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Abstract

Ensemble learning, which aggregates multiple diverse mod-
els for inference, is a common practice to improve the accu-
racy of machine learning tasks. However, it has been observed
that the conventional ensemble methods only bring marginal
improvement for neural machine translation (NMT) when in-
dividual models are strong or there are a large number of indi-
vidual models. In this paper, we study how to effectively ag-
gregate multiple NMT models under the transductive setting
where the source sentences of the test set are known. We pro-
pose a simple yet effective approach named transductive en-
semble learning (TEL), in which we use all individual models
to translate the source test set into the target language space
and then finetune a strong model on the translated synthetic
corpus. We conduct extensive experiments on different set-
tings (with/without monolingual data) and different language
pairs (English↔{German, Finnish}). The results show that
our approach boosts strong individual models with significant
improvement and benefits a lot from more individual models.
Specifically, we achieve the state-of-the-art performances on
the WMT2016-2018 English↔German translations.

1 Introduction

Ensemble learning, which aggregates multiple models dur-
ing inference, is an effective and widely used technique to
boost performance in machine learning tasks (Zhou 2012).
Different aggregating methods have been proposed, includ-
ing bagging (Breiman 1996), (ada)boosting (Kuznetsov,
Mohri, and Syed 2014), etc. Ensemble of neural net-
works (Hansen and Salamon 1990) has effectively improved
the accuracy of neural machine translation (NMT), making
it an important and widely adopted technique in the state-
of-the-art NMT systems (Sutskever, Vinyals, and Le 2014;
Bahdanau, Cho, and Bengio 2015; Gehring et al. 2017;
Vaswani et al. 2017; Hassan et al. 2018). In the context of
NMT, a common practice is to average probabilities com-
puted by individual models for each word and choose the
word with the largest averaged probability at each decoding
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step. The quality of ensemble results depends on both the
accuracy and diversity of individual models (Imamura and
Sumita 2017), which are usually obtained through indepen-
dent training.

While model ensemble is one of the most popular and
important techniques to enhance the performance of NMT
systems, it does not always perform well and suffers from
several limitations in different scenarios: 1) Ensemble of
strong models. It has been observed from both previous
work (Deng et al. 2018) and our empirical studies (Table 3
and 4) that only marginal improvements can be obtained
from ensemble when the individual models are of high ac-
curacy. 2) Diminishing effect of more models. Ensemble of
more models does not always lead to better performance
and may even hurt the final accuracy (Figure 2). Complex
model selection approach (Deng et al. 2018) or carefully
designed weights (Garmash and Monz 2016) are often re-
quired, which is a non-trivial process when there are a large
number of individual models available.

In this work, we propose a new approach to effectively
leverage multiple NMT models for better performance and
overcome the aforementioned limitations of the conven-
tional model ensemble. The key idea is to leverage full or
partial input test data with ensemble learning. Specifically,
source input sentences from the validation and test sets are
firstly translated to the target language space with multiple
different well-trained NMT models, which results in a pre-
translated synthetic dataset. The individual models are then
finetuned on the generated synthetic dataset. At last, only
one single model (selected by the accuracy on the validation
set) will be used during the final inference phase. The idea of
leveraging full or partial test set falls into the setting of trans-
ductive learning (Gammerman, Vovk, and Vapnik 1998;
Joachims 1999), which has various application scenarios
when real-time inference is not needed. For example, of-
fline translation of a document1 or a book, offline ques-
tion answering or document reading comprehension such
as SQuAD challenge2. We name the proposed approach
“Transductive Ensemble Learning” (TEL).

We conduct extensive experiments on different transla-

1http://www.statmt.org/wmt19
2https://rajpurkar.github.io/SQuAD-explorer
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tion tasks (e.g., English↔German, English↔Finnish) and
different data settings (e.g., without/with monolingual data)
to study when and how well TEL works. Empirical results
and analysis demonstrates the following advantages of TEL:

• TEL is effective across various different settings. It leads
to good improvement even when individual models are
strong and previous ensemble methods do not boost the
final accuracy. In particular, TEL improves the sophisti-
cated translation systems by a large margin and advances
the state-of-the-art performances of English↔German
translations on WMT2016-2018.

• TEL is robust to the number of individual models. It ben-
efits from introducing more individual models of reason-
able performances and diversity in the ensemble learning
process, and it does not require complex or carefully de-
signed model selection process. In contrast, the accuracy
of previous ensemble methods sometimes gets hurt when
more individual models are leveraged.

• TEL demonstrates good generalization capability. A TEL
model leveraging a small subset of test input data works
well on the whole test set, and a TEL model trained on
one test set also works well on other test sets with similar
data distribution.

2 Background

2.1 Neural Machine Translation

NMT is a sequence-to-sequence learning task, which is usu-
ally modeled by an encoder-decoder framework (Sutskever,
Vinyals, and Le 2014). The input source sentence is firstly
mapped into context representations in a continuous repre-
sentation space by the encoder, which are then fed into the
decoder to generate the output sentence. The encoder and
decoder can be implemented with different neural architec-
tures, including GRU (Bahdanau, Cho, and Bengio 2015),
CNN (Gehring et al. 2017), and Transformer (Vaswani et al.
2017), among which the recent self-attention based Trans-
former is the state-of-the-art architecture for NMT.

NMT heavily relies on large amount of bitext data with
parallel sentence pairs, which is expensive to collect. There-
fore, training NMT models in the semi-supervised setting
by leveraging the rich monolingual data is an important re-
search direction. Back-translation (Sennrich, Haddow, and
Birch 2016a), which generates a synthetic training corpus
by translating the target-side monolingual sentences with a
backward target-to-source model, is widely adopted due to
its simplicity and effectiveness. (Wu et al. 2019) goes be-
yond back-translation and leverages both source side and
target side monolingual data. Dual learning (He et al. 2016;
Wang et al. 2019) is another way to leverage monolingual
data, where the source sentence is first forward translated to
the target space and then back translated to the source space.
The reconstruction loss is used as the feedback signal to reg-
ularize training.

2.2 Ensemble for NMT

Among various model aggregating approaches in machine
learning, the most effective and widely adopted methods for

NMT are the token-level ensemble and sentence-level en-
semble. Let X and Y denote the source and target language
spaces respectively, and fm : X �→ Y , m ∈ {1, ...,M} de-
notes the given M source-to-target translation models. Let
Vt denote the vocabulary of the target language.

In token-level ensemble, a group of individual models co-
operate to generate one sequence step by step. Namely, given
a source sentence x ∈ X , token-level ensemble generates
the t-th target token y(t) with an average prediction:

y(t) = argmax
w∈Vt

1

M

M∑

m=1

logP (w|y(<t), x; fm). (1)

y = (y(1), y(2), · · · , y(t), · · · ) is used as the translation of x.
The common practice for sentence-level ensemble is

through sentence reranking (Och et al. 2004), where given
an input sentence x, each model generates one translation
independently, resulting in a collection of candidate transla-
tion pairs T (x) = {(x, fm(x))|m ∈ [M ]}. The top transla-
tion with the best average score evaluated by all M candi-
date models is selected as the final output:

y = argmax
y′∈T (x)

1

M

M∑

m=1

logP (y′|x; fm). (2)

It has been observed from both previous work (Imamura and
Sumita 2017) and our empirical studies that the two ensem-
ble methods generally achieve comparable results across dif-
ferent settings. We focus on discussion and comparison with
token-level ensemble (referred to as ensemble or model en-
semble) in the rest of the paper.

2.3 Transductive Learning

Transductive learning (Gammerman, Vovk, and Vapnik
1998; Joachims 1999; El-Yaniv and Pechyony 2009; Wang,
Shen, and Pan 2007) is a special case of semi-supervised
learning. Different from the pure semi-supervised setting,
where the unlabeled data is additional training data, the un-
labeled data in transductive learning is the test data. In gen-
eral, semi-supervised learning is based on an “open” setting,
which hopes that the model learning process can adjust to
the unlabeled data. In contrast, transductive learning is based
on a “closed” setting that the model only attempts to pre-
dict the label for the unlabeled data used for training during
learning process.

In transductive learning, the label of the test data is also
regarded as the parameter to be optimized. The intuition be-
hind transductive learning is that the test data can help de-
scribe the marginal distribution of the data and improve the
generalization ability. In recent years, transductive learning
has attracted lots of research attention from both theoreti-
cal (El-Yaniv and Pechyony 2009) and empirical views (Shi
et al. 2018; Joachims 1999), which shows the importance
and research value in this learning direction.

3 Transductive Ensemble Learning

In this section, we introduce the formulation of transductive
ensemble learning (TEL) in Section 3.1, and discuss the re-
lationship and differences with other works in Section 3.2.
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3.1 Approach

Given two language spaces X and Y , we denote the train-
ing, validation and test sets as Dtrain = {(xi, yi)}Ntrain

i=1 ,
Dvalid = {(x̄i, ȳi)}Nvalid

i=1 and Dtest = {x∗
j}Ntest

j=1 respectively,
where xi, x̄i, x

∗
j ∈ X are the source sentences, yi, ȳi ∈ Y

are the target sentences, Ntrain, Nvalid and Ntest are the sizes
of training, validation and test sets. There are K translation
models fk : X �→ Y , k ∈ {1, ...,K}, which are trained on
Dtrain. The goal is to aggregate all the different fk to a single
f0 : X �→ Y that can achieve better performance on Dtest.
Our approach consists of the following two steps:

1. Forward translate source sentences in Dvalid and Dtest by
all K translation models and construct synthetic datasets:

Dv = {(x̄i, fk(x̄i))|x̄i ∈ Dvalid, k ∈ {1, ...,K}};
Dt = {(x∗

i , fk(x
∗
i ))|x∗

i ∈ Dtest, k ∈ {1, ...,K}}. (3)

2. Finetune model f0 on the synthetic dataset Dv ∪ Dt:

min
∑

(x,y)∈Dv∪Dt

− logP (y|x; f0). (4)

Here f0 can be generally warm started from any model fk,
k ∈ {1, ...,K}. The training process can be stopped early
when the validation BLEU stops increasing. We eventually
obtain a single model f0 for inference and return f0(x

∗) for
any x∗ ∈ Dtest as the test results.

An optional operation in step 2 is to also leverage a sub-
set of bilingual training data. That is, we randomly sample
a subset Bt ⊂ Dtrain with size |Bt| = |Dv| + |Dt|, and then
optimize Eqn. (4) on Bt ∪ Dv ∪ Dt. Adding a subset of the
bilingual training data indeed helps but not much. See Sec-
tion 5.5 for a detailed study.

Given any K pre-trained models, we can follow the above
steps to obtain the f0 tuned on the test set. However, it is
costly to train K different models independently, especially
when K is large. An efficient way to obtain the K models
is to independently train K/τ models with different random
seeds, τ ∈ {1, ..., N}. For each training trajectory, we out-
put multiple checkpoints of the models and choose the top
τ models with the largest validation BLEU. In this way, we
accumulate K models at the cost of K/τ training trajecto-
ries. When K is fixed, a larger τ indicates that the models
are less diverse but more efficient to obtain, and vice versa.
Clearly, more diverse models are more effective for ensem-
ble and also for our proposed method. We will discuss the
tradeoff between τ and m = K/τ in Section 5.3.

3.2 Discussion

There are several differences between TEL and previous en-
semble methods: (1) Conventional model ensemble leverage
multiple models for final inference, while our approach only
leverages one model for final inference; (2) There is no train-
ing process in previous methods, while training is required
in TEL. Note that the training cost is much lower compared
with training the individual models; (3) A premise of our
method is that the input of the test data has to be known in
advance, while conventional ensemble does not.

Another group of related work is knowledge distilla-
tion (Hinton, Vinyals, and Dean 2015; Kim and Rush 2016;
Ueffing, Haffari, and Sarkar 2007), where a teacher model
f is first obtained, and then used to translate the training
dataset and get Ddistill = {(x, f(x))|x ∈ Dtrain}. After that,
a new model is trained on Ddistill so that the obtained model
can either achieve better performance or have smaller model
size. Standard knowledge distillation works on the training
set while our proposal can be regarded as a kind of distilla-
tion on the test set. When multiple models are provided in
distillation, a common practice is to use the ensemble of the
multiple models to translate each x into one y ∈ Y . In con-
trast, in our approach, each x is translated into multiple y,
which enlarges the dataset and bring more diverse patterns.

4 Experimental Setup

We evaluate the proposed transductive ensemble learning on
various neural machine translation tasks. In this section, we
introduce the detailed experimental setup, including dataset
construction (Section 4.1), model and hyperparameter con-
figurations (Section 4.2) and evaluation (Section 4.3)

4.1 Datasets

The majority of our empirical studies are conducted
on the WMT2019 English→German (En→De) and
German→English (De→En) news translation tasks. We use
5M bitext as our training data3, and use 20M additional
monolingual sentences selected from NewsCrawl for each
translation direction in the semi-supervised setting. The
monolingual data is leveraged through back translation (BT)
by the target-to-source model trained on the bitext training
data. We use Newstest2015 as the validation set for model
selection. We report results on Newstest2016 for discussion
and ablation studies, and report all Newstest2016-2018
for overall performances. All words are segmented into
sub-word units using byte pair encoding (BPE) (Sennrich,
Haddow, and Birch 2016b), forming a vocabulary shared by
the source and target languages with 43k tokens.

We also experiment on another two more transla-
tion tasks, WMT2019 English→Finnish (En→Fi) and
Finnish→English (Fi→En) news translations, to further ver-
ify our conclusions. We construct the datasets in the same
way as En↔De, where we use 4.8M bilingual sentence
pairs for training, and 20M monolingual sentences with
back-translation. The shared vocabulary size is 46k. We
use Newstest2015 as the validation set and report results on
Newstest2016-2018.

4.2 Model Configuration

We use the state-of-the-art Transformer model for all our
experiments, and use the transformer big setting fol-
lowing (Vaswani et al. 2017), which consists of a 6-layer
encoder and decoder. The dimensions of word embeddings,
hidden states and non-linear layer are set as 1024, 1024 and
4096 respectively, and the number of heads for multi-head
attention is set as 16. The dropout is 0.3 for both En↔De and

3Constructed with filtration rules following https://github.com/
pytorch/fairseq/tree/master/examples/translation
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En→De De→En

newstest16 newstest17 newstest18 newstest16 newstest17 newstest18

WMT 34.52± 0.10 28.09± 0.22 41.03± 0.10 38.08± 0.13 33.85± 0.10 40.50± 0.18
Ensemble 36.2 29.2 44.0 40.2 35.6 42.5
TEL 36.6± 0.09 29.52± 0.13 44.40± 0.07 40.25± 0.06 35.5± 0.10 42.65± 0.09

WMT + BT 35.12± 0.18 29.23± 0.17 42.42± 0.26 43.75± 0.17 37.70± 0.18 45.43± 0.10
Ensemble 36.7 30.3 44.0 44.3 38.3 46.4
TEL 37.25± 0.10 30.92± 0.13 44.95± 0.14 44.90± 0.14 39.08± 0.09 46.85± 0.06

Table 1: BLEU on Newstest2016-2018 for WMT En↔De.

En→Fi Fi→En

newstest16 newstest17 newstest18 newstest16 newstest17 newstest18

WMT 21.24± 0.12 22.70± 0.34 15.70± 0.16 24.60± 0.16 27.08± 0.14 20.38± 0.16
Ensemble 22.4 24.0 16.5 26.0 28.8 21.4
TEL 22.68± 0.08 24.44± 0.05 16.80± 0.10 26.40± 0.14 29.10± 0.10 21.90± 0.1

WMT + BT 26.14± 0.19 28.24± 0.15 17.90± 0.14 31.60± 0.18 33.72± 0.20 23.58± 0.13
Ensemble 26.7 29.1 18.3 32.2 34.5 24.0
TEL 27.15± 0.06 29.70± 0.14 18.70± 0.08 32.78± 0.04 35.04± 0.09 24.46± 0.11

Table 2: BLEU on Newstest2016-2018 for WMT En↔Fi

En↔Fi. All models are optimized with Adam (Kingma and
Ba 2015) following the optimizer settings and learning rate
schedule in (Vaswani et al. 2017). The models are trained on
8 M40 GPUs with a batch size of 4096. The experiments are
based on the PyTorch implementation of Transformer.4

4.3 Evaluation

We generate translations with a beam size of 5 and length
penalty 1.0 in inference for all tasks. The results in this paper
are reported in case-sensitive detokenized BLEU score using
sacreBLEU5 (Post 2018). The “significant” improvement in
this paper refers to results with p-values less than 0.01 in
paired bootstrap sampling (Koehn 2004).

5 Results

In this section, we first present the overall performances of
the proposed transductive ensemble learning (TEL) over dif-
ferent translation tasks and data scales (Section 5.1 and 5.2).
Next, we compare TEL with the traditional token-level en-
semble (Section 5.3) and present ablation study for TEL
with different numbers of aggregated models (Section 5.4).
We further study the generalization and robustness of TEL
with respect to data composition (Section 5.5).

5.1 Overall Performances

We first present overall performances of the proposed trans-
ductive ensemble learning (TEL) over different data scales:

4https://github.com/pytorch/fairseq
5sacreBLEU signatures: BLEU+case.mixed+lang.LANG+num

refs.1+smooth.exp+test.wmt{16,17,18}+tok.13a+version.1.2.12,
with LANG ∈ {en-de, de-en,en-fi,fi-en}

• Supervised (WMT): These are baseline models trained on
WMT2019 bitext data only.

• Semi-supervised (WMT+BT): The baselines are trained
on the concatenation of bitext data and a synthetic dataset
constructed by monolingual sentences and their corre-
sponding back translations.

We present the main results in both supervised and semi-
supervised settings on En↔De and En↔Fi translation tasks
in Table 1 and Table 2 respectively. We train 4 models in-
dependently with different random seeds under each setting,
with mean and standard derivation values reported as sin-
gle model performance. We report performances of models
aggregated via token-level ensemble6 (Ensemble) and our
proposed TEL (TEL). We can see from Table 1 and 2 that:

(1) TEL achieves equally good or slightly better perfor-
mances than ensemble in the supervised setting (WMT).
Both methods bring significant improvement by over 1.5
BLEU gain in En↔De and 1.0 BLEU gain in En↔Fi across
different test sets. TEL can generally achieve comparable
or slightly better performance than ensemble, and the im-
provements are statistically significant in some test sets (e.g.,
Fi→En in Newstest2018).

(2) TEL achieves significantly better performances in the
semi-supervised setting (WMT+BT) where the single model
performances are stronger. While ensemble can still im-
prove the single model performances by large margins, the
superiority of TEL is more noticeable, with better translation
quality across all test sets over the conventional ensemble

6We observe from empirical studies that token-level ensemble
performs slightly better than sentence reranking by 0.1-0.2 BLEU.
Thus we focus on token-level ensemble in our experiments.
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2016 2017 2018

FAIR (Ensemble) 37.9 32.8 46.1
Marian (Ensemble) 39.6 31.9 48.3

WMT + LSN (Single) 40.9 32.9 49.2
WMT + LSN (Ensemble) 41.2 33.0 49.3
WMT + LSN + TEL 41.5 33.3 49.7

Table 3: BLEU on Newstest2016-2018 En→De under the
large scale setting with strong individual models.

2016 2017 2018

UCAM 45.1 38.7 48.0
RWTH (Ensemble) 46.0 39.9 48.4

WMT + LSN (Single) 47.5 41.0 49.5
WMT + LSN (Ensemble) 47.7 41.1 49.5
WMT + LSN + TEL 48.1 41.3 50.0

Table 4: BLEU on Newstest2016-2018 De→En under the
large scale setting with strong individual models.

method, and improvements on most test sets across different
settings are statistically significant.

5.2 Data Augmentation & TEL

To further evaluate the generality of our method, and con-
firm whether TEL are effective in situations where the tra-
ditional ensemble approach has limitations, we experiment
with a strong single model setting in WMT2019 En↔De
translation task. We adopt the large scale noisy training strat-
egy following (Wu et al. 2019), one of the most effective
data augmentation approaches for NMT, which leverages
both source side and target side monolingual data. We first
train the model on a large synthetic corpus (120M), which is
constructed by translating monolingual sentences using the
pre-trained models and the source sentence is randomly cor-
rupted during training. We further fine-tune the model on the
genuine bitext and a clean version of synthetic bitext without
noise, and obtain very powerful single models.

The performances of baseline models with large scale
noisy training (denoted as WMT+LSN), token-level en-
semble and TEL for En→De and De→En translations
are presented in Table 3 and 4 respectively. We also
present the performances of strong systems that repre-
sent the previous state-of-the-art, including the WMT18
champion MS-Marian (Junczys-Dowmunt 2018) and large
scale system FAIR (Edunov et al. 2018) for En→De; the
WMT18 top 2 systems RWTH (Schamper et al. 2018)
and UCAM (Stahlberg, de Gispert, and Byrne 2018) for
De→En. The strong single models obatined following (Wu
et al. 2019) advance the previous state-of-the-art systems.

We find that the improvement brought by model ensem-
ble is marginal under this setting, which is in concordance
with previous observations (Deng et al. 2018). Our conjec-
ture is that diversity among different models is smaller for
such stronger single models, since intuitively stronger mod-

els are more inclined to generate similar “correct” output
(i.e., more similar to the references). Therefore, directly ag-
gregating these models via averaging or majority voting is
not a good strategy. In contrast, TEL finetunes the models in
the transductive setting, and is able to significantly improve
the single models, achieving state-of-the-art performances
for En↔De across Newstest2016-2018. Furthermore, this
study also demonstrates that TEL can be a good comple-
mentary to other data augmentation methods to further boost
model performance.

5.3 Direct Ensemble vs. TEL

The previous experiments on different data scales show that
both model aggregating methods, direct ensemble and TEL,
can successfully improve single model performance, and
TEL is more effective than ensemble for strong single mod-
els. We further investigate the two methods with different
numbers of single models in this section, to get a better sense
of when and how well our method works.

We experiment with the En→De translation with bitext
only (i.e., the supervised setting in Section 5.1) and compare
the following two settings:
• Single-trajectory: we select τ different models from a sin-

gle training trajectory (i.e., single run). The models are
selected by validation BLEU.

• Multi-trajectory: we train m models independently with
different random seeds, and select one model with best
validation BLEU from each training trajectory.
We vary the value of τ from 1 to up to 20 models, and

compare how well the two methods can aggregate different
models with intuitively low diversity in the single-trajectory
setting. For the multi-trajectory setting, we vary the number
of m = K/τ from 1 to 6 and fix τ = 1. The results are
illustrated in Figure 1 and 2.

Figure 1 shows that directly aggregating the “homoge-
neous” models from a single trajectory leads to marginal
improvement, which is in concordance with the common in-
tuition that the performance of model ensemble is largely re-
lated to the diversity among the group of models. In contrast,
TEL successfully achieves significant improvement of up to
1.1 BLEU gain even with a single trajectory. This shows that
TEL benefits from extra training under transductive setting.
The model is improved by the marginal distribution provided
by the inputs of the test set and the target-side data distilled
by the large amount of models.

Figure 2 shows that both methods can effectively ag-
gregate models from different training trajectories, that is,
with relatively high diversity. TEL presents generally good
and stable performances, and appears to be not sensitive to
model combination. In contrast, the performance of ensem-
ble starts to drop when the number of models K ≥ 5. We
can potentially achieve better ensemble performance with
more sophisticated model selection algorithms, yet this is a
non-trivial process (Deng et al. 2018).

These results suggest that in addition to its effectiveness
in improving strong single models, TEL also has advantages
in that: (1) TEL can further improve models with relatively
poor diversity, for example, models from a single training
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Figure 1: BLEU on Newstest2016 for WMT+TEL when
aggregating different number of models under the single-
trajectory setting (m = 1). “base” refers to the baseline per-
formance in WMT setting.

trajectory; and (2) TEL is simple to use yet very effective.
No complex or carefully designed model selection process
is required to achieve significant improvement.

5.4 Study on Number of Aggregated Models

From Figure 1 and 2, we observe that aggregating more
models with TEL introduces continuous improvement in
both settings of models from single or multiple trajectories.
This leads us to the following questions: (1) Does aggregat-
ing more models with TEL always leads to better perfor-
mances? (2) How well does TEL work when given different
number of models and training trajectories?

To answer these questions, we experiment with different
number of trajectories m = K/τ and models per trajectory
τ . We vary the value for m from 1 to 6, and τ up to 20,
resulting in at most 120 model aggregation. Models in each
trajectory are selected by the top τ validation BLEU.

Figure 3 shows the accuracy of TEL with m different tra-
jectories and τ models per trajectory, from which we have
the following observations:

(1) TEL benefits from introducing more trajectories. The
performance continuously improves with larger values for
m, although the gain becomes marginal as m grows. For the
sake of quality-efficiency trade-off, we suggest that training
4-5 trajectories and aggregating the models would be a good
strategy in practice to achieve good performance with rea-
sonable training complexity.

(2) Leveraging multiple models from each trajectory is
a good strategy for TEL. We find in Section 5.3 that TEL
is capable of working with models from a single trajectory,
and here we further observe that using τ > 1 models per
trajectory for any m brings noticeable improvement.

(3) Diversity matters. We observe that for a same total
number of K models aggregated, better performances come
with larger m = K/τ . Denote ϕ(m, τ) as model aggrega-
tion with m trajectories and τ models per trajectory, for K =
20, we have performances ϕ(4, 5) > ϕ(2, 10) > ϕ(1, 20).

Figure 2: BLEU on Newstest2016 for WMT+TEL when
aggregating different number of models under the multi-
trajectory setting (τ = 1). “base” refers to the baseline per-
formance in WMT setting.

5.5 Study on Data Composition

While previous experiments have demonstrated the effec-
tiveness of TEL and its superiority over traditional ensem-
ble under the transductive setting, in many practical applica-
tions, complete true test data is not always accessible. There-
fore, the generalization ability and the robustness of TEL
is very important for its practical value. In this section, we
study how well TEL works in the situations where no or par-
tial test source data is available.

First, we study how well TEL works in the absence of
true test source data. We compare performances when us-
ing source data from (i) validation set only (Newstest15),
(ii) validation and other test sets (15+17+18)7, (iii) valida-
tion and the targeted test sets (15+16), and (iv) all validation
and test sets (15+16+17+18). The results on Newstest2016
are reported in Table 5. We observe that TEL on validation
set or other test sets helps to improve the performance of
the targeted test set (Newstest16). We conjecture the main
reason is that all validation and test sets are the news data,
which are likely to have similar distribution. This suggests
that TEL generalizes well on similar data distribution.

Next, we turn to the setting where a portion of test source
data is available. This setting is in line with many applica-
tion scenarios like customized translation8 where demo ex-
amples to demonstrate users’ requirements are provided. We
compare the performances on different number of source
sentences sampled from the targeted test set Newstest2016.
The results are illustrated in Figure 4. We can see that TEL is
able to achieve good performance with a very small portion
(< 10%) of source sentences from the targeted test set.

We present one more study on the different data compo-
sition strategies for combining training and test data when
fine-tuning the model with TEL, including using test data
only, concatenated with a subset or the full training data.
We compare the performances of (i) using test data only

7Refer to Newstest15, Newstest17 and Newstest18 respectively.
8https://www.microsoft.com/en-us/translator/business/

customization/
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Figure 3: BLEU on Newstest2016 for WMT+TEL with dif-
ferent number of trajectories m = K/τ and number of mod-
els per trajectory τ . τ = 0 refers to the baseline performance
in WMT setting without aggregation.

newstest2016

Baseline 34.6

15 35.4
15+17+18 35.9

15+16 36.7
15+16+17+18 36.9

Table 5: BLEU on Newstest2016 for WMT+TEL (m =
6, τ = 10) with different validation/test sets included.

(Dt), (ii) concatenating a sampled subset Bt of training data
(+Bt), (iii) concatenating full training data (+Dtrain) and
(iv) upsampling test data and concatenating with the train-
ing data (+upsample). The ratio of training and test data,
and as well as the BLEU scores on Newstest2016 are re-
ported in Table 6. No significant gap between the different
training/test data combination strategies is observed.

These experiments on data composition show that TEL
generalizes well with a small portion of true test data, or
data with similar distribution. And the method is not sensi-
tive to the data composition strategies, suggesting that TEL
is a robust method and is simple yet effective to improve
individual model performances under different settings.

6 Conclusion

In this paper, we propose transductive ensemble learning
(TEL), a simple yet effective method to aggregate multi-
ple individual neural machine translation models for better
translation quality under the transductive setting where the
source sentences of the test set are known. Experiments over
different data scales and different language pairs demon-
strate the effectiveness of TEL. In particular, TEL brings sig-
nificant improvement in situations where the conventional
ensemble method encounters limitations, for example, with
very strong or a large number of individual models. We
present extensive empirical studies that provide insight on

Figure 4: BLEU on Newstest2016 for WMT+TEL (m =
6, τ = 10) with different number of sentences sampled from
Newstest2016. Source sentences from validation and other
test sets (i.e., 15,17,18) are included. “base” refers to the
baseline in WMT setting.

Ratio BLEU

Dt – 36.9
+Bt 2 : 1 36.9
+Dtrain 8 : 1 37.0
+ upsample 2 : 1 37.0

Table 6: BLEU on Newstest2016 for WMT+TEL (m =
6, τ = 10) with different training+test data composition.
“Ratio” refers to the relative size of training and test set used
in model fine-tuning with TEL.

when and how well TEL works, and show that TEL is robust
and simple to use under different settings, with no complex
model selection process nor carefully designed data compo-
sition strategy required.

For future work, we will make transductive ensemble
learning more general. First, we will extend the applica-
tion from NMT to more NLP tasks like text summarization,
Q&A, text classification, etc. Second, we will study how to
make TEL more efficient. Third, how to design better objec-
tive function for TEL is another interesting topic.
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