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Abstract

Feature augmentation, which manipulates the feature space
by integrating the label information, is one of the most
popular strategies for solving Multi-Dimensional Classifi-
cation (MDC) problems. However, the vanilla feature aug-
mentation approaches fail to consider the intra-class exclu-
siveness, and may achieve degenerated performance. To fill
this gap, a novel neural network based model is proposed
which seamlessly integrates the Label Embedding and Fea-
ture Augmentation (LEFA) techniques to learn label corre-
lations. Specifically, based on attentional factorization ma-
chine, a cross correlation aware network is introduced to learn
a low-dimensional label representation that simultaneously
depicts the inter-class correlations and the intra-class exclu-
siveness. Then the learned latent label vector can be used to
augment the original feature space. Extensive experiments
on seven real-world datasets demonstrate the superiority of
LEFA over state-of-the-art MDC approaches.

Introduction

Multi-Dimensional Classification (MDC) aims to deal with
the problem where each data example is associated with
multiple class variables. Due to its wide applications, MDC
has attracted tremendous attention. For example, a piece of
song can be annotated by various concepts like emotions
and instruments (Turnbull et al. 2008); a document may be
tagged by different types of labels such as topic and mood
(Theeramunkong and Lertnattee 2002; Ortigosa-Hernández
et al. 2012); a gene can be associated with different func-
tions like transcription and protein synthesis (Barutçuoglu,
Schapire, and Troyanskaya 2006). Figure 1 (Khosla et al.
2011) shows a typical multi-dimensional image classifica-
tion scenario.

Formally, in an MDC problem, there are multiple class
spaces Ci = {c1i , c2i , ..., cKi

i } (i = 1, 2, ..., d) where Ki

is the number of possible class assignments and d is the
number of classes. Then the output space is their Cartesian
product Y = C1 × C2 × ... × Cd. Given a training dataset
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Figure 1: An example of multi-dimensional classification
scenario. The image is manually annotated by four class
variables, each of which is multi-dimensional. The ground
truth labels snowfield, house (yes), dog, sunny are in red.

D = {(xj , Sj)|1 ≤ j ≤ N}, each data point xj ∈ X ⊆ R
m

in D matches a set of labels Sj = {yj1, yj2, ..., yjd} ∈ Y where
yji ∈ Ci (1 ≤ i ≤ d). The goal of MDC is to build a classi-
fier h : X �→ Y which maps an instance vector to the output
space. It is noteworthy that if d = 1, the problem degener-
ates to a single label classification problem. Furthermore, if
d > 1 and Ki = 2 holds for all i, we obtain a multi-label
classification problem.

Binary Relevance (BR) (Zhang and Zhou 2014) is one
of the most popular methods for MDC problems which de-
composes the multi-dimensional task into a set of multi-
class classification problems. Despite its computational ef-
ficiency, BR neglects the cross correlations between class
spaces. Therefore, BR works well on each single classi-
fication task but globally underperforms. Many effective
techniques have been proposed to address this issue. Some
methods (Bielza, Li, and Larrañaga 2011; Batal, Hong, and
Hauskrecht 2013; Zhu, Liu, and Jiang 2016; Benjumeda,
Bielza, and Larrañaga 2018) use a probabilistic graph model
to learn a tree or graph structure of label correlations.
Feature augmentation is another common strategy which
models label dependencies in a manipulated feature space.
Amongst them, Classifier Chains (CC) (Read et al. 2011) is
the most typical one that feeds an augmented input vector
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x̃j = [x, y1, y2, ..., yj−1] to train the j-th multi-class classi-
fier in BR model. Nevertheless, CC is sensitive to the choice
of label order and many techniques (Zaragoza et al. 2011;
Liu and Tsang 2015) are proposed to alleviate this prob-
lem. Besides, a recent work KRAM (Jia and Zhang 2019)
enriches the original feature space with k-Nearest Neighbor
(kNN) technique. There are two main drawbacks in existing
feature augmentation approaches: 1) the task of correlation
extraction is completed by some simple base classifiers, such
as Support Vector Machine (SVM) and Naı̈ve Bayes. These
simple classifiers are usually powerless on those datasets
with complex label correlations and thus the generalization
ability of these methods is limited in many applications. 2)
they may wrongly learn correlations among intra-class la-
bels, which leads to degenerated performance.

From another point of view, we can adapt specific multi-
label classification techniques (Zhang and Zhou 2007; Hsu
et al. 2009; Huang et al. 2016; 2018; Yeh et al. 2017) to solve
multi-dimensional problems. This strategy is quite fascinat-
ing because we can reuse existing well-established multi-
label classifiers. For instance, since the output space is usu-
ally highly sparse and correlative, label embedding (Yeh et
al. 2017; Chen et al. 2019) might be a promising strategy.
Unfortunately, these multi-label methods also fail to capture
the intra-class exclusiveness in multi-dimensional settings.

To bridge these gaps, we combine Label Embedding tech-
nique and Feature Augmentation (LEFA) techniques to ef-
ficiently extract both the inter-class correlations and intra-
class exclusiveness. LEFA follows a common label embed-
ding paradigm that maps features and labels into a joint la-
tent space to get their codewords. Firstly, we design a vari-
ant of Attentional Factorization Machine (AFM) (Xiao et
al. 2017) to simultaneously extract the inter-class label cor-
relation and preserve the intra-class exclusiveness for label
embedding. Meanwhile, we present a Multi-Layer Percep-
tron (MLP) to encode features and propose a novel model to
maximize the correlations between the resultant codewords.
Finally, we manipulate the feature space by incorporating
the projected labels for MDC problems.

The main contributions are summarized as follows,

• An effective deep model is proposed for multi-
dimensional classification problems, which seamlessly in-
tegrates both Label Embedding and Feature Augmenta-
tion techniques (LEFA).

• Based on attentional factorization machine, we present a
cross correlation aware network to simultaneously depict
the inter-class dependencies and the intra-class exclusive-
ness for MDC tasks.

• Comprehensive experiments over seven real-world
datasets demonstrate that LEFA outperforms other
state-of-the-art MDC classifiers.

The rest of this paper is organized as follows. In the next
section, we provide a detailed description of our network
architecture. After that, the results of empirical studies are
reported. Then, we discuss the related works of our method.
Concluding remarks are provided in the last section.

The LEFA Approach

As mentioned in the first section, each class space is com-
posed of multiple nominal labels which are hard to be used
for computation. The most popular strategy is to transform
each nominal label yji in the original label sets Sj to a one-
hot binary vector zj

i ∈ R
Ki . Nevertheless, the transformed

label space can be highly sparse and directly exploiting com-
plex label correlations is intractable. Consequently, we com-
bine Label Embedding and Feature Augmentation (LEFA)
techniques. Firstly, based on AFM, we present a Cross Cor-
relation Aware Network (C2AN) which projects the features
and labels into a joint low-dimensional space. It is worth
pointing out that C2AN can depict inter-class correlations
with intra-class exclusiveness being preserved. Then, the
original feature space is enriched by incorporating the em-
bedded label vectors. Finally, the manipulated feature vec-
tors can be fed into any off-the-shelf MDC classifiers to im-
prove the predictive performance.

Cross Correlation Aware Network

In this subsection, we introduce the proposed C2AN model
layer by layer. The detailed network architecture is shown in
Figure 2.

Label Encoding Network Traditional label embedding
approaches have two main limitations: 1) the encoder for
label vectors are either linear model (Hsu et al. 2009;
Chen and Lin 2012) or simple neural networks (Yeh et al.
2017), and hence may not be able to handle the sparse label
space and complicated class space dependencies; 2) they are
designed for multi-label learning tasks, and thus ignores the
exclusiveness between inter-class labels.

To remedy these problems, we apply a variant of Atten-
tional Factorization Machine to embed labels. Our AFM
based model has three main advantages: 1) it is a power-
ful neural network based model to extract label correlations;
2) attention mechanism enables the label interactions to con-
tribute differently to the feature augmentation; 3) as a mem-
ber of Factorization Machines (FMs) (Rendle 2012) family,
it works well in sparse setting. In what follows, we elaborate
the design of label encoding network layer by layer.

Cross Interaction Layer Take a set of one-hot label vec-
tors Z = {z1, z2, ..., zd} as the input, the first layer extracts
pair-wise interactions between inter-class labels. In our
model, a set of embedding matrices V = {V1,V2, ...,Vd}
(Vi = [v1

i ,v
2
i , ...,v

Ki
i ] ∈ R

t×Ki ) are used to transform each
label to a dense vector representation where t is the size of
embedding vectors. Denote the p-th entry of zi by zpi . Then
we can get a set of embedding vectors,

fCI(Z) = {(vp
i � vq

j )z
p
i z

q
j }(i,j,p,q)∈ε (1)

where � is the element-wise product and ε =
{(i, j, p, q)|1 ≤ p ≤ Ki, 1 ≤ q ≤ Kj , 1 ≤ i, j ≤ d, i �= j}.
Note that in the training phase, the input vectors are one hot.
Hence, we can simplify the computation of embedding set
by removing the zero vector,

f̄CI(Z) = {Vizi � Vjzj}(i,j,p,q)∈ε (2)
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Figure 2: The neural network architecture of our proposed C2AN. For simplicity, most of the zero vectors in the cross interaction
layer are omitted except z32 · v3

2 . Note that we only perform the sum-pooling operation in the attention-based pooling layer.

Remark that existing methods like KRAM (Jia and Zhang
2019) usually model the correlations between all the labels.
Our model will not involve any redundant embedding vector
between the intra-class labels and thus explore only cross
class space correlations.

Attention-based Pooling Layer As presented in (Xiao et
al. 2017), attention mechanism has shown a promising result
since it allows different correlations contribute differently
when compressing the input to a single dense representation.
To efficiently handle the sparse setting, AFM introduces an
attention network to parameterize the attention scores. Sim-
ilar to the Cross Interaction layer, LEFA preserves only the
attention scores for the inter-class labels,

ai,p|j,q =
a′i,p|j,q∑

(̃i,j̃,p̃,q̃)∈ε a
′
ĩ,p̃|j̃,q̃

(3)

Here the unnormalized attention weight is given by,

a′i,p|j,q = h�σ(W (vp
i � vq

j )z
p
i z

q
j + b) (4)

where h ∈ R
r, W ∈ R

r×t and b ∈ R
r are global attention

parameters. r denotes hidden layer size of the attention net-
work. After all the attention scores are learned, we apply a
weighted sum-pooling operation on the embedding vectors
to get a single dense vector,

fAP (fCI(Z)) =
∑

(i,j,p,q)∈ε

ai,p|j,q(v
p
i � vq

j )z
p
i z

q
j (5)

Compared with vanilla AFM, C2AN pays more attention to
the label correlation extraction. Hence, the regression part is
neglected to avoid introducing useless parameters.

Fully Connected Layers Above the attention-based pool-
ing layer are two simple fully connected layers. As previous
layers concentrate on pair-wise label interactions, these lay-
ers further learn higher-order correlations. Denote the output
vector of attention layer by e = fAP (fCI(Z)) and we can
get our unactivated latent label vector by,

cy = Ŵoσ(Ŵe+ b̂) + b̂o (6)

where cy ∈ R
u is the label codeword. Here Ŵo, Ŵ are

weight matrices and b̂o, b̂ are bias vectors.
Remark that the obtained latent label vectors not only de-

pict the inter-class correlations, but also preserve the intra-
class label exclusiveness. Hence, it can be employed to aug-
ment the original feature space with the label correlation ex-
tracted in advance.

Feature Encoding Network Inspired by (Yeh et al. 2017),
we use a Multi-Layer Perceptron to encode features. Here
the feature vectors are fed into a set of hidden layers and
each layer can be customized to discover certain latent struc-
tures. Generally speaking, the input is linearly transformed
in each layer and then activated by a non-linear function
such as Rectifier (ReLU), sigmoid and so on. Assume that
there are l hidden layers. Then a feature vector x is encoded
by,

s1 = σ1(W1x+ b1)

. . .

sl = σl(Wlsl−1 + bl)

cx = Wosl + bo

(7)

where Wi, bi, σi and si are weight matrix, bias, activation
function and output vector of i-th layer repectively. Here the
codeword cx ∈ R

u is obtained in the last layer without acti-
vation where u is the size of latent space.

Optimization Now we present our objective function
which enables the codewords of features and labels to be
maximally correlated. Given a pair of codewords (cx, cy),
the maximization problem can be expressed as the follow-
ing,

argmax
Θ

c�x cy
||cx|| · ||cy|| (8)

where Θ is the set of parameters and || · || is l2-norm. Since
scaling the codewords will not change the result, we can re-
formulate it by adding two constraints and converting it to a
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minimization problem,

argmin
Θ

1

2
||cx − cy||2

s.t. ||cx|| =1, ||cy|| = 1

(9)

Here the objective is modified because argmaxΘ c�x cy =
argminΘ −2c�x cy = argminΘ ||cx − cy||2, since ||cx|| =
||cy|| = 1. However, it is intractable to directly solve this
optimization problem with two hard constraints. Following
(Yeh et al. 2017), we relax the constraints and involve two
penalty terms to get our final objective function,

L =
N∑

i=1

(
1

2
||cix − ciy||2

+ λ1(||cix|| − 1)2 + λ2(||ciy|| − 1)2) + η
∑

θ∈Θ

||θ||2

(10)

where λ1 and λ2 are multipliers associated with the penalty
terms. Here we also add a regularization term with the trade-
off parameter η to prevent overfitting.

Since the objective function is clearly defined, we can
effectively optimize our model using gradient based tech-
niques such as Stochastic Gradient Descent (SGD).

Feature Augmentation

In the second stage, we manipulate the feature space by com-
bining the projected labels and original features. The aug-
mented dataset D̃ can be formulated as follows,

D̃ = {(x̃j , Sj)|1 ≤ j ≤ N}, x̃j = [xj , c
j
y] (11)

Thereafter, we induce an MDC predictive function f : X̃ �→
Y from the new dataset where the manipulated feature space
X̃ ⊆ R

m+u is the Cartesian Production of the original fea-
ture space and the latent label space. As a meta strategy
for MDC, we can employ any off-the-shelf MDC algorithm
in LEFA, e.g. Binary Relevance (Zhang and Zhou 2014),
Classifier Chains (Read et al. 2011; Liu, Tsang, and Müller
2017), and so on.

There is still one main concern that in the testing phase,
the ground truth labels are invisible. Inspired by KRAM (Jia
and Zhang 2019), LEFA utilizes kNN technique to estimate
a set of label vectors Z∗ = {z∗

1 , z
∗
2 , ..., z

∗
d} for an testing

instance x∗. Assume that N (x∗) is the index set of k-nearest
neighbors identified for x∗ among D. After that, a weighted
average strategy is used to obtain each label vector,

z∗ =
∑

j∈N (x∗)

(1− d(x∗,xj)∑
k∈N (x∗) d(x

∗,xk)
) · zj

(12)

where d(xi,xj) is the Euclidean distance between xi and
xj in the original feature space. Then we feed it into the la-
bel encoding network to obtain a embedded label vector c∗y .
Note that in the testing phase, we have to compute all the
embedding vectors fCI(Z) since the input label vectors are
dense. Since we have removed all the redundant embedding

Algorithm 1 The pseudo-code of LEFA

Input: Training dataset D = {(xj , Sj)|1 ≤ j ≤ N}, di-
mension parameters u, r and t, penalty parameters λ1

and λ2, number of nearest neighbors k, testing instance
x∗

Output: the predicted label set S∗ for x∗
1: Transform each label set Sj to a set of binary one hot

vectors Zj

2: Initialize all the trainable parameters in C2AN with ran-
dom values from a given Gaussian distribution

3: repeat
4: Randomly sample an example (x,Z) from D
5: Feed the instance vector x into the feature encoding

network to get its codeword cx
6: Feed Z into the Cross Interaction Layer to get the

output set f̄CI(Z) by Eq. (2)
7: Feed the embedding vectors into the attention net-

work to get the attention scores ai,p|j,q by Eq. (3) and
(4)

8: Feed f̄CI(Z) and attention scores ai,p|j,q into the
pooling layer to get the dense vector e by Eq. (5)

9: Feed e into the fully connected layers to get the label
codeword cy by Eq. (6)

10: Calculate the correlation loss L by Eq. (10)
11: Update the trainable parameters with SGD algorithm
12: until Converge
13: for j = 1 to N do
14: Feed Zj into the label encoding network to get the

codeword cjy
15: Set x̃j = [xj , c

j
y]

16: end for
17: Form the augmented MDC training dataset D̃ =

{(x̃j , Sj)|1 ≤ j ≤ N}
18: Induce an MDC predictive function f : X �→ Y from D̃
19: Estimate a set of label vector Z∗ of x∗ from its k-nearest

neighbors according to Eq. (12)
20: Feed Z∗ into the label encoding network to get the code-

word c∗y and get the augmented feature by x̃∗ = [x∗, c∗y]
21: Return S∗ = f(x̃∗)

interaction operation between intra-class labels, their exclu-
siveness can be fully preserved. Though the estimation phase
is at a coarse granularity, our latent label vector can provide
finer-grained semantic information about the labels. By con-
catenating x∗ and c∗y , we can get the augmented vector x̃∗

and predict the corresponding label set S∗ = f(x̃∗).
It is worth noting that the most recent work KRAM en-

riches the original feature space by simply counting statistics
on the class membership of neighboring MDC examples (the
unaveraged z∗

i ) both in the training and testing phases. Com-
pared to KRAM, LEFA has three main advantages. Firstly,
the latent vector can provide preciser semantic information
than the label set induced by kNN in the testing phase. Sec-
ondly, the label correlations are extracted in the augmenta-
tion phase instead of directly being induced by the predictive
function f . In the meantime, a powerful AFM based neural
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network is employed. Thus, LEFA can deal with complex
label correlation hierarchy and highly sparse label space.
Finally, the intra-class exclusiveness is depicted. Empirical
study also demonstrates that LEFA outperforms state-of-the-
art MDC approaches.

Experiments

In this section, we evaluate the performance of the pro-
posed method on seven real-world datasets. All the computa-
tions are performed on a same workstation with an i7-5930K
CPU, a TITAN Xp GPU and 64GB main memory running
Linux platform.

Datasets

For comprehensive performance evaluation, a total of seven
datasets are employed. The first four datasets are collected
from UCI repository (Dheeru and Karra Taniskidou 2017):

• Bridges estimates bridge properties from specific con-
straints, e.g. the used materials, span properties, bridge
types and so on.

• Water Quality determines the plant and animal species in
Slovenian rivers. Each object is equipped with 14 labels.
The first 7 labels focuses on the plant types and the others
concentrate on the animal species.

• Flare deals with the problem of predicting the number of
times that certain types of solar flare occurred within 24
hours period. There are two different datasets Flare1 and
Flare2, both of which has 3 class variables. Here Flare2
contains more instances and also more labels in each class
space.

Unfortunately, there are not many publicly available stan-
dardised MDC datasets yet. Following the experimental
setting in (Read, Bielza, and Larrañaga 2014), we boost
our collection by introducing three real-world multi-label
datasets, including two medium-sized datasets Emotions
(Trohidis et al. 2008) , Scene (Boutell et al. 2004) and a
large-scale dataset TMC2007 (Srivastava and Zane-Ulman
2005). Here, each class space corresponds to a binary-valued
variable that indicates whether a label is relevant to the ex-
ample or not.

In this paper, we conduct 5-fold cross-validation on these
datasets and the mean metric values with standard deviations
are reported. The statistics of the seven datasets are summa-
rized in Table 1.

Comparison Approaches

In this paper, we compare LEFA with three well-established
MDC methods and two state-of-the-art embedding based
multi-label methods:

• Binary Relevance (BR) (Zhang and Zhou 2014): BR is the
most intuitive way for MDC tasks, which predicts each
class variable by decomposing the MDC task to a set of
independent multi-class problems.

• Ensemble Classifier Chains (ECC) (Read et al. 2011): To
alleviate the problem of label order sensitivity in Classi-
fier Chains (CC), ECC generates several different chains

Table 1: Statistics of the experimental datasets.

Datasets N d K m†
Bridges 108 5 2-6 7x

Water Quality 1,060 14 4 16n
Flare1 323 3 2-4 10x
Flare2 1,066 3 3-8 10x

Emotions 593 6 2 72n
Scene 2,407 6 2 294n

TMC2007 28,596 22 2 500b
† n, b and x denote numeric, binary, and nom-

inal features respectively.

with randomly reordered labels. Then, the class variables
are predicted by voting.

• KRAM (Jia and Zhang 2019): By utilizing the popular
kNN techniques, KRAM enriches the feature space with
specific counting statistics on the class membership of
neighboring MDC examples.

• CPLST (Chen and Lin 2012): CPLST is a popular la-
bel embedding approach, which combines the concepts
of principal component analysis and canonical correlation
analysis for better correlation extraction.

• C2AE (Yeh et al. 2017): C2AE is the first neural net-
work based label embedding approach for multi-label
problems, which integrates the autoencoder and the deep
canonical analysis techniques.

It is noteworthy that KRAM and LEFA are meta approaches,
which can integrate any off-the-shelf MDC methods to im-
prove the generalization ability. As a result, BR and ECC
are used to instantiate practical models. The resultant ap-
proaches are denoted by KRAM-BR, KRAM-ECC, LEFA-
BR and LEFA-ECC respectively.

For our proposed method, the latent dimension is empiri-
cally set as 10 and the size of embedding vectors is fixed to
64. The hidden dimensions of the attention, label and feature
networks are 8, 64, and [64, 64] respectively. We use ReLU
as our activation function in C2AN. Both the penalty param-
eters λ1 and λ2 are empirically set as 1. The regularization
parameter is set as η = 0.01. Moreover, we set the learning
rate of gradient descent algorithm as 0.001.

For baselines, we use Support Vector Machine (SVM),
which is implemented by Scikit-learn (Pedregosa et al.
2011), as the base classifier for BR, ECC and our methods.
Specifically, for the medium-sized datasets, the radial basis
function kernel is used to handle the non-linear separable
cases. As for the large scale dataset TMC2007, linear ker-
nel and stochastic gradient descent algorithm are employed.
We set the number of nearest neighbors as k = 10 for all
the kNN based approaches. For CPLST, we take the first
5 principle components. The loss leveraging parameter of
C2AE is set as α = 2. Other parameters in the baselines are
set to their recommended values. Finally, since CPLST and
C2AE are multi-label classifiers, we adapt them to the multi-
dimensional setting by preserving the labels with maximum
scores in each class as the output labels.
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Table 2: Predictive performance comparison on seven real-world datasets.

Datasets Hamming Accuracy↑
BR KRAM-BR LEFA-BR ECC KRAM-ECC LEFA-ECC CPLST C2AE

Bridges .785±.032 .840±.041 .816±.015 .691±.016 .675±.022 .684±.024 .618±.056 .722±.030
Water Quality .644±.006 .643±.009 .658±.008 .618±.030 .636±.021 .651±.005 .642±.005 .641±.012

Flare1 .917±.003 .936±.009 .947±.009 .917±.013 .926±.017 .948±.020 .919±.014 .904±.010
Flare2 .922±.003 .929±.011 .938±.005 .928±.004 .928±.008 .941±.009 .920±.005 .924±.006

Emotions .791±.008 .786±.010 .818±.012 .789±.006 .791±.016 .809±.013 .791±.010 .577±.025
Scene .910±.006 .918±.003 .924±.003 .915±.004 .916±.003 .923±.003 .889±.002 .723±.009

TMC2007 .939±.001 .941±.002 .942±.001 .940±.002 .942±.003 .941±.001 .934±.001 .901±.010

Datasets Example Accuracy↑
BR KRAM-BR LEFA-BR ECC KRAM-ECC LEFA-ECC CPLST C2AE

Bridges .327±.081 .445±.073 .427±.061 .127±.075 .100±.038 .136±.056 .109±.069 .246±.110
Water Quality .010±.006 .010±.007 .009±.003 .012±.005 .008±.003 .011±.002 .008±.005 .007±.003

Flare1 .809±.017 .834±.012 .883±.020 .800±.030 .825±.023 .873±.039 .815±.021 .792±.008
Flare2 .784±.010 .813±.025 .833±.010 .799±.016 .808±.021 .841±.021 .785±.018 .802±.026

Emotions .274±.041 .266±.030 .306±.028 .286±.048 .304±.033 .321±.042 .252±.049 .077±.066
Scene .612±.032 .652±.010 .654±.012 .690±.014 .698±.020 .712±.016 .481±.014 .155±.028

TMC2007 .291±.004 .304±.004 .303±.001 .309±.002 .314±.004 .316±.000 .207±.003 .054±.029

(a) LEFA-BR (b) LEFA-ECC

Figure 3: Performance of LEFA changes as the latent dimension u changes from 2 to 10 on three datasets with different base
classifiers.

Performance Measurements

Following the experimental setting in (Jia and Zhang 2019),
we consider two popular metrics to evaluate the predictive
performance of all the methods:
• Hamming Accuracy:

HAccuracy =
1

N

N∑

i=1

|Si ∩ S∗
i |

d
(13)

Here S∗
i is the predicted label set for the i-th data exam-

ple. The hamming accuracy computes the classification
accuracy (Wang et al. 2018; 2019b) on each class variable
and takes the average. Here | · | denotes the cardinality of
a set and ∩ is the intersection of two sets.

• Example Accuracy:

EAccuracy =
1

N

N∑

i=1

I(Si, S
∗
i ) (14)

The example accuracy regards the label set as a single
classification problem that is either fully correct or incor-
rect. Here I(A,B) is an indicator function returning 1 if
A = B and 0 otherwise.

Experimental Results

Table 2 summarizes the predictive performance of all the
methods on four multi-dimensional datasets and three multi-
label datasets. Figure 3 reports the parameter sensitivities of
our methods to the latent dimensions u.

From the experimental results, we observe that:

• LEFA generally achieves the best performance. Take the
Flare2 dataset as an example, in terms of hamming accu-
racy and example accuracy, LEFA-BR improves the best
results of baselines (except LEFA-ECC) by 1.0%, 2.5%,
and LEFA-ECC improves the best results of baselines (ex-
cept LEFA-BR) by 1.3%, 3.4% respectively. These results
demonstrate the superiority of LEFA.

• BR underperforms other methods due to the lack of ex-
ploiting class space correlations.

• BR and ECC are much inferior to their KRAM and LEFA
couterparts, which indicates the effectiveness of feature
augmentation.

• KRAM and LEFA are the most successful on these
datasets. However, LEFA obtain a better performance for
two reasons: 1) C2AN preserves the exclusiveness be-
tween intra-class labels; 2) LEFA extracts label correla-
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tions before augmentation. Thus, LEFA enables simple
MDC classifiers like BR and ECC to handle complicated
label correlation hierarchy.

• C2AE and CPLST show the worst performance on some
datasets. Because they neglect the exclusiveness between
the intra-class labels and hence, they are unsuitable for
MDC tasks.

• LEFA achieves relatively stable performance with differ-
ent values of latent dimension u.

Related Work

Multi-Label Learning

In multi-label learning, each data example is equipped with
a set of binary labels. Existing MLL algorithms can be
roughly categorized into three groups based on the thought
of degree of label correlations. First-order methods, e.g.
binary relevance (Zhang and Zhou 2014) and ML-kNN
(Zhang and Zhou 2007), are the most straightforward that
assume independencies among labels. Second-order meth-
ods usually involve ranking technique (Liu et al. 2018),
or learn a pair-wise correlation matrix (Huang et al. 2016;
2018). High-order approaches can fully utilize label corre-
lations through various ways. For example, label powerset
based algorithms (Tsoumakas, Katakis, and Vlahavas 2011;
Liu and Tsang 2017) transforms the MLL task to some
multi-class classification problems by label combination;
feature augmentations based methods (Read et al. 2011;
Wang et al. 2019a; Liu, Tsang, and Müller 2017) augment
the original feature space by previous elicited labels; label
embedding approaches (Hsu et al. 2009; Yeh et al. 2017;
Chen et al. 2019) jointly embeds the features and labels to a
same latent space.

Multi-Dimensional Classification

Multi-dimensional classification (MDC) aims to assign each
object to multiple class spaces. It is a generalization of
multi-label learning that allows each class variable to have
more than two values. Transforming the MDC task to
a multi-label learning problem is an appealing strategy.
However, compared to MLL problems, the label correla-
tions in MDC are more complicated, because inter-class
labels can be correlated to each other, but intra-class la-
bels are exclusiveness to each other. To cope with this is-
sue, many works are proposed. For instance, probabilis-
tic graph models (Bielza, Li, and Larrañaga 2011; Batal,
Hong, and Hauskrecht 2013; Zhu, Liu, and Jiang 2016;
Benjumeda, Bielza, and Larrañaga 2018) usually learn a
tree or graph structure of label correlations across the class
spaces. Feature augmentation (Zaragoza et al. 2011; Jia and
Zhang 2019) is another effective and has been adopted by
many approaches. One recent work (Ma and Chen 2018)
also explores to learn a distance metric for MDC problems.
The main drawback of existing feature augmentation based
MDC methods is that they employ simple base classifiers to
extract label correlations, which leads to degenerated perfor-
mance.

Conclusion

Recently, multi-dimensional classification problems have at-
tracted huge attention from the research community. In this
work, we propose a novel deep model LEFA which seam-
lessly integrate the Label Embedding and Feature Augmen-
tation techniques for MDC tasks. Based on attentional fac-
torization machine, a cross-correlation aware network is pre-
sented which maps the features and labels into a joint low-
dimensional space such that they are maximally correlated.
Due to the peculiarity of AFM, the embedded labels not only
depict the inter-class label correlation, but preserve the ex-
clusiveness of intra-class labels. Then, we augment the orig-
inal feature space using the latent label vectors, which can
provide discriminative information to the original feature
space. Empirical study on seven real-world datasets shows
that the proposed method generally outperforms other state-
of-the-art MDC approaches.
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