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Abstract

Many real-world applications involve data collected from dif-
ferent views and with high data dimensionality. Furthermore,
multi-view data always has unavoidable noise. Clustering on
this kind of high-dimensional and noisy multi-view data re-
mains a challenge due to the curse of dimensionality and in-
effective de-noising and integration of multiple views. Aim-
ing at this problem, in this paper, we propose a Robust Self-
weighted Multi-view Projection Clustering (RSwMPC) based
on �2,1-norm, which can simultaneously reduce dimension-
ality, suppress noise and learn local structure graph. Then
the obtained optimal graph can be directly used for cluster-
ing while no further processing is required. In addition, a
new method is introduced to automatically learn the optimal
weight of each view with no need to generate additional pa-
rameters to adjust the weight. Extensive experimental results
on different synthetic datasets and real-world datasets demon-
strate that the proposed algorithm outperforms other state-of-
the-art methods on clustering performance and robustness.

Introduction

In many real-world applications, instances can be described
in many different ways or angles, which produce abun-
dant multi-views data, such as web page classification prob-
lems, image processing problems, and the like. Clustering
on multi-view data is a fundamental and important topic in
data mining, machine learning, pattern recognition and so
on. In this era of information explosion, the dimensionality
of data is getting higher and higher. Meanwhile, multi-view
data always has unavoidable noise. These directly lead to the
increase of data storage cost, the further improvement of the
complexity of learning algorithm and the decrease of algo-
rithm generalization ability. Clustering on this kind of high-
dimensional and noisy multi-view data remains a challenge
due to the curse of dimensionality and ineffective de-noising
and integration of multiple views.

In the past decades, a number of multi-view clustering ap-
proaches have been proposed. In order to maintain the same
clustering consistency among all graphs, (Kumar, Rai, and
Daume 2011; Cai et al. 2011) proposed co-regularized and
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multi-modal spectral clustering methods, which can not dis-
tinguish the importance of different views and were vulner-
able to poor quality views. In order to distinguish the im-
portance of different views for clustering results, (Nie et al.
2016; Nie, Cai, and Li 2017) proposed to automatically as-
sign an ideal weight to each view without introducing re-
dundant hyperparameters. (Nie, Tian, and Li 2018) consid-
ered the clustering ability difference of different views and
proposed multiview clustering via adaptively weighted pro-
crustes. The above clustering methods successfully solved
the clustering problem in low-dimensional data. However,
there are still significant challenges to high-dimensional data
clustering problems with noise.

In order to process high-dimensional data, (Chen et al.
2018; Xiao et al. 2019) proposed to project the original
matrix from the high-dimensional subspace to the low-
dimensional subspace by learning the projection matrix, and
obtained better clustering results on the single view. For
multi-view high-dimensional data processing, (Gao et al.
2015) proposed multi-view subspace clustering (MVSC),
which performs clustering on the subspace representation
of each view, using a common indicator to ensure consis-
tency between different views. (Wang et al. 2019) proposed
two parameter-free weighted projected clustering methods,
which can simultaneously perform structural graph learn-
ing and dimensionality reduction. However, for multi-view
high-dimensional data with noise, these existing algorithms
adopt dimensionality reduction method to project data from
high-dimensional subspace to low-dimensional subspace,
without considering the effect of noise in the datasets.

Since �2,1-norm has advantages in noise processing and
feature selection (Yang et al. 2011), in this paper, we com-
bine it with dimensionality reduction method to solve the
clustering problem on high dimensional and noisy multi-
view datasets. We propose a Robust Self-weighted Multi-
view Projection Clustering (RSwMPC) based on �2,1-norm,
which project the original dataset into the low-dimensional
subspace through the projection matrix, and suppress the
noise points and outliers through increase the �2,1-norm
penalty of the projection matrix. At the same time, in our
proposed RSwMPC, the weight of each view depends on
the projection matrix and the similarity matrix, and no re-
dundant parameters are introduced. Different from the con-
ventional post-processing methods (Tang, Lu, and Dhillon

6110



2009; Kumar and Daumé 2011; Huang, Nie, and Huang
2013; Nie et al. 2016), which need similar k-means to ob-
tain a cluster label, the Laplacian matrix rank constraint is
also introduced, so that the learned affinity matrix has a dis-
play clustering structure, and the clustering result can be ob-
tained directly. Unlike SwMPC (Wang et al. 2019), we sup-
press noise by increasing the �2,1-norm penalty term of the
projection matrix, and select the dimensionality correspond-
ing to the best clustering result in each view as our projec-
tion dimensionality. Extensive experimental results on dif-
ferent synthetic datasets and real-world datasets demonstrate
that the proposed algorithm outperforms other state-of-the-
art methods on clustering performance and robustness.

The contributions of this paper are as follows:
• In our proposed RSwMPC, subspace learning is per-

formed by adding a projection matrix. Meanwhile, feature
selection and noise suppression are achieved by introduc-
ing the �2,1-norm penalty term of the projection matrix.
Therefore, RSwMPC is robust and effective.

• A parameter-free self-weighted strategy which combines
the effective information of different views is proposed
and used in the RSwMPC. In addition, the direct search
method is adopted for dimensionality reduction, thus the
optimal reduced dimensionality for each view is obtained.

• The clustering results can be obtained directly in the pro-
cess of constructing affinity matrix S without further pro-
cessing.

• We have verified the effectiveness and robustness of our
method by conducting extensive experiments on synthetic
datasets and real-world datasets.

The Proposed RSwMPC Methodology

Notation

Throughout the paper, all matrices are capitalized. For ma-
trix M ∈ R

d×n, mi represents the i-th column vector of the
matrix M and its j-th element is represented by mij . In addi-
tion, we also define the rank, trace, transposition and inverse
of the matrix M as rank(M), Tr(M), MT and M−1, re-
spectively. The Frobenius norm and the �2,1-norm of matrix
M are ‖M‖F , ‖M‖2,1. ‖v‖2 represents the �2-norm of vec-
tor v. 1 and I represent a unit column vector and an identity
matrix in the paper, respectively.

Multi-view Initial Affinity Matrix Learning

In multi-view clustering, denote X1, X2, ..., Xv represent
the data matrix for each view. Xv ∈ R

dv×n represents the
v-th view, where n is the number of data points and dv is
the feature dimensionality. Most of the existing graph-based
multi-view clustering algorithms need a pre-constructed
graph, and the clustering performance of these algorithms
depends on the quality of the constructed graph. One of the
simple ways is that the features of all views are connected
in series, and then the single-view clustering is performed
based on the series-connected features. In this case, how-
ever, a view containing a larger amount of information is
treated with other views that contain less information. Thus
the final solution is not optimal. Therefore, we use a method

of increasing weight to learn the similarity matrix. The op-
timization problem of learning unified similarity matrix can
be described as follows (Nie, Cai, and Li 2017):

min
S,αv

∑

v

(αv

n∑

i,j=1

‖xv
i − xv

j‖22sij + λ‖αv‖22) + β‖S‖2F ,

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c,

αT
v 1 = 1, 0 ≤ αv ≤ 1.

(1)

where si ∈ R
n×1 is the i-th vector of similarity matrix

S ∈ R
n×n and its j-th element is sij . In spectral analy-

sis, LS = DS − (ST + S)/2 is a Laplace matrix, where
the degree matrix DS is the diagonal matrix about S whose
i-th diagonal element dii is

∑
j(sij + sji)/2. c is the num-

ber of 0 eigenvalues of LS matrix. β is the tuning parameter,
β‖S‖2F is used to avoid assigning a similarity of 1 only to
the nearest point of the data point xi, while the similarity
of the other points is 0. λ is the non-negative value, which
is used to smooth the weight distribution. Because artificial
weight is subjective, and assigning the same weight to each
graph ignores the difference between different features, it is
easy to be interfered by poor quality features, which leads to
poor clustering accuracy.

Robust Self-weighted Multi-view Projection
Clustering

Based on the superiority of subspace learning in the process-
ing of high dimensional data, we introduce the projection
matrix W into our method. Define the projection transfor-
mation matrix Wv ∈ R

dv×d′
v , d′v ≤ dv , which projects the

original dataset X of the v-th view into a low dimensional
subspace. Here d′v is the characteristic dimension of the low
dimensional subspace. This low dimensional subspace can
be represented as WT

v Xv , which not only preserves the ef-
fective information of the data, but also alleviates the dimen-
sion disaster problem. In the following, we give the opti-
mization goal based on subspace learning:

min
S,Wv,αv

∑

v

(αv

∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij + λ‖αv‖22

+ γ‖Wv‖2,1) + β‖S‖2F ,
s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c,

WT
v XvX

T
v Wv = I, αT

v 1 = 1, 0 ≤ αv ≤ 1.
(2)

where γ is the tuning parameters. ‖Wv‖2,1 is the �2,1-norm
of projection matrix W , which is used to suppress noise
and remove redundant features. The application of the or-
thogonal constraint to the scattering matrix WT

v XvX
T
v Wv

is actually used for intrinsic subspace learning, and the dv-
dimensionality feature space on the original dataset Xv is
converted into a statistically non-relevant d′v-dimensionality
intrinsic subspace.

In order to solve the problem of weight distribution, we
propose a Robust Self-weighted Multi-view Projection Clus-
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tering, which is as follows:

min
S,Wv

∑

v

((
∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij)1/2 + γ‖Wv‖2,1)

+ β‖S‖2F ,
s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c,

WT
v XvX

T
v Wv = I.

(3)

The Lagrange function of problem (3) can be written as
∑

v

((
∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij)1/2 + γ‖Wv‖2,1)

+ β‖S‖2F + G(ΛS , S) + G(ΛW ,Wv),

(4)

where ΛS , ΛW are the Lagrange multiplier, G(ΛS , S),
G(ΛW ,Wv) are the formalized term derived from con-
straints. Take the derivative of problem (4) with respect to
S and make it equal to 0, we have

∑

v

αv

∂
∑
i,j

‖WT
v xv

i −WT
v xv

j‖22sij
∂S

+
∂β‖S‖2F

∂S

+
∂G(ΛS , S)

∂S
= 0,

(5)

where

αv =
1

2(
∑
i,j

‖WT
v xv

v −WT
v xv

j‖22sij)1/2 (6)

Since αv is dependent on the target variable S and Wv , so
problem (5) cannot be directly solved. But if αv is set to
be stationary, problem (5) can be considered accounting for
following problem:

min
S,Wv

∑

v

(αv

∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij + γ‖Wv‖2,1)

+ β‖S‖2F ,
s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c,

WT
v XvX

T
v Wv = I.

(7)

We update each Wv and S through problem (7). The weight
αv of each view depends on Wv and S, so αv can update
at the same time. This solves the problem of linearly com-
bining different view weights without introducing extra pa-
rameters. That is, solving the problem (7) is equivalent to
solving the problem (3). By solving the problem (7), the sim-
ilarity matrix S can be learned directly for clustering.

Optimization Algorithm

For the solution of problem (7), we first optimize it by (Fan
1949), and iteratively update the algorithm by updating the
parameters until converge.
Optimization Objective Function

In the problem (7), the i-th smallest eigenvalue of LS is
represented by σi(LS). Because the Laplace matrix LS

is positive semidefinite, σi(LS) is non-negative, that is
c∑

i=1

σi(LS) ≥ 0, which ensures the establishment of rank

constraint rank(LS) = n − c. Given a sufficiently large η,
problem (7) can be written as

min
S,Wv

∑

v

(αv

∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij + γ‖Wv‖2,1)

+ β‖S‖2F + 2η

c∑

i=1

σi(LS),

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1,WT
v XvX

T
v Wv = I.

(8)

According to Ky Fan’s Theory, the following equation is
true:

c∑

i=1

σi(LS) = min
F∈R

n×c,FTF=I
Tr(FTLSF ). (9)

Based on the problem (9), the problem (8) can be further
equivalent to

min
S,Wv

∑

v

(αv

∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij + γ‖Wv‖2,1)

+ β‖S‖2F + 2ηTr(FTLSF ),

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1, F ∈ R
n×c, FTF = I,

WT
v XvX

T
v Wv = I.

(10)

Using an efficient iterative algorithm, problem (10) can be
optimized iteratively.
i. Update F
When S,W and αv are fixed, problem (10) is equivalent to
solving the following problem:

min
F∈R

n×c,FTF=I
Tr(FTLSF ). (11)

So the optimal solution of F is the c eigenvectors corre-
sponding to the first c minimum eigenvalues of LS .
ii. Update W

When S, F and αv are fixed, problem (10) is equivalent to
solving the following problem:

min
Wv

∑

v

(αv

∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij + γ‖Wv‖2,1),

s.t. Wv ∈ R
dv×d′

v ,WT
v XvX

T
v Wv = I.

(12)

Since for different v, the problem (12) is independent, it is
equivalent to solving the following problems for each view

min
W

∑

i,j

α‖WTxi −WTxj‖22sij + γ‖W‖2,1,

s.t. W ∈ R
d×d′

,WTXXTW = I.

(13)
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Algorithm 1 Optimization in problem (7)

Input: X = {X1, X2, ..., Xv} , Xv ∈ R
dv×n, clustering

number k, parameter β, η and γ.
Output: affinity matrix S ∈ R

n×n with exact c connected
components, where c = k; projection matrix W =

{W1,W2, ...,Wv} ,W ∈ R
dv×d′

v .
Initialize each vector si of S by the optimal solution to
the following problem, where the initial value of αv is 1

v :

min
sTi 1=1,0≤sij≤1

n∑
j=1

(αv

∑
v
‖xv

i − xv
j‖22sij + βs2ij)

Initialize Wv by the optimal solution to the following
problem:
min
Wv

Tr(WT
v XvLSX

T
v Wv), s.t. WT

v XvX
T
v Wv = I

repeat
i. update αv by solving the problem (6),
ii. update F by solving the problem (11),
iii. update the projection matrix Wv for each view by
solving the problem (18),
iv. update each row vector of S by solving the problem
(23).

until converge

If the function value of WTxi ∈ R
c×1 is regarded as the

value of a node i, the following equation holds:
∑

i,j

α‖WTxi −WTxj‖22sij = 2Tr(WT (αXLSX
T )W ).

(14)

So the problem (13) can be written as follows:

min
W

Tr(WT (αXLSX
T )W ) +

γ

2
‖W‖2,1,

s.t. W ∈ R
d×d′

,WTXXTW = I.
(15)

Due to the introduction of �2,1-norm, it is difficult to solve
the problem (15). In this paper, we use Lagrangian multiplier
method to solve the problem (15). The Lagrangian function
of the problem (15) is

L(W ) =Tr(WTαXLSX
TW ) +

γ

2
‖W‖2,1

− Tr(Λ(WTXXTW − I)),
(16)

where Λ is a diagonal matrix to enforce the constraint on
problem (16). The next step is to derive L(W ) and make it
equal to 0, that is

∂L(W )

∂W
= (A+AT )W + 2γDW − 2BWΛ = 0, (17)

where D = diag( 1
4‖W̃ (1,:)‖2

, ..., 1
4‖W̃ (d,:)‖2

), W̃ represents

the current solution, A = αXLSX
T , B = XXT . Because

of A = AT , so problem (17) can be simplified as follows:

A+ γD

B
W = WΛ. (18)

Let Q denote A+γD
B , so the problem (18) can be abbrevi-

ated to QW = WΛ. Since Λ is a diagonal matrix, and the

characteristic equation is Qωi = λiωi(i = 1, 2, ..., d′), then
W is composed of eigenvectors corresponding to c smallest
eigenvalues divided by 0. Here λi is the i-th smallest eigen-
value except the zero eigenvalues in the eigen-equation, and
ωi is the eigenvector corresponding to the i-th eigenvalue.
iii. Update S
When W,F , and αv are fixed, problem (10) is equivalent to
solving the following problem:

min
S

∑

v

αv

∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij + β‖S‖2F

+ 2ηTr(FTLSF ),

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1.

(19)

Let Zv = XT
v Wv , the problem (19) can be further rewritten

as

min
S

∑

i,j

(
∑

v

αv‖zvi − zvj ‖22sij + βs2ij + η‖fi − fj‖22sij),

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1.
(20)

where zvi is the i-th vector of Zv , fi is the i-th vector of F .
Denote

dzij =
∑

v

αv‖zvi − zvj ‖22, dfij = ‖fi − fj‖22. (21)

Note that the problem (20) is independent with respect to
each i, we are equivalent to solving the following problem
for each i:

min
si

n∑

j=1

(dzijsij + βs2ij + ηdfijsij),

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1.

(22)

Denote di ∈ R
c×1 as a vector with the j-th element as dij =

dzij + ηdfij , then the above problem can be written as follow:

min
sTi 1=1,0≤sij≤1

‖si + 1

2β
di‖22. (23)

The solution of the problem (23) has been given by (Nie,
Wang, and Huang 2014), we can get the matrix S with k
strong connected subgraphs by updating si.
iv. Update αv , β, η and γ

For the update of the weight coefficient αv , it has been given
in the previous problem (6), which depends on Wv , S.The
value of the regularization parameter β can range from 0 to
infinity. In this paper, the solution of parameter β is equiva-
lent to solving the following problem:

min
S

∑

v

αv

∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij + β‖S‖2F ,

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1.

(24)

So we can determine the value of the regularized parameter
β by (Nie, Wang, and Huang 2014):

β =
1

n

n∑

i=1

(
K

2
di,K+1 − 1

2

K∑

j=1

dij), (25)
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(a) View 1 (b) View 2 (c) MLAN (d) SwMC (e) RAMC (f) SwMPC (g) RSwMPC

Figure 1: Two initial views and comparison with different methods on toy1 dataset. The results show that the block diagonal
matrix obtained by our algorithm is cleaner than the others.

(a) View 1 (b) View 2 (c) MLAN (d) SwMC (e) RAMC (f) SwMPC (g) RSwMPC

Figure 2: Two initial views and comparison with different methods on toy2 dataset. The results show that as the noise increases,
our algorithm can still maintain good performance while other algorithms fail.

where K is a nearest neighbor number. The initial value of
η can be set to β. Algorithm 1 summarizes the detailed steps
to solve the problem (7). Parameter η can be updated by al-
gorithm 1 until the connected components of Laplace matrix
LS is equal to the clustering number k. The value of param-
eter γ has been given later in the experiment.
v. Time-complexity Analysis
In each iteration, the time complexity of the view weight co-
efficient αv , the matrix F , the affinity matrix S and the pro-
jection matrix W are O(d′dn), O(n2), O(c2) and O(d2),
respectively. Usually we have c � n, d′ � d, and the num-
ber of iterations is less than 10, so the time complexity of our
algorithm is O(d′dn+ n2 + d2 + c2) ≈ O(n2 + d2 + dn).

Convergence Analysis

In order to prove the convergence of Algorithm 1, we need
to use the following Lemma proposed by (Nie et al. 2010).
Lemma 1. For any positive number u and v,the following
inequality holds:

u− u2

2v
≤ v − v2

2v
(26)

Theorem 1. In each iteration of Algorithm 1, updated S will
decrease the objective value of problem (3), which makes
problem (3) convergent.

Proof. Let S̃ represents the S updated in each iteration, it’s
easy to have:

∑

v

∑
i,j

yvij s̃ij

2(
∑
i,j

yvijsij)
1/2

+ β‖S̃‖2F

≤
∑

v

∑
i,j

yvijsij

2(
∑
i,j

yvijsij)
1/2

+ β‖S‖2F .

(27)

where yvij denotes ‖WT
v xv

i −WT
v xv

j‖22.
According to Lemma 1, we have

∑

v

(
∑

i,j

yvij s̃ij)
1/2 −

∑

v

∑
i,j

yvij s̃ij

2(
∑
i,j

yvijsij)
1/2

≤
∑

v

(
∑

i,j

yvijsij)
1/2 −

∑

v

∑
i,j

yvijsij

2(
∑
i,j

yvijsij)
1/2

.

(28)

Combined with problem (27) and (28), we get the sum of
them as follows:

∑

v

(
∑

i,j

‖WT
v xv

i −WT
v xv

j‖22s̃ij)1/2 + β‖S̃‖2F

≤
∑

v

(
∑

i,j

‖WT
v xv

i −WT
v xv

j‖22sij)1/2 + β‖S‖2F .
(29)

So the convergence of Algorithm 1 is proved by the above
formula.

Experiments

In this section, we prove the effectiveness and robustness of
our proposed method on synthetic datasets and real-world
datasets, and compare them with other multi-view cluster-
ing algorithms. We use the following three evaluation indi-
cators to evaluate clustering performance: Clustering Accu-
racy (ACC), Normalized Mutual Information (NMI), Purity.

Synthetic Datasets

In this part, we design two datasets to test the effectiveness
of our proposed algorithm, toy1 and toy2 datasets, respec-
tively. These two datasets are comprehensive datasets with
two views, each view includes a 90 × 90 matrix and three
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(a) ACC (b) NMI (c) Purity

Figure 3: Robustness comparision with the top four algorithms on HW dataset. Compared with other three algorithms, our
algorithm can still maintain good performance with the increase of noise.

Table 1: Statistics of datasets

View MSRC-v1 Caltech101-7(20) HW NUS-WIDE ORL Faces
1 CM(24) Gabor(48) FOU(76) CH(64) GIST(512)
2 HOG(576) WM(40) FAC(216) CORR(144) HOG(864)
3 GIST(512) CENT(254) KAR(64) EDH(75) LBP(59)
4 LBP(256) HOG(1984) PIX(240) WT(128) SURF(500)
5 CENT(254) GIST(512) ZER(47) CM55(225) -
6 - LBP(928) MOR(6) - -

#Size 210 1474(2386) 2000 2400 400
#Class 7 7(20) 10 12 40

30 × 30 diagonal block matrices. In these two datasets, the
data in the block represents the correlation between the two
corresponding points in a cluster and is randomly set to the
number between 0 and 1, and the data outside the block rep-
resents noise and is randomly set to the number between 0
and e. In toy1 dataset, the noise value of the first and the
second view are set as e = 0.6 and e = 1.0 respectively. In
toy2 dataset, for the first view, the initial noise is e = 0.6,
the e = 0.8 is used for the first and second block matrices;
for the second view, the initial noise is e = 0.7, and e = 1.0
is used for the second and third block matrices.

Figure 1 and Figure 2 show the two original views in
the toy1 and toy2 datasets and the grayscale images ob-
tained by clustering with MLAN, SwMC, RAMC, SwMPC
and our RSwMPC. The experimental results show that our
RSwMPC can achieve best clustering performance which
ACC, NMI and Purity are all 1. On the toy1 dataset, these
algorithms are able to get a clean block diagonal matrix,
while RSwMPC get the clearest block diagonal matrix. On
the toy2 dataset, after adding noise, all algorithms except
RAMC and RSwMPC are invalid. In comparison, the ma-
trix obtained by our RSwMPC is cleaner than others, which
also verifies the robustness of RSwMPC. It indicates that
our RSwMPC arrives at the optimal solution with different
noise.

Real-world Datasets

In Table 1, we briefly summarize the datasets used in this
paper, namely MSRC-v1 (Winn and Jojic 2005), Caltech101
(Fei-Fei, Fergus, and Perona 2007) (here, we use two regu-
lar subsets of Caltech101-7 and Caltech101-20), Handwrit-
ten numerals (HW) (Asuncion and Newman 2007), NUS-
WIDE (Chua et al. 2009) (We select 12 categories of animal

images, and the first 200 images are selected for each cate-
gory), ORL Face (Samaria and Harter 1994) datasets.

On the six real-world datasets, we compare our proposed
algorithm with the following algorithms: Co-regularized
Multi-view Spectral Clustering (Kumar, Rai, and Daume
2011) (Co-reg), Robust Multi-view Spectral Clustering (Xia
et al. 2014) (RMSC), Parameter-Free Auto-Weighted Mul-
tiple Graph Learning (Nie et al. 2016) (AMGL), Multi-
View Clustering with Adaptive Neighbours(Nie, Cai, and Li
2017) (MLAN), Self-weighted Multi-view Clustering (Nie
et al. 2017) (SwMC), Robust Auto-Weighted Multi-Feature
Clustering (Ren et al. 2018) (RAMC) and Parameter-Free
Weighted Multi-View Projected Clustering (Wang et al.
2019) (SwMPC).

For our proposed algorithm, except that the neighbor
numbers K of the MSRC-v1 and ORL Face datasets are
set to 30 and 5, respectively, the rest is 15. The parameter
γ is searched between 1e − 6 to 1e6, and the step size is
0.5. In addition, we search for the dimensionality d′ corre-
sponding to the best clustering result by searching all the
dimensionalities of each view in the original dataset. For the
sake of simplicity, we set the step size of the parameter γ to
3. In order to distinguish the proportion of different views
in the overall clustering performance, for each feature, we
initialize αv to a random weight between 0 and 1. For other
algorithms, we set the parameters to be optimal. All the ex-
periments are repeated for 20 times to obtain the mean and
standard deviation of clustering results.

Table 2 shows the clustering results (including standard
deviation) for all methods, and the best results have been
marked in bold. It is easy to see that our algorithm has the
best (at least the same) ACC, NMI, Purity on all six datasets.
Most of all, the ACC of our proposed algorithm on the
Caltech101-7 and Caltech101-20 datasets have increased by
about 9.5% and 9.9%. In particular, the ACC, NMI, Purity
of our algorithm on the ORL Face dataset have reached an
optimal value of 1. Clustering results of our proposed algo-
rithm on other datasets are also improved. In addition, from
Table 2, it can be seen that the standard deviation value of
all datasets are less than 0.01, and the maximum value is
0.0071, which verify the efficiency and stability of our pro-
posed algorithm. That’s because that our algorithm adopts
dimensionality reduction processing for high-dimensional
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Table 2: Clustering performance comparison. Our algorithm is compared with other algorithms on the MSRC-v1, Caltech101-
7 (20), HW, NUS-WIDE and ORL Face datasets. Experimental results show that the overall performance of our proposed
algorithm is better than others.

MSRC-v1 Caltech101-7
Acc NMI Purity Acc NMI Purity

Co-reg 0.6271± 0.0123 0.5399± 0.0099 0.6512± 0.0105 0.5011± 0.0067 0.3867± 0.0042 0.8104± 0.0022
RMSC 0.8020± 0.0212 0.6941± 0.0114 0.8110± 0.0145 0.4409± 0.0101 0.3814± 0.0035 0.8033± 0.0022
AMGL 0.7095± 0.0535 0.6686± 0.0330 0.7390± 0.0384 0.6538± 0.0558 0.5393± 0.0482 0.8463± 0.0182
MLAN 0.6810± 0.0000 0.6299± 0.0000 0.7333± 0.0000 0.7802± 0.0000 0.6304± 0.0000 0.8894± 0.0000
SwMC 0.8714± 0.0000 0.7861± 0.0000 0.8714± 0.0000 0.6472± 0.0000 0.5335± 0.0000 0.8365± 0.0000
RAMC 0.8871± 0.0100 0.8150± 0.0169 0.8871± 0.0100 0.7497± 0.0408 0.6365± 0.0243 0.8808± 0.0051
SwMPC 0.5571± 0.0000 0.5900± 0.0000 0.6476± 0.0000 0.7436± 0.0000 0.5399± 0.0000 0.8562± 0.0000

RSwMPC 0.9071 ± 0.0024 0.8293 ± 0.0071 0.9071 ± 0.0024 0.8750 ± 0.0008 0.7135 ± 0.0015 0.9193 ± 0.0000

Caltech101-20 HW
Acc NMI Purity Acc NMI Purity

Co-reg 0.4470± 0.0065 0.5228± 0.0040 0.7356± 0.0030 0.7199± 0.0107 0.6873± 0.0057 0.7465± 0.0086
RMSC 0.3662± 0.0070 0.5037± 0.0032 0.7198± 0.0042 0.864± 0.0118 0.8112± 0.0056 0.8730± 0.0087
AMGL 0.5067± 0.0496 0.5332± 0.0263 0.6711± 0.0189 0.8007± 0.0562 0.8472± 0.0307 0.8320± 0.0427
MLAN 0.5258± 0.0070 0.4744± 0.0025 0.6660± 0.0000 0.9727± 0.0006 0.9384± 0.0009 0.9727± 0.0006
SwMC 0.5432± 0.0000 0.4514± 0.0000 0.6676± 0.0000 0.7523± 0.0531 0.8412± 0.0332 0.7865± 0.0429
RAMC 0.5928± 0.0376 0.6105± 0.0222 0.7228± 0.0110 0.8574± 0.0013 0.8923± 0.0016 0.8808± 0.0008
SwMPC 0.5281± 0.0000 0.4787± 0.0000 0.6668± 0.0000 0.9605± 0.0000 0.9222± 0.0000 0.9605± 0.0000

RSwMPC 0.6918 ± 0.0015 0.6451 ± 0.0032 0.7875 ± 0.0026 0.9822 ± 0.0003 0.9576 ± 0.0008 0.9822 ± 0.0003

NUS-WIDE ORL Face
Acc NMI Purity Acc NMI Purity

Co-reg 0.2772± 0.0019 0.1743± 0.0012 0.2974 ± 0.0017 0.7732± 0.0095 0.9181± 0.0038 0.8261± 0.0074
RMSC 0.2546± 0.0052 0.1632± 0.0016 0.2870± 0.0023 0.7251± 0.0132 0.8566± 0.0062 0.7590± 0.0117
AMGL 0.1605± 0.0250 0.0799± 0.0247 0.1615± 0.0250 0.9605± 0.0203 0.9874± 0.0070 0.9698± 0.0149
MLAN 0.2108± 0.0100 0.1475± 0.0063 0.2356± 0.0096 0.9475± 0.0000 0.9761± 0.0000 0.9575± 0.0000
SwMC 0.1488± 0.0000 0.0818± 0.0000 0.1629± 0.0000 0.9625± 0.0000 0.9906± 0.0000 0.9750± 0.0000
RAMC 0.2015± 0.0062 0.1217± 0.0056 0.2155± 0.0075 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
SwMPC 0.1679± 0.0000 0.0899± 0.0000 0.1845± 0.0000 0.9475± 0.0000 0.9802± 0.0000 0.9600± 0.0000

RSwMPC 0.2778 ± 0.0060 0.1810 ± 0.0061 0.2974 ± 0.0049 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

data, the noise in the datasets is processed by �2,1-norm, and
a non-parametric self-weighting method is adopted to suc-
cessfully solve the clustering problem on high-dimensional
and noisy multi-view datasets.

Robustness Assessment

In this part, we verify the robustness of the algorithm by
adding different proportions of noise to real-world datasets.
First, we add different proportions of noise based on the
original dataset to construct a set of datasets containing
noise. Let r be the ratio of noise (r is 0 to 0.5, step size is
0.05), n is the number of data points in the original dataset.
In the randomly selected n × r data points, we add a nor-
mal distribution noise with an average of 300 and a standard
deviation of 30 to form a set of noisy datasets.

Due to space constraints, we only show the robustness
comparison on HW dataset. As shown in Figure 3, for sim-
plicity, we only show the top four algorithms in clustering
performance. From Figure 3, we can see that as the noise
ratio increases, the performance of all algorithms decrease,
but the performance of our algorithm is always in the lead.
Furthermore, the performance gain of our algorithm is more
significant. When the random noise increases from 0 to 0.5,
the performance gain of our algorithm on ACC, NMI, Purity
increase from 12.57%, 6.6%, 11.05% to 29.95%, 28.29%,
35.77% compared with the results of RAMC. Compared
with the MLAN algorithm, the performance gain of our al-
gorithm on ACC, NMI, Purity increase from 0.32%, 0.96%,

0.32% to 102.34%, 139.27%, 93.65% respectively. Com-
pared with the AMGL algorithm, the performance gain of
our algorithm on ACC, NMI, Purity increase from 19.04%,
10.45%, 15.86% to 48.58%, 44.02%, 51.27%, respectively.
These results show that our algorithm can suppress noise
and maintain good clustering performance when the dataset
contains noise.

Conclusion

In this paper, a new robust self-weighted multi-view projec-
tion clustering algorithm is proposed. It can simultaneously
study the projection matrix, similar matrix and weight co-
efficients to obtain low-dimensional subspaces with cluster
structure. The introduction of the �2,1-norm on the term not
only suppresses noise, but also makes the line sparse and
easy to solve. At the same time, the obtained optimal graph
can be directly used for clustering without further process-
ing. Experiments on the synthetic datasets and real-world
datasets demonstrate the superiority and robustness of our
method for processing high-dimensional data with noise.
In future work, the framework can be extended to semi-
supervised clustering.
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