1

1Tepper School of Business, Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, Pennsylvania 15213
{yuyanw, moseleyb}@andrew.cmu.edu

Abstract

This paper explores hierarchical clustering in the case where
pairs of points have dissimilarity scores (e.g. distances) as a
part of the input. The recently introduced objective for points
with dissimilarity scores results in every tree being a 1

2
ap-

proximation if the distances form a metric. This shows the
objective does not make a significant distinction between a
good and poor hierarchical clustering in metric spaces.
Motivated by this, the paper develops a new global objective
for hierarchical clustering in Euclidean space. The objective
captures the criterion that has motivated the use of divisive
clustering algorithms: that when a split happens, points in the
same cluster should be more similar than points in different
clusters. Moreover, this objective gives reasonable results on
ground-truth inputs for hierarchical clustering.
The paper builds a theoretical connection between this objec-
tive and the bisecting k-means algorithm. This paper proves
that the optimal 2-means solution results in a constant ap-
proximation for the objective. This is the first paper to show
the bisecting k-means algorithm optimizes a natural global
objective over the entire tree.

1 Introduction

In hierarchical clustering, the input is a set of points, with a
score that represents the pairwise similarity or dissimilarity
of the points. The goal is to output a tree, often binary, whose
leaves represent data points, and internal nodes represent
clusters. Each internal node is a cluster of the leaves in the
subtree rooted at it. When a node gets closer towards the
leaves, the cluster it represents should become more refined,
and the points in this cluster should become more similar.
The nodes of the same level in this tree represent a partition
of the given data set into clusters. Note that each data point
(leaf) belongs to many clusters, one for each ancestor.

Figure 1 shows a sample hierarchical clustering tree for
biological species. All the nodes in the tree on the right are

∗Y. Wang and B. Moseley were supported in part by a NSF
Grants CCF-1830711, CCF-1733873, CCF-1733873 and CCF-
1845146, a Google Research Award, a Bosch junior faculty chair
and an Infor faculty award.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

painted in the same colors with the clusters they represent in
the picture on the left.

The mainstream algorithms used to do hierarchical cluster-
ing can be classified roughly into two categories: agglomera-
tive and divisive. Agglomerative algorithms initialize every
point to be in their own individual cluster. They iteratively
pick the two clusters that are the most similar to each other to
merge into a bigger cluster. Meanwhile, the algorithms create
a parent in the hierarchical tree produced that is connected to
the two nodes corresponding to the two clusters before merg-
ing. The merging terminates when only one cluster remains.

Figure 1: A hierarchical clustering tree. The green leaves are
the input data points. Internal nodes represent a cluster of the
leaves in their subtree.

It is necessary for an agglomerative algorithm to quan-
tify the similarity between clusters, which can be defined in
several ways. For example, average-linkage is a popular ag-
glomerative algorithm, which measures the similarity of two
clusters by calculating the average pairwise inter-cluster simi-
larity score. Steinbach et al. (2000), Murtagh (1983), Murtagh
and Contreras (2012) and Zhao, Karypis, and Fayyad (2005)
discussed about common agglomerative algorithms and com-
pared the performance of different agglomerative algorithms
in a variety of backgrounds. Ackerman and Ben-David (2016)
identified properties of trees produced by linkage-based ag-
glomerative algorithms.

Divisive algorithms initialize the whole point set as one
single cluster, and create a root node corresponding to this
cluster in the hierarchical tree. They iteratively split a clus-
ter into smaller clusters. Then the algorithms create nodes
representing the separated clusters in the tree and make them
the children of the parent node. During the split, we want the
points in different clusters to be less similar than the points

6307

in the same cluster. Again, the notion of similarity is open
to different interpretations. A divisive algorithm terminates
when every point is in its own individual cluster. The divisive
algorithms that split a set into two subsets at each iteration
are called bisecting algorithms.

Data scientists regularly use the bisecting k-mean algo-
rithms at each level1. This is used when the distances between
the data points are used as dissimilarity scores. See Steinbach
et al. (2000) and Murtagh and Contreras (2012) for more in-
formation on divisive algorithms. Ackerman and Ben-David
(2016) proved that popular divisive algorithms can produce
clusterings different from linkage-based agglomerative al-
gorithms. Naturally, they may be optimizing fundamentally
different criteria.

Objective Functions: There has been a recent interest
in identifying a global objective for hierarchical cluster-
ing. Dasgupta (2016) developed a cost function objective
for data sets with similarity scores between points. For a
given data set V with n points {1, 2, 3, ..., n}, let wij be
the similarity score between points i and j. In a tree T ,
let T [i ∨ j] denote the subtree rooted at the least com-
mon ancestor of i and j, and |leaves(T [i ∨ j])| denote
the number of leaves of T [i ∨ j]. The cost objective func-
tion objective introduced in Dasgupta (2016) is defined as:
minT costT (V) =

∑
1≤i<j≤n wij |leaves(T [i ∨ j])|.

Since every wij is multiplied with the number of leaves of
the smallest tree containing both i and j, the points that are
more similar (bigger wij’s) are encouraged to have T [i ∨ j]
with fewer leaves. In other words, the objective function is
encouraging points which are more similar to each other to be
split at lower levels of the tree where there are fewer leaves
at the least common ancestor.

The work of Dasgupta (2016) has initiated an exciting line
of study (Roy and Pokutta 2017; Cohen-addad et al. 2019;
Charikar et al. 2019; Chatziafratis, Niazadeh, and Charikar
2018; Ghoshdastidar, Perrot, and von Luxburg 2018). Cohen-
addad et al. (2019) generalized the results in Dasgupta (2016)
into a class of cost functions that possess properties desirable
of a valid objective function. They showed that the average-
linkage algorithm is a 2

3 -approximation for an objective based
on the Dasgupta (2016) objective.2 This objective modi-
fies the Dasgupta objective to handle dissimilarity scores.
Let d(i, j) be the distance between i and j. The objective
is maxT

∑
1≤i<j≤n d(i, j)|leaves(T [i∨ j])|. The motiva-

tion is similar to the Dasgupta objective, except now the simi-
larity score wij is swapped to a dissimilarity score d(i, j) and
the problem is changed to a maximization problem. Contem-
poraneously, Moseley and Wang (2017) designed a revenue
objective function based on Dasgupta (2016) and showed the
average-linkage algorithm is a constant approximation for the
objective. Charikar et al. (2019) showed an improved analysis
of average-linkage for Euclidean data. Together Cohen-addad
et al. (2019), Charikar et al. (2019) and Moseley and Wang
(2017) have established a relationship between a practically

1The word “bisecting” refers to the case when k = 2.
2Throughout this paper we use c > 1 for approximations on

minimization problems and c < 1 for maximization.

popular algorithm and global objectives. This gives a founda-
tional understanding of the average-linkage algorithm.

Euclidean Data: This paper is interested in data embed-
ded in Euclidean space where the �2 distance between points
represents their dissimilarity. There is currently one global
objective that has been proposed for data with dissimilar-
ity scores. This is the objective of Cohen-addad et al. (2019)
described above, an extension of the Dasgupta objective (Das-
gupta 2016). Throughout this paper, we refer to the objective
in Cohen-addad et al. (2019) as CKMM objective. This paper
shows in Section 7 that every tree is a 1

2 -approximation for
the CKMM objective if the data in a metric space. Previously,
it was known that all trees gave a constant approximation
(Cohen-addad et al. 2019).

In a common case where data is in Euclidean space, one
type of metric, the objective does not make a large differenti-
ation between different clusterings. In practice, it is clear that
some trees are more desirable than others. It is an interesting
question to find an objective that makes a stronger distinction
between different clusterings. This is the target question this
paper addresses.

Divisive Algorithms: While great strides have been made
on the foundations of hierarchical clustering, it remains an
open question to explain what popular divisive algorithms op-
timize. In particular, the popular bisecting k-means algorithm
has been proven to be at least a factor O(

√
n) far from opti-

mal for the objectives given in Moseley and Wang (2017) and
Dasgupta (2016). This can be viewed as these algorithms be-
ing extremely bad for these objectives in the worst case. This
contrasts with the performance of average-linkage for known
objectives. Perhaps, this highlights that bisecting k-means
and other divisive algorithms optimize something fundamen-
tally different than average-linkage and general linkage based
algorithms. It remains to discover a global objective that helps
characterize the optimization criteria of divisive algorithms,
another target of this paper.

Results: This paper introduces a new revenue maximiza-
tion objective for hierarchical clustering on a point set in
Euclidean space. The objective is designed to capture the
main criterion that motivates the use of divisive algorithms:
when data is split at a level of the tree, the data in each sub-
cluster should be closer to each other than data points in
different clusters.

Each node in the tree corresponds to a split that generates
revenue. The objective specifies that the global revenue of
the tree is the summation of the revenue at each node. The
split revenue captures the quality of the split.

• Guiding Principle: The new objective function enforces
that a split is good if the inter-cluster distances are big
compared to intra-cluster distances 3, as is indicated in
Figure 1. This is the main motivation behind a generic
divisive algorithm. Of course, the global tree structure
influences the possible revenue at an individual split.

3Here “inter-cluster distances” refers to that between points
in different clusters, while “intra-cluster distances” refers to that
between points in the same cluster.

6308

intra-cluster pair
inter-cluster pair

Figure 2: Intra- and inter- cluster distance of two clusters.
The black pair is an example of intra-cluster pairs, and the
grey pair is an example of inter-cluster pairs.

We show several interesting properties of this new objec-
tive.
• For problem instances corresponding a ground-truth as

introduced in Cohen-addad et al. (2019), this objective
gives desirable optimal solutions. In particular, Cohen-
addad et al. (2019) introduced a large class of instances that
have a natural corresponding hierarchical clustering that
should be optimal. We prove that these trees are optimal for
the new objective function we propose on such instances.
We note that these instances generalize instances given in
Dasgupta (2016) that were used to motivate a hierarchical
clustering objective.

• The bisecting k-means algorithm is a constant approxima-
tion for the objective. This establishes that the objective
is closely related to the bisecting k-means algorithm and
aids in understanding the underlying structure of solutions
the algorithm produces. This is the first global objective
that this algorithm is known to provably optimize.

• The objective is trivially modular over the splits, like the
objectives of Cohen-addad et al. (2019), Moseley and
Wang (2017) and Dasgupta (2016).

• In the context of metric spaces, this objective has different
properties compared to some proposed objectives. It is
known that the Random algorithm4, which partitions data
uniformly at random at each node, is a constant approxi-
mation for the CKMM objective with dissimilarity scores
that need not form a metric. Further, it is a constant ap-
proximation for the Moseley and Wang (2017) objective
with similarity scores. For these two objectives, Random is
a 2

3 and 1
3 approximation, respectively. The Random algo-

rithm can produce undesirable hierarchical clusterings and
it is counterintuitive that it is a constant approximation for
these objectives. This paper shows that Random results in
an O(1

nε)-approximation for the proposed objective for a
constant ε > 0. Therefore, the Random algorithm provably
performs poorly for the new objective. This can be seen as
a strength of the new objective over those proposed.

We further show the following about other objectives in met-
ric space. These show that some other objectives do not make
a large differentiation between trees in metric space, even if
the trees correspond to a poor clustering. Our objective does
and this can be seen as an advantage of the new objective.
• As mentioned, we show that every tree is a 1

2 -
approximation for CKMM objective when points have dis-
similarity scores that form a metric.
4See Section 6 for a formal description of the algorithm.

• We show that every tree is a 2-approximation for the Das-
gupta objective (Dasgupta 2016) for similarity scores that
satisfy the triangle inequality. We include this result to
provide insight into this objective. However we note that
this is less surprising than the similar result on the CKMM
objective since some natural similarity score instances do
not satisfy the triangle inequality.

We investigate empirically the performance of three pop-
ular algorithms used in practice and Random algorithm for
the new objective. As is suggested by theory, the proposed
objective moderately favors bisecting k-means over two ag-
glomerative algorithms, while magnifying the gap between
the performance of Random and the other three algorithms.
Other Related Work: Other work centers around when bi-
secting algorithms work well. The work of Dasgupta and
Long; Plaxton (2005; 2006) show the remarkable result that
hierarchical trees exists such that each level of the tree op-
timizes the corresponding k-clustering objective. These al-
gorithms are complex and are mostly of theoretical interest.
Balcan, Blum, and Vempala (2008) showed that partitioned
clusterings can be uncovered from using hierarchical cluster-
ing methods under stability conditions. The work of Awasthi,
Blum, and Sheffet; Balcan, Blum, and Gupta; Carlsson and
Mémoli (2012; 2013; 2010) and pointers therein study stabil-
ity conditions of clustering.

The work of Charikar and Chatziafratis (2017) and Roy
and Pokutta (2017) were the first to give improved bounds
on the objectives of Dasgupta. Currently, the best known ap-
proximations for both the objective of Dasgupta (2016) and
CKMM (Cohen-addad et al. 2019) were shown in Charikar,
Chatziafratis, and Niazadeh (2019). This work gave a 1

3 + ε

and 2
3 + δ approximations for some small constants ε and δ,

respectfully. Further, they shown that average-linkage is no
better than a 1

3 and 2
3 approximation for the objectives respec-

tively. Thus, new algorithms were required to improve the
approximation ratio. If there data is in Euclidean space, then
Charikar et al. (2019) gave improve approximation ratios.

2 Preliminaries

In this section, we give a formal mathematical definition
for the hierarchical clustering problem. Then the objective
function is given.

Problem Input : In the hierarchical clustering problem, the
input is a set V of data points. There is a distance between
each pair of points i and j denoting their dissimilarity. In this
paper, the data points are assumed to be located in Euclidean
spaces, one particular type of metric space. For each pair of
points (i, j), the �2 distance, denoted as d(i, j), is used as
their dissimilarity score. The �2 distance is known to satisfy
the following properties:
(1) Convexity. The distances satisfy Jensen’s inequality: for

any points i, j, k, d(λ · i + (1 − λ) · j, k) ≤ λd(i, k) +
(1− λ)d(j, k), where λ ∈ [0, 1].

(2) Triangle inequality. For any points i, j, k, d(i, k) ≤
d(i, j) + d(j, k).

k-means Objective : The definition of the k-means objec-
tive is the following. Given a point set S, a k-means clus-

6309

tering partitions S into k sets S1, S2, . . . Sk. The k-means
objective calculates the summation over the squared norm
of the distance between a point to the centroid of the set
it belongs to:

∑k
j=1

∑
u∈Sj

d2(u, ρ(Sj)). Here ρ(Sj) de-
notes the centroid of Sj . In Euclidean space, ρ(Sj) satisfies:

ρ(Sj) =

∑
u∈Sj

u

|Sj | = argminp
∑

u∈Sj
d2(u, p).

Let Δk(S) denote the optimal k-means objective function
value for the point set S, where k is the number of clusters.
We will be particularly interested in Δ2(S), the 2-means
objective.

Fix a hierarchical clustering tree T on a set V . Consider
a node of the tree and let S ⊆ V be the subset of input
data that is input to the current split. These will eventually
be the leaves of the subtree induced by this node. We use
S → (S1, S2) to denote a split in the tree where a set S
is separated into two non-empty subsets, S1 and S2. These
sets correspond to the input of the two child nodes. We let
S → (S1, S2) ∈ T denote that this split exists in T .

Any split S → (S1, S2) where S1 and S2 are a parti-
tion of S is a valid 2-means solution for the point set S.
Since Δ2(S) denotes the optimal objective function value,
Δ2(S) ≤ Δ1(S1)+Δ1(S2) by definition of the 2-means ob-
jective. In particular, if S → (S1, S2) is the optimal 2-means
solution, we have Δ2(S) = Δ1(S1) + Δ1(S2).

3 Hierarchical-Revenue : Comparing Inter

vs. Intra Cluster Distance

This section defines the new objective function. We call
the problem of optimizing this objective the Hierarchical-
Revenue problem.

Defining the Revenue for a Pair: Consider a node in a
hierarchical clustering whose input is S and this set is split
into S1 and S2. A good tree ensures that the pairs of points
in i, i′ ∈ S1 (resp. S2) are more similar that pairs i ∈ S1

and j ∈ S2 (i.e. d(i, j) ≥ d(i, i′)). This ensures the points
corresponding to the cluster at a node in the tree become
more similar at lower levels of the tree. In the following, we
say i and j are split the first time they no longer belong to
the same cluster.

Every pair i and j will be eventually split in the tree and
a hierarchical clustering objective should ensure they are
split at the appropriate place in the tree. Further, an objective
should optimize over all pairs uniformly to determine the
splits.

Guided by these principles, we develop the objective as
follows. We begin by allowing every pair i and j to generate
one unit of revenue. This revenue can always be obtained for
a fixed pair, but not necessarily for all pairs simultaneously.
This unit of revenue is obtained when the pair is split at an
appropriate position in the tree. Less revenue (or even 0) will
be obtained when the pair is separated at a poor position. This
is the key to determine the quality of a split.

Say that S → (S1, S2) is the split at some node in the tree
and i ∈ S1 and j ∈ S2 are split. As discussed above, points
in S1 (respectively S2) should be more similar to each other
than i and j. To measure the similarity of i to other points

in S1 we use d(i, ρ(S1)), the distances of i to the centroid
of S1. Similarly, we use d(j, ρ(S2)) to measure the distance
of j to points in S2. The distance of a point to the centroid
of a set measures the distance to the average point in the set.
Thus, we would like d(i, j) to be larger than both d(i, ρ(S1))
and d(j, ρ(S2)) for it to make sense to split i and j. That is,
i and j should become more similar to their respective sets
after the split than they are to each other.

Formally, define the revenue for a pair of points as fol-
lows. Let δS1,S2(i, j) = max{d(i, ρ(S1)), d(j, ρ(S2))} be
the maximum distance of i and j to their respective cen-
troids. We would like δS1,S2

(i, j) to be smaller than d(i, j)
and therefore i and j generate a unit of revenue when this is
the case. When δS1,S2

(i, j) ≤ d(i, j) we assume the revenue
decays linearly. That is, the revenue is d(i,j)

δS1,S2
(i,j) .

Putting the above together, define the revenue for splitting
i and j as rev(i, j) = min{ d(i,j)

δS1,S2
(i,j) , 1}5. This is the rev-

enue i and j generates. Notice that a revenue of a unit can
always be obtained since we can let j be the unique last point
split from i. However, a good hierarchical splitting structure
is needed to get good revenue for many pairs of points.

The Global Objective: The global objective is defined as
follows. We note that while the revenue is summed over each
split in the tree, obtaining a large amount of revenue at a split
hinges on a good global tree structure.

Definition 3.1 (Hierarchical-Revenue). For a data set
V and a given hierarchical clustering tree T , de-
fine the hierarchical tree revenue function as fol-
lows. Let rev(S1, S2) =

∑
i∈S1

∑
j∈S2

rev(i, j) =
∑

i∈S1

∑
j∈S2

min{ d(i,j)
δS1,S2

(i,j) , 1} be the revenue over all
pairs of points split across S1 and S2. The aggre-
gate revenue is revT (V) =

∑
{i,j}⊆V rev(i, j) =

∑
S→(S1,S2)∈T rev(S1, S2), and it should be maximized

over all trees.

As is shown in Definition 3.1, there are two ways of com-
puting revT (V). One is to sum up the revenue over the pairs,
while the other is to sum up the revenue over the splits. Both
methods lead to the same value. The second form allows us
to judge whether a split at some internal node of the tree is
good or not compared to the number of pairs it separated.

4 Ground-truth Inputs

The work of Cohen-addad et al. (2019) gave a characteriza-
tion of desirable hierarchical clustering objectives. The idea
is to give a class of instances that naturally correspond to a
specific hierarchical clustering tree. These trees should be
optimal solutions for a good hierarchical clustering objective.

In particular, Cohen-addad et al. (2019) defined input in-
stances that correspond to ultrametrics. Such inputs will be
referred to as ground-truth inputs. For such an input, they
define generating trees, which should be optimal for the hi-
erarchical clustering objective to be valid. Intuitively, in an
ultrametric either it is clear what the split should be at each

5We assume dividing by 0 gives revenue 1.

6310

point in the tree or all splits are equivalent.6 The resulting
tree is a generating tree.

We prove a generating tree is an optimal solution for our
objective, if the input in Euclidean space is ground-truth.

4.1 Definition of Ground-Truth Inputs

We cite the following definitions from Cohen-addad et al.
(2019).

Definition 4.1. A metric space (X, d) is an ultrametric if for
every x, y, z ∈ X , d(x, y) ≤ max{d(x, z), d(y, z)}.

Intuitively, the definition of ultrametric implies that any
three points u, v, w form an isosceles triangle, whose equal
sides are at least as large as the other side. Cohen-addad et
al. (2019) then defined an instance generated from ultramet-
ric, which is treated as ground-truth input for hierarchical
clustering.

Definition 4.2. An input instance on a set of points V with
pairwise distance function d is generated from an ultrametric
if the distances function d corresponds to a ultrametric.

Following Cohen-addad et al. (2019), we define gener-
ating trees, which are considered the most well-behaving
hierarchical clustering trees for a ground-truth input.

Definition 4.3. If the instance V is generated by ultrametric,
a binary tree T is a generating tree for G if it satisfies the
following properties:

1. It has |V | leaves and |V | − 1 internal nodes. Let L denote
its leaves and each point in L corresponds to a unique point
in V . Let N denote its internal nodes, corresponding to
clusters of the leaves of the subtree rooted at the node.

2. There exists a weight function W : N
→ R+. For
N1, N2 ∈ N , if N1 is on the path from N2 to the root,
W (N1) ≥ W (N2). For every x, y ∈ V , d(x, y) =
W (LCAT (x, y)), where LCAT (x, y) denotes the Least
Common Ancestor of leaves corresponding to x and y in
T .

Cohen-addad et al. (2019) proposed that for a ground-truth
input graph as defined in Definition 4.2, if there exists any
corresponding generating tree T , it is considered one of the
best solutions among all the solutions, and thus should be
one of the optimal solutions for the hierarchical clustering
objective function used.

We give some intuition for why a generating tree is consid-
ered the best tree on such inputs. The value W (LCAT (x, y))
can be interpreted as the distances of edges cut in split at the
LCA of x and y. All points separated in a split have equal
pairwise distance, the maximum pairwise distances in the
current point set. Naturally, the higher up this LCA is, the
larger the distance should be. For each ground-truth input
graph, there is always a generating tree T , which separates
the farthest pairwise points in every split.

6If there is a natural split then the points can be divided into
two groups A and B such that inter-group distances are larger than
intra-group distances. If all splits are equivalent then pairwise the
points are all the same distance.

4.2 Optimality of Generating Trees

Now we prove that given an input that is generated from an
ultrametric, every generating tree is optimal for Hierarchical-
Revenue function introduced in this paper. In particular, every
pair of points will get full revenue.
Lemma 4.1. A binary tree T , with |V | leaves corresponding
to the points in V and |V | − 1 internal nodes, is a generating
tree for an instance V generated from a ultrametric if and
only if it satisfies the following property:
• For every split A ∪ B → (A,B) from top to bottom,

∀i ∈ A, j ∈ B, d(i, j) = maxx∈A,y∈B d(x, y).
Every ground-truth input has at least one generating tree,

as stated in the following theorem.
Theorem 4.2. For every instance generated from some ul-
trametric, there is always a generating tree T as defined in
Definition 4.3.

Using Lemma 4.1, the optimality of T is proved by arguing
every split gives a revenue of 1 for every pair of points it
separates.
Theorem 4.3. A generating tree T for an instance gener-
ated V from an ultrametric is optimal for the Hierarchical-
Revenue objective.

5 Bisecting k-means Approximates the

Revenue Objective

This section shows that the bisecting k-means algorithm is
a constant approximation for the proposed objective. This
establishes a foundational connection between a natural ob-
jective function and the bisecting k-means algorithm. This is
the first analysis showing that bisecting k-means optimizes a
global objective function. This helps explain the structure of
the solutions produced by the algorithm.

The goal of this section is to show the following theorem.
Theorem 5.1. Fix any input set V and let T be the tree cre-
ated by the bisecting k-means algorithm. The tree T is a
constant approximation for the Hierarchical-Revenue objec-
tive.

The analysis is based on analyzing each split performed
by bisecting k-means individually. The following lemma
shows that if every split in a hierarchical clustering tree is
good for the objective function proposed, then the whole
tree is also good. By “good” we mean that the split gains
a revenue which is at least some constant factor times the
number of pairs separated. This lemma follows immediately
by definition of the objective.
Lemma 5.2. A hierarchical clustering tree T is a γ-
approximation for the Hierarchical-Revenue problem if it
satisfies the following condition: ∀S → (S1, S2) ∈ T ,
rev(S1, S2) ≥ γ|S1||S2| holds for some constant γ > 0.

The above lemma allows us to focus on a single iteration
of the bisecting k-means algorithm. Suppose at some iter-
ation, a cluster A ∪ B is split into A and B. We give the
following definition of a high-revenue point. A point u in A
is a high-revenue point if for most of the points in B, it gains
acceptable amount of revenue.

6311

Definition 5.1. Given a split A ∪B and a point u ∈ A, the
high-revenue set for u for set B is: HRB(u) = {v ∈ B :
rev(u, v) ≥ 1

10}. Define the low-revenue set for u ∈ A to
be defined as: LRB(u) = {v ∈ B : rev(u, v) < 1

10} =
B \HRB(u).
Definition 5.2. Given a split A∪B, a point u ∈ A is a high-
revenue point if |HRB(u)| ≥ 1

2 |B|. Otherwise, it is called
a low-revenue point.

With the definition of high-revenue points in place, the next
lemma claims that given split A ∪ B → (A,B) created by
the optimal 2-means algorithm, if |A| ≥ |B|, at least half of
A are high-revenue points. This is the main technical lemma.
This combined with Lemma 5.2 implies Theorem 5.1.
Lemma 5.3. Let A and B be the optimal 2-means solution
for the point set A ∪B. Without loss of generality, suppose
|A| ≥ |B|. Then, at least 4

7 |A| points in A are high-revenue.
This gives a lower bound of at least 1

35 |A||B| revenue in total
for splitting A and B.

The rest of the section is devoted to proving Lemma 5.3
by contradiction, with proofs partially omitted due to space
limits. For the rest of the section fix a set A ∪B and let the
partition A,B correspond to the optimal solution to the 2-
means problem on A ∪B. For sake of contradiction suppose
more than 3

7 |A| points in A are low-revenue points. We will
show that such a split A∪B → (A,B) cannot be optimal for
the 2-means objective. Indeed, we will show that another split
has a smaller 2-means objective value, proving the lemma.

Say we have i ∈ A and j ∈ B, such that rev(i, j) < 1
10 .

Let H be the hyperplane such that H = {y : d(y, ρ(A)) =
d(y, ρ(B))}. Then, H separates the Euclidean space into
two half-spaces: H+ = {y : d(y, ρ(A)) ≥ d(y, ρ(B))} and
H− = {y : d(y, ρ(A)) ≤ d(y, ρ(B))}. By the assumption
that the split A ∪B → (A,B) is the optimal 2-means solu-
tion, we have A ⊆ H+, and B ⊆ H−. Next we show the
following structural lemma. This lemma says that if rev(i, j)
is small then d(i, ρ(A)) and d(j, ρ(B)) are within a constant
factor of each other, which is close to 1. Geometrically, this
implies that both i and j are located close to the hyperplane
H . See Figure 5 for an illustration. The following lemma’s
proof is in the appendix.
Lemma 5.4. Consider any i ∈ A and j ∈ B. If rev(i, j) <
1
10 , we have 9

10d(i, ρ(A)) < d(j, ρ(B)) < 10
9 d(i, ρ(A)),

and 9
10d(j, ρ(B)) < d(i, ρ(A)) < 10

9 d(j, ρ(B)), and
d(i, j) < 1

9 min{d(i, ρ(A)), d(j, ρ(B))}.
Let S be the subset of low-revenue points in A. By as-

sumption, |S| > 3
7 |A|. The next lemma establishes that any

two points in S are very close to each other as compared to
their distance to the centroid ρ(A). The following lemma’s
proof is in the appendix.
Lemma 5.5. Let S be the low-revenue points in
A. For any two points u, v ∈ S, d(u, v) ≤
2
9 max{d(u, ρ(A)), d(v, ρ(A))}.

Let x be the point in S such that x ∈
argmaxu∈S d(u, ρ(A)), the farthest points from ρ(A)
in S. Notice that, d(x, ρ(A)) > 0, otherwise it implies S
is overlapping with ρ(A), for any u ∈ S and v ∈ LRB(u),

Figure 3: Proof by constructing a better 2-means solution.
The bold dashed line in the middle is the hyperplane H . The
two bold ellipses are clusters A and B , respectively. The
dashed ellipse in A is the set S, and the dashed ellipse in
B is the low-revenue set LRB(u) for point u ∈ A in B. S
and LRB(u) are both close to the separating hyperplane H .
A new partition A ∪ B → (A \ S,B ∪ S) is constructed,
represented by the two grey areas.

by Lemma 5.4, we have d(v, ρ(B)) = 0, but this implies
rev(u, v) = 1. Therefore, d(x, ρ(A)) > 0.

Lemma 5.5 implies that ∀u ∈ S, d(u, x) ≤ 2
9d(x, ρ(A)).

This result tells us the set S is contained in a ball centered
at x, with radius 2

9d(x, ρ(A)). So we can bound the distance
between centroid of S, ρ(S) and ρ(A) using convexity of
the �2 norm. The following lemma’s proof is omitted due to
space.
Lemma 5.6. Let S be the low-revenue points in A and x ∈
argmaxu∈S d(u, ρ(A)). It is the case that d(ρ(S), ρ(A)) ≥
7
9d(x, ρ(A)).

This is proved by combining Lemma 5.5 with the convexity
of l2 norm. Notice that ρ(A) is a convex combination of
all points in A, Jensen’s inequality gives us the conclusion.
Since we proved ρ(S) is far from ρ(A). Next, we upper-
bound d(ρ(S), ρ(B)). Recall that points in the set S are far
away from ρ(A), but close to the hyperplane H = {y :
d(y, ρ(A)) = d(y, ρ(B))}. The following lemma’s proof is
in the appendix.
Lemma 5.7. Let S be the low-revenue points in A. For any
u ∈ S, d(u, ρ(B)) ≤ 11

9 d(x, ρ(A)).
Therefore, we can upper bound d(ρ(S), ρ(B)):

d(ρ(S), ρ(B)) ≤
∑

u∈S d(u,ρ(B))

|S| ≤ 11
9 d(x, ρ(A)).

The first inequality follows by definition of a centroid.
The second from Lemma 5.7. This, combined with
d(ρ(S), ρ(A)) ≥ 7

9d(x, ρ(A)) from Lemma 5.6, gives us

the following: d2(ρ(S),ρ(A))
d2(ρ(S),ρ(B)) ≥ (79)

2/(119)2 = 49
121 . Recall

that Δk(U) denotes the optimal k-means value for a set U .
Let S1 and S2 be two sets. We quote the following lemma
from Ostrovsky et al. (2012).
Lemma 5.8 ((Ostrovsky et al. 2012)). For any two sets of
points S1 and S2 it is the case that Δ1(S1∪S2) = Δ1(S1)+

Δ1(S2) +
|S1||S2|
|S1|+|S2|d

2(ρ(S1), ρ(S2)).

With this in place Lemma 5.3 can be shown. In general,
we show this by take the set S away from A and assign it

6312

into cluster B instead, and prove that this is a better 2-means
solution than the previous one. Due to space, the proof of
Lemma 5.3 is omitted.

6 Randomly Partitioning Poorly

Approximates the Revenue Objective

Consider the following algorithm which can create undesir-
able trees. The Random algorithm splits a set S into (S1, S2)
by flipping an independent, fair coin for each point in S. If
the coin comes up heads then the point gets added to S1,
and otherwise gets added to S2. The algorithm is intuitively
undesirable because it does not take the structure of the input
into the construction of the solution. Further, the solutions
produced do not give much insight into the data.

While intuitively bad, this algorithm is known to be a 1
3 -

approximation for the objective of Moseley and Wang (2017)
with similarity scores and it is a 2

3 -approximation for CKMM
objective for dissimilarity scores. These results hold for any
set of similarity or dissimilarity scores, regardless of if they
form a metric.

We show that the our objective does not have this short-
coming. The approximation ratio of the Random algorithm
is at most O(1

nε) for a constant ε > 0, indicating that it
performs very poorly, as is stated by Theorem 6.1. Proof is
omitted.
Theorem 6.1. Let OPT (V) be the optimal solution for V .
Let the expected revenue be ET [revT (V)] for set V . Then,
there exists a construction of V , such that for a constant
ε ∈ (0, 1), ET [revT (V)] = O(1

nε) ·OPT (V).

7 Objectives for Data in Metric Space

This section studies data with similarity/dissimilarity scores
in a metric space. First we investigate the CKMM objective for
hierarchical clustering on point sets using dissimilarity scores.
Recall that this objective is the same as the Dasgupta (Das-
gupta 2016) objective except the minimization is swapped
for a maximization and the similarity scores are swapped for
dissimilarity scores. We also study the Dasgupta objective
(Dasgupta 2016) for similarity scores. We show for each case
that if the pairwise similarity/dissimilarity scores form any
metric, then every tree is a at most a factor 2 from optimal.

For a tree T let T [i∨j] denote the subtree rooted at the least
common ancestor of i and j, and |leaves(T [i∨ j])| denote
the number of leaves of T [i∨ j]. Recall that the CKMM objec-
tive is the following: maxT

∑
i,j∈V d(i, j)|leavesT [i∨j]|.

In Cohen-addad et al. (2019), it has been proved that any
solution is a constant approximation of the optimal solution
for CKMM objective, given that the distance is a metric. Here
we prove a stronger conclusion:
Theorem 7.1. Any solution is a 1

2 -approximation for CKMM
objective if the distance d(i, j) is a metric, i.e., it satisfies
triangle inequality.

Next consider the objective in Dasgupta (Dasgupta 2016).
Here each pair of points i and j have a similarity score
wij where higher weights mean points are more similar.
Recall from the introduction that Dasgupta’s objective is
minT

∑
i,j∈V wij |leavesT [i ∨ j]|.

We show the following corollary that follows from the
proof of the prior theroem.

Corollary 7.1.1. If the similarity score in the setting of Das-
gupta (2016) is a metric, any hierarchical clustering tree
is a 2-approximation for the objective in Dasgupta (2016):
minT costT (V) =

∑
1≤i<j≤n wij |leaves(T [i ∨ j])|.

We note that for similarity scores, it is not a standard as-
sumption that data lies in a metric space. Thus, this corollary
is perhaps interesting to understand the structure of the ob-
jective. However, it does not suggest that any tree will be
2-approximate for most data sets with similarity scores.

8 Empirical Results

The goal of this section is to study the performance of differ-
ent algorithms for the new objective empirically. The experi-
mental results support the following claims:

• Algorithms that are popular in practice give high revenue
for the new objective, with bisecting k-means perform-
ing the best. This demonstrates that the objective value is
correlated with algorithms that perform well and highly
connected to the bisecting k-means algorithm, as the theory
suggests.

• Random algorithm, as mentioned in previous section, per-
forms poorly for the new objective.

Data sets: We use two data sets from the UCI data repos-
itory: Census7 and Bank8. Only the numerical features are
used.

Algorithms studied: We study four algorithms9: bisecting
k-means, average-linkage, single-linkage, and Random. In
each experiment, we subsample 2000 data points from the
given data set and run the algorithms with subsampled data.
We conduct five experiments with each data set and report
the mean and variance. Since optimal 2-means solution is
intractible, in practice we import the k-means implementation
from package Scikit-learn10, which uses Lloyd’s algorithm
seeded with k-means++ for each split.

Results: Table 1 shows the comparison between perfor-
mance for our objective and the CKMM objective. For each al-
gorithm, the columns (μ̂1, σ̂1) and (μ̂2, σ̂2) denote the mean
and standard deviation for our objective and CKMM objective
respectively, calculated over results of the five experiments.

Regarding the new objective, the results show bisecting k-
means performs the best of the four algorithms for it. Further,
bisecting k-means is within 1% of the upper bound on the
optimal solution for the objective, which is the total number
of pairs of data points. This suggests that the objective is
closely related to bisecting k-means, as the theory suggests.
It also shows that experimentally bisecting k-means performs
much better than the approximation ratio established.

7https://archive.ics.uci.edu/ml/datasets/census+income
8https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
9https://github.com/wangyuyan2333/hier clustering split rev

obj test.git
10https://scikit-learn.org/stable/modules/generated/sklearn

.cluster.KMeans.html

6313

Algorithm (μ̂1, σ̂1)-Census (μ̂2, σ̂2)-Census (μ̂1, σ̂1)-Bank (μ̂2, σ̂2)-Bank
bisecting k-means (4.931e5, 304.980) (1.094e12, 1.714e11) (4.912e5, 474.451) (1.049e12, 1.158e11)
average-linkage (4.900e5, 1.151e3) (1.093e12, 1.710e11) (4.907e5, 802.665) (1.052e12, 1.163e11)
single-linkage (4.869e5, 1.392e3) (1.094e12, 1.712e11) (4.818e5, 1.365e3) (1.035e12, 1.168e11)
Random (1.311e5, 1.072e4) (7.463e11, 1.152e11) (3.339e5, 8.825e3) (7.789e11, 7.993e10)
upper bound (499500, 0) (1.119e12, 1.725e11) (499500, 0) (1.167e12, 1.199e11)

Table 1: Summary of stats for all algorithms, on Census and Bank

All the three algorithms which are popular in practice per-
form well for our objective, with bisecting k-means perform-
ing marginally better than average-linkage and single-linkage
on average. Moreover, bisecting k-means also has the small-
est standard deviation across different subsamples. Random
is significantly worse, with potentially over 30 times more
loss compared to optimal than the other algorithms. This per-
haps suggests that trees created by good algorithms perform
well for the objective and poorly constructed trees do not
perform well.

Compared with the CKMM objective from prior work, the
results further show that average-linkage performs slightly
better than bisecting k-means for the CKMM objective. This
result matches the theory, which suggests this objective is
closer to average-linkage than bisecting k-means. Again, all
three algorithms used in practice perform well for CKMM .
However, Random also gives about 2/3 of the upper-bound,
as the theoretical bound suggests. This perhaps shows the
CKMM objective gives similar judgements on algorithm per-
formance with our objective, the latter showing a more sig-
nificant gap between Random and the other three algorithms.

9 Conclusion

This paper gives a new objective function for hierarchical
clustering designed to mathematically capture the principle
used to motivate most divisive algorithms. That is, comparing
inter vs. intra cluster distances at splits in the tree.

The paper proved a close relationship between the objec-
tive and the bisecting k-means algorithm. This was done by
showing the bisecting k-means provably optimizes the objec-
tive. This helps to understand the structures of trees produced
using bisecting k-means.

The results in this paper leave directions for future work.
How tight can the approximation ratio be for the k-means
algorithm? How do other hierarchical clustering algorithms
perform for this objective? Can we improve on the bisecting
k-means algorithm to better optimize the objective?

References
Ackerman, M., and Ben-David, S. 2016. A characterization of
linkage-based hierarchical clustering. Journal of Machine Learning
Research 17:232:1–232:17.
Awasthi, P.; Blum, A.; and Sheffet, O. 2012. Center-based clustering
under perturbation stability. Inf. Process. Lett. 112(1-2):49–54.
Balcan, M.; Blum, A.; and Gupta, A. 2013. Clustering under
approximation stability. J. ACM 60(2):8:1–8:34.
Balcan, M.; Blum, A.; and Vempala, S. 2008. A discriminative
framework for clustering via similarity functions. In Proceedings of
STOC, 671–680.

Carlsson, G. E., and Mémoli, F. 2010. Characterization, stability
and convergence of hierarchical clustering methods. Journal of
Machine Learning Research 11:1425–1470.
Charikar, M., and Chatziafratis, V. 2017. Approximate hierarchical
clustering via sparsest cut and spreading metrics. In Proceedings of
SODA, 841–854.
Charikar, M.; Chatziafratis, V.; Niazadeh, R.; and Yaroslavtsev, G.
2019. Hierarchical clustering for euclidean data. In Chaudhuri, K.,
and Sugiyama, M., eds., PMLR, volume 89, 2721–2730. PMLR.
Charikar, M.; Chatziafratis, V.; and Niazadeh, R. 2019. Hierarchical
clustering better than average-linkage. In Proceedings of SODA,
2291–2304.
Chatziafratis, V.; Niazadeh, R.; and Charikar, M. 2018. Hierarchical
clustering with structural constraints. In Proceedings of the ICML,
773–782.
Cohen-addad, V.; Kanade, V.; Mallmann-trenn, F.; and Mathieu, C.
2019. Hierarchical clustering: Objective functions and algorithms.
J. ACM 66(4):26:1–26:42.
Dasgupta, S., and Long, P. M. 2005. Performance guarantees for
hierarchical clustering. J. Comput. Syst. Sci. 70(4):555–569.
Dasgupta, S. 2016. A cost function for similarity-based hierarchical
clustering. In STOC, 118–127.
Ghoshdastidar, D.; Perrot, M.; and von Luxburg, U. 2018.
Foundations of comparison-based hierarchical clustering. CoRR
abs/1811.00928.
Moseley, B., and Wang, J. 2017. Approximation bounds for hier-
archical clustering: Average linkage, bisecting k-means, and local
search. In Advances in Neural Information Processing Systems,
2017,, 3097–3106.
Murtagh, F., and Contreras, P. 2012. Algorithms for hierarchical
clustering: an overview. Wiley Interdisc. Rew.: Data Mining and
Knowledge Discovery 2(1):86–97.
Murtagh, F. 1983. A survey of recent advances in hierarchical
clustering algorithms. Comput. J. 26(4):354–359.
Ostrovsky, R.; Rabani, Y.; Schulman, L. J.; and Swamy, C. 2012.
The effectiveness of lloyd-type methods for the k-means problem.
Journal of the ACM (JACM) 59(6):28.
Plaxton, C. G. 2006. Approximation algorithms for hierarchical
location problems. J. Comput. Syst. Sci. 72(3):425–443.
Roy, A., and Pokutta, S. 2017. Hierarchical clustering via spreading
metrics. JMLR 18:88:1–88:35.
Steinbach, M.; Karypis, G.; Kumar, V.; et al. 2000. A comparison of
document clustering techniques. In KDD workshop on text mining,
volume 400, 525–526. Boston.
Zhao, Y.; Karypis, G.; and Fayyad, U. M. 2005. Hierarchical
clustering algorithms for document datasets. Data Min. Knowl.
Discov. 10(2):141–168.

6314

