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Abstract

With the advent of Deep Learning, the field of machine learn-
ing (ML) has surpassed human-level performance on diverse
classification tasks. At the same time, there is a stark need to
characterize and quantify reliability of a model’s prediction
on individual samples. This is especially true in applications
of such models in safety-critical domains of industrial con-
trol and healthcare. To address this need, we link the ques-
tion of reliability of a model’s individual prediction to the
epistemic uncertainty of the model’s prediction. More specif-
ically, we extend the theory of Justified True Belief (JTB)
in epistemology, created to study the validity and limits of
human-acquired knowledge, towards characterizing the va-
lidity and limits of knowledge in supervised classifiers. We
present an analysis of neural network classifiers linking the
reliability of its prediction on a test input to characteristics
of the support gathered from the input and hidden layers of
the network. We hypothesize that the JTB analysis exposes
the epistemic uncertainty (or ignorance) of a model with re-
spect to its inference, thereby allowing for the inference to
be only as strong as the justification permits. We explore var-
ious forms of support (for e.g., k-nearest neighbors (k-NN)
and ¢j,-norm based) generated for an input, using the train-
ing data to construct a justification for the prediction with
that input. Through experiments conducted on simulated and
real datasets, we demonstrate that our approach can provide
reliability for individual predictions and characterize regions
where such reliability cannot be ascertained.

Introduction

Predictive and prescriptive models based on ML are at the
heart of the modern digital revolution. They are applied
across several domains, such as energy, finance, defense,
network security, and healthcare. These models often di-
rectly influence control actions or indirectly influence de-
cisions through recommendations. In many scenarios, espe-
cially safety-critical ones, although the average performance
or accuracy of such models is important, the reliability of
the model on every individual prediction is equally critical.
By reliability, we mean the degree to which the result of
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the model can be relied on to be accurate. A model with
very good average performance is still capable of causing ir-
reparable damage due to the mistakes it makes on a single or
few predictions. In this paper, we present an analysis on the
reliability of individual predictions of a ML model.

We draw inspiration from epistemology, the theory of
knowledge, which deals with validity of methods used to
acquire knowledge. Specifically, we examine the applicabil-
ity of Plato’s classical Justified True Belief (JTB) theory in
epistemology (Ichikawa and Steup 2001). The JTB theory of
knowledge is a classical theory that attempts to provide nec-
essary and sufficient conditions under which a person can
be said to know something. We extend this theory to ML
models by firstly positing that an individual prediction from
a model can be seen as a belief equivalent to “I believe in-
put x is of class y”. Next, we propose that in order for such
belief to be considered as knowledge, an additional step of
constructing justification for the belief is necessary. We ex-
plore formulations of JTB analysis by which ML models can
construct such justifications for their beliefs.

We contend that existing approaches conflate epistemic
uncertainty, which pertains to uncertainty due to information
that is absent, with aleatoric uncertainty, which pertains to
uncertainty arising from variability in the available informa-
tion. JTB analysis tackles this fundamental confusion by not
relying on confidence intervals for point-class assignments
to obtain prediction reliability, and by abstaining from mak-
ing point-class predictions on inputs, if concrete evidence
for such assessment is absent. Some existing approaches
make use of thresholding on softmax layer values or dis-
tance from the decision hyperplane to abstain from making
a class assignment. These approaches fail to link prediction
reliability to the location of the sample in the overall input
space. It is becoming clearer based on recent work (Meng
and Chen 2017) that input regions, either close to the de-
cision boundary or in regions of extrapolation, are partic-
ularly susceptible with regard to making unreliable predic-
tions. We present a mechanism for characterizing regions in
input space as region of extrapolation (i.e., “I don’t know” or
IDK), region of confusion (i.e., “I may know” or IMK), and
region of trust (i.e., “I know” or IK). This novel mechanism
to construct justified belief with IK, IMK, and IDK directly



affects the reliability of the decisions made downstream in
the analytical workflows. While IMK informs that support
is impure and additional information is needed to improve
reliability, empty neighborhood in IDK informs that input is
anomalous/novel.

Additionally, it has been shown (De Vries, Memisevic,
and Courville 2016) that the softmax classifier can make
high confidence predictions that are inaccurate even for
points that are at a large distance from the decision hy-
perplane. JTB analysis overcomes these issues by explic-
itly factoring in the location of a sample in the input space,
while making its class prediction, through constructing sup-
port for the prediction based on other training data points
in the vicinity of the sample. Suggestions related to ab-
staining from making point-class predictions have been
made recently (Shafahi et al. 2018; Rouani et al. 2019;
Miller, Wang, and Kesidis 2019) (especially for adversar-
ial attack detection), but we believe our approach is the
first to separately characterize overlap (IMK) and extrap-
olation (IDK) for individual predictions from neural net-
works. DeepKNN (Papernot and McDaniel 2018) and trust
score (Jiang et al. 2018) approaches collect evidence for
prediction reliability by identifying nearest neighbors to the
sample from the training points across single/multiple layers
of a neural network; the class-membership of the neighbors
are then used to assign a nonconformity/trust score to the
class prediction. Although our approach leverages this work,
by considering the k-NN support operator for the JTB anal-
ysis, besides other forms of support like £,-norm based and
novel hybrid forms of support, our work is different: it can
identify region of extrapolation (IDK) and construct justifi-
cation for prediction reliability, whereas the statistical nature
of trust scores needs thresholding to do the same.

The main objectives and contributions of this work are
given as follows:

e To introduce, formalize, and illustrate the notion of justi-
fied belief from epistemology for ML models to gain reli-
ability in individual predictions.

e To contrast performance of Epistemic classifiers with
those that rely on distance from hyperplane on real and
simulated datasets.

We next introduce Epistemic classifiers, instantiated by
the application of JTB analysis to standard classifier mod-
els. We use the rest of the paper to define concepts neces-
sary for formalizing the JTB analysis framework, describing
algorithmic steps for performing training and inference for
JTB, describing experiments with applying Epistemic clas-
sifiers and analysis of outcomes from it, and finishing with a
discussion of potential future directions and conclusions.

Concept of Epistemic Classifiers

Presently, a classification problem is not evaluated in terms
of the true class observability permitted by the training data
used to construct classifiers. In reality, the ground truth of a
particular instance might not be fully observable from the
available training data implying that reliable single-point
classification is unachievable. Epistemic classifiers address
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Figure 1: Illustration of region of trust (IKO, IK1), region of
confusion (IMK), and region of extrapolation (IDK) for 2-
D input binary classification with Epistemic classifier using
neural network as base classifier

this issue by characterizing regions of observability and ab-
stain from making class-assignments in regions of the input
space where such characterization is found to be difficult to
construct. Consider Fig. 1 illustrating the input space of a
2-D binary classification problem. The problem we are in-
terested in is, given a test input x, to be able to characterize
the input region for = during inference and provide estimated
class-prediction with additional information indicating indi-
vidual reliability of the prediction. The fundamental mecha-
nism to enable this characterization of the input space is de-
veloped by application of the theory of Justified True Belief
(JTB) from field of epistemology, which is discussed next.

The JTB theory of knowledge suggests that a subject S
knows that a proposition P is true if and only if P is true,
S believes that P is true, and S is justified in believing that
P is true. Most of scientific knowledge is based on justified
belief, where belief is a claim or hypothesis and justifica-
tion is the experimental evidence or the mathematical proof
leveraging existing justified beliefs to support the new be-
lief. We extend this theory of knowledge as justified belief
to supervised learning-based classifiers.

In current Al systems, cross-validation accuracy of model
is high is used as a justification to rely on model outputs, but
this form of justification, that uses aggregate statistics fails
to account for unreliability at the level of individual predic-
tions. To counter this, we introduce justification that gathers
evidence using the training set for each individual test in-
put x in the input and the hidden layers of a neural network
classifier, where an unambiguous truth state in the neighbor-
hood of z in those embedded spaces provides support to the
belief allowing model to declare “I know P”. This support
and justification process to characterize knowledge, which
uses neighborhood to allow generalization beyond labeled
instances, is discussed next.

Neighborhood and Support

Consider a training set with predictors X and correspond-
ing labels Y. A neighborhood operator N'(x) for an input
x is a function that returns a subset of training set, i.e.,
N(z) C X, such that each data point 2 € N (x) is simi-
lar to z using certain distance metric and selection criterion.
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Figure 2: Construction of support in some embedded space
using e-balls as neighborhoods

Specific examples of neighborhood operators include e-ball
neighborhood B (x), which uses ¢, distance metric and cri-
terion that d(x, 2) < ¢ for e € RT, and k-nearest neighbor
neighborhood Ny (), which uses distance metric d to iden-
tify k € Z™ nearest neighbors of 2 from the training set. Let
function f map input from training data to set of labels, then
given a neighborhood operator AV;(-), the support of input
in i'" layer of neural network is defined as:

Si(x) = {f(2) : 2 € X, hi(2) € Ni(hi(2))}, (1)

where h;(z) is the activation values of layer 7 in neural net-
work with z as input. Thus via the neighborhood operator,
the support operator is parametrized by distance bound €; or
number of neighbors k;. An illustration of e-ball neighbor-
hood to construct support is shown in Fig. 2.

A k-NN neighborhood identifies k similar instances.
Thus, it will find k£ neighbors even when the sample is ex-
trapolating and is semantically different from all neighbors.
On other hand, e-ball neighborhood operates on a fixed re-
gion in which it looks for evidence and that evidence varies
based on data density and can also lead to empty support
under extrapolating regions. However, this favorable vari-
ability is expected to lead to € that might be conservative
in one part of input space and loose in another part. Since,
the formulation can handle general notion of neighborhood,
we also propose hybrid versions of neighborhood operators:
1) H-1 : when e-ball neighborhood is empty, then use k-
NN neighborhood, and 2) H-2 : when e-ball neighborhood is
non-empty, compute union with k-NN neighborhood. Note
that when e-ball neighborhood is empty, H-1 provides more
information about nearest neighbors, but it would potentially
reduce robustness as those evidence might be obtained from
semantically dissimilar classes. H-2 provides stronger ro-
bustness as it increases the set of evidence, but it would po-
tentially increase impurity of evidence, i.e. data points from
different classes. In this work, the neighborhood operators
that are considered to construct support in layer 7, given the
choice of distance metric d;, can be parametrized by size
of ball neighborhood ¢; and number of neighbors k;, i.e.
we can represent neighborhood operator as \; = Ndi’e“ ki
This support operator is evaluated over each layer of interest
and then justification operator acts over these sets of support.
This process of justification is explained next.

Justification and Knowledge

The justification operator takes as input a collection of sup-
ports from multiple layers and produces a set of justified
class assignments for an input using (2).
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if for any S;(z) = ¢,
otherwise.

J(z) = {¢ )

Uie[ Si(x)

If any support is empty, then J(x) is also empty, else we
use the disjunction or union for the justification operator.
Thus, the justified class assigned to input x is a union of the
class-assignments made by each of the supports from cho-
sen layers. The disjunction makes for a liberal justification
operator since a class that is contained even in one of the
supports is carried on to the output.

Based on the outcome of applying the justification op-
erator J(x) and prediction or belief g(x) for a given in-
put x, the Epistemic classifier using justified belief may as-
sert IK, IMK, or IDK. These assignments capture the epis-
temic uncertainty of the classifier with respect to the in-
put’s class. The IDK assertion captures the epistemic un-
certainty encountered when a sample finds no support for
the belief from existing training data (e.g., when the infer-
ence involves extrapolation), i.e. g(x) ¢ J(x). The IMK
assertion captures the epistemic uncertainty when a sample
finds conflicting support from the training data for two or
more classes which also consists of the belief, i.e., g(z) is
proper subset of J(x). For example, in Fig. 1, if test input
x = (2,2), then J(z) = {0, 1} from support in input layer
and g(x) = {1} leading to IMK assertion. Additionally, the
IK assertion is provided when the belief and justification
are exactly the same g(x) = J(z), e.g., when z = (8,0)
in Fig. 1. Clearly, these three degrees of epistemic uncer-
tainty are ordered wherein IDK captures a relatively higher
degree of ignorance about the sample class than the IMK
and IMK has higher uncertainty than IK. Now that concept
of the Epistemic classifier and intuition have been explained,
we will formalize this classifier further.

Definition (Epistemic classifier). Epistemic classifier (E) is
a function mapping from input space to output label and
epistemic certainty. It is defined by a tuple E = (g,I,N'),
where g is the base neural network classifier, I is the set of
chosen layers, and N' = {Ni, ... N1} is a set consist-
ing of neighborhood operator for each layer. For a given
input x, this classifier obtains belief as g(x) with base clas-
sifier and constructs justification J(x) using (2) with neigh-
borhood and support operators using (1) over layers in 1.
Then output E(z) = (g(x),j € {IK, IMK, IDK}) consists
of belief and assertion of IK (if g(x) J(x)), IMK (if
g(x) C J(x)), or IDK (if g(x) ¢ J(z)) as the degree of
epistemic certainty in the belief.

Next we will show the training and inference algorithms
as well as some analysis on choice of model parameters.

Algorithm and Analysis

In order to build an Epistemic classifier, we need a trained
neural network model g, which is the base classifier. The ev-
idence for justification process will be based on the train-
ing set (X,Y’). The parameter optimization is conducted
by evaluating metrics over the validation set (X", Y"). We
demonstrate our training approach in Algorithm 1.



Algorithm 1 — Training Epistemic Classifiers.

training set (X,Y"), validation set (X", Y"?)
trained neural network g
Require: set of layers I for support construction
Require: metrics for each layer d = {d, ...,d|7| }
L Q={} > Set of one search tree per layer in /
2: for each layeri € I do
3:  T'f « Extract activation h;(X) for training set X
Q; + NeighborSearchTree(I'X, Y, d;)
end for ~
£, k = ParameterSelection(X", Y, Q,¢,I,d)
return g, I, d, g, k, )

Require:
Require:

A A

Algorithm 2 — Inference with Epistemic Classifiers.

Require: Test input
Require: Epistemic classifier G = (g, I, N)

1: Compute belief as prediction g(x)

2: for each layer i € I do

3 I'? < Extract activation h;(x) for test input

4 Si(z) + U(I'¥,N;) > support of z in layer 4

5: end for

6: Get justification J(z) from supports S, (x) using (2).

7: if g(z) = J(z) then

8: output + (IK, g(x))

9: else if g(z) C J(z) then
10: output + (IMK, g(z))

(

> proper subset
11: else > implies g(z) ¢ J(x)
12: output + (IDK, g(z))

13: end if

14: return output

Once we obtain the base classifier g, we feed the training
set X into neural network model g and extract I‘f( , which is
the activation from layer ¢ € [ from all training instances us-
ing h;(X). Recall that h;(-) gives activation values of layer
1 for a given input. NeighborSearchTree represents a func-
tion which builds a nearest neighbor search tree based on
the information from training data and distance metric. Pa-
rameterSelection represents a function, which selects a set
of parameters € = {¢; : ¢ € I} and k = {k; : i € I} for
support construction. We will discuss these functions next.

In NeighborSearchTree, we construct a set of ball-
trees (Omohundro 1989) denoted by €2 to store activation
values and their corresponding labels for each layer i. Un-
like k-d trees (Bentley 1975), ball-trees lead to O(log | X|)
average case complexity for exact search in moderately high
dimensions, where complexity for k-d tree is linear. These
ball-trees enable to efficiently conduct both nearest neigh-
bor search and range search, i.e., find all neighbors within
distance ¢; from test input z. In our implementation, we use
ball-tree method from scikit-learn (Pedregosa et al. 2011) to
construct the neighbor search tree.

Let us now consider a case where support is constructed
only from one layer, then we study the effect of choice of ¢
over {IK, IMK, IDK} regions. Let F; i be fraction of sam-
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Figure 3: Illustration of behavior of fraction of IK, IMK,
and IDK as well as accuracy on IK from Epistemic classifier
with parameter of neighborhood operator

ples that are asserted to be “I know”, similarly, we have
Fryi and Frpg as fraction of samples for “I may know”
and “I don’t know” respectively. Then, we can make the fol-
lowing remarks about their behavior with ¢:

Remark (Behavior of {IK, IMK, IDK} with €). Note that
Frx + Fruix + Fripx = 1, since {IK, IMK, IDK} are ex-
haustive and mutually-exclusive options for justified belief.
Ife — 0, then Frx =0, Fryyxg =0, Fipg = 1, since very
small neighborhoods will not be able to find any evidence.
If e = o0, then Frx = 0, Fiyyg = 1, Fipg = 0, since
very large neighborhoods will include training points from
all classes as evidence. Fr i is a monotonically-increasing
function of ¢, since impure support cannot become pure or
empty, but pure or empty support of a data point can be-
come impure as size of neighborhood increases. Similarly,
Frpi is a monotonically-decreasing function of e, since
empty neighborhood might get new evidence, but nonempty
neighborhoods will not become empty as € increases.

Figure 3 illustrates these intuitive behaviors using a toy
dataset (Gaussian distribution with some overlap) for a bi-
nary classification task. The metric F7x or fraction of IK
samples is also called coverage. Note that accuracy for IK
samples stays high across different coverage levels as de-
sired. Thus, in this work, the objective function used to
choose the optimal € is coverage and not accuracy. The rela-
tion of coverage with ¢ is piece-wise constant as data points
move between regions of IDK or IMK and IK. Thus, this
optimization for ParameterSelection function can be accom-
plished with grid search or by using Bayesian optimization
(BO) (Snoek, Larochelle, and Adams 2012), where coverage
metric is evaluated over validation set.

Given ¢; for one layer-case, we derive an upper bound of
the €;41 such that if data point z is an £;-neighbor of the
testing input  in layer ¢, then it is guaranteed that z is an
€i+1-neighbor of the testing input x in layer ¢ + 1.

Remark (¢ bound). If W; € R™*™ is weight matrix of the
layer i with input dimension m and output dimension n, \}
is the largest eigenvalue of the matrix W; W, L; is the Lips-
chitz constant of the activation function of layer i, then given



g; for layer 1, the value of ;1 is bounded as follows:

Ei+1 < Li\/ )\;k&?z

Proof. See Supplementary material (S1) in (Virani, Iyer, and
Yang 2019). O

This result is used to choose conservative values of ¢
across multiple layers by setting value of ;4 at the up-
per bound. Note that the weight matrix of layer 7 leads to
an affine projection of ¢;-ball, thus considering only scaling
will lead to a loose bound in most of the directions except of
the largest principal component. Thus, we also introduce a
weighted distance metric based on the weight matrices of
the neural network that is constructed for each layer. We
define the following metric for each layer i, d;(zq,xp)
\/(ma —23)TD;(z, — ) and D; is a symmetric positive
semi-definite matrix. The following remark informs how to
choose the values for D;.

Remark (Bound with weighted distance). Let I/INQ =
W1W2...Wi, A diag([/\17>\2,...>\7L]) and U
[v1, V2, ...v,] as the first n non-zero eigenvalues and corre-

~ ~—T
sponding eigenvectors of matrix W;W; | and dy is {y dis-
tance metric in input space. If do(x,2) < ¢ then the dis-
tance function matrix D; for neighbor search in any layer
~ ~T
D, =U"W,A"'W,; U A3)

satisfies the following relation:

V(i) = ha(2) T Dili(@) = 1a(2)) < 2o

Proof. See Supplementary material (S1) in (Virani, Iyer, and
Yang 2019). O

Thus, with this layer-specific metric for each layer, we can
use the same value of ¢ for each layer of interest. Due to
activation functions, which are applied after the affine pro-
jection, the bound obtained by using weighted distance will
still be conservative in several directions. Moreover, compu-
tation of eigenvalue decomposition for large weight matrices
can also be intractable. We provide an alternate mechanism
to compute the values of € parameters. BO is proposed for
selecting the value of & = {&; : i € I} for each layer. BO
is computationally tractable for most situations as parameter
tuning for Epistemic classifiers does not require base model
retraining and repetition of ball-tree construction. Moreover,
layers of interest are chosen to be very few (1 — 3), so the
number of parameters to jointly tune is very limited. The
choice of layers where support is constructed is not consid-
ered as a hyperparameter for optimization. If we consider
only output layer, then classifier will lack robustness against
adversarial perturbations as the neighborhood might already
be consistent with targeted class. If we consider only input
layer, then it might be computationally expensive due to data
dimensionality and in some cases we might lose some ro-
bustness as semantic similarity in input space might not be
well-represented by ¢,,-norms. Moreover, if neighborhood is
pure in or close to input layer and is also pure in or close
to final layer, and these neighbors are consistent, then the
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Figure 4: Effect of ¢ (0.001,0.017,0.237,3.162) on aug-
mented confusion metric with noise std. of 1.0.

benign/malign perturbation was not successful in leading to
misclassification or incorrect belief. Thus, a combination of
layer closer to input, where search is tractable, and layer
closer to output are considered. We will further justify this
choice with experimental results.

During the inference stage, a testing sample x is used with
the Epistemic classifier according to Algorithm 2. The acti-
vations due to the sample = from layers of interest I are
extracted. The Epistemic classifier finds the neighborhood
and support for the testing input  across the selected layers
based on the extracted activation values. This operation to
find support in layer ¢ is denoted by operator ¥, which uses
activation from test point I'; in layer ¢ and neighborhood op-
erator ;. Justification is then created using (2) with support
from layers of interest. This justification and belief is then
used to obtain justified belief.

Experiments and Discussion

In this section, we will first identify metrics for compari-
son and then describe experiments with our inferences and
insights from the results. We introduce the concept of aug-
mented confusion matrix (ACM) that consists of three sub-
matrices, where each sub-matrix is a confusion matrix for
predicted label versus true label under assertion of IK (top),
IMK (middle), and IDK (bottom). See Fig. 4 for examples
of ACM. Several robust generalization metrics can be de-
vised using this matrix. In this work, we will use coverage
or fraction of IK (F7g), accuracy over IK samples (A;x),
and accuracy over non-IK samples (A_ k).

To generate Fig. 4, the Epistemic classifier with a fully-
connected neural network is trained with data generated us-
ing make_blobs (bivariate Gaussian) from scikit-learn. We
use e-ball neighborhood with /5 distance metric and we use
ball-tree to conduct search. Given 4 distinct values of € on
log-scale, the results on test data is shown with ACM in
Fig. 4. It is noted that as value of ¢ is small (resp. large), we
have almost all assertions as IDK (resp. IMK). Moreover,
in general, the confusion matrix under small € for IDK and
that under large € for IMK is also similar. As € increases the
points in IDK region get assigned to IK and some to IMK
region. At higher values, points in IK region move to IMK
and finally at large € all points are assigned to IMK region.
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Figure 5: Effect of noise (¢ = 0.5, 1.0, 1.5) and overlap on metrics as a function of £

Nominal Gaussian Uniform Large-Noise

Frk Ak Aok | Frik Ak Aok | Fik Ak Ak | Fixk Ak Ak
Grid Base 0.661 0995 0.826 | 0.720 0.863 0.573 | 0.770 0.721 0.557 | 0.933 0.433 0.494
model: k-NN | 0.692 0.990 0.818 | 0.720 0.869 0.560 | 0.754 0.748 0.486 | 0.776 0.457 0.368
FC e-NN | 0.615 0992 0.850 | 0.532 0.858 0.696 | 0.331 0.738 0.656 | 0.001 0.750 0.437
(93.74) H-2 0.581 0995 0.858 | 0.494 0.878 0.688 | 0.301 0.757 0.651 | 0.001 0.750 0.437
Iris Base | 0.889 1.000 1.000 | 0.867 1.000 1.000 | 0.822 0.973 1.000 | 0.800 0.528 0.222
model: k-NN | 0.911 1.000 1.000 | 0.889 1.000 1.000 | 0.889 0.975 1.000 | 0.822 0.459 0.500
FC e-NN | 0.889 1.000 1.000 | 0.800 1.000 1.000 | 0.800 1.000 0.889 | 0.178 0.500 0.459
(100) H-2 0.889 1.000 1.000 | 0.800 1.000 1.000 | 0.800 1.000 0.889 | 0.178 0.500 0.459
Italy Base 0.897 0985 0.689 | 0.862 0.983 0.662 | 0.814 0956 0.665 | 0.796 0.712 0.548
model: k-NN | 0.909 0.981 0.691 | 0.864 0983 0.657 | 0.826 0.954 0.654 | 0.718 0.717 0.579
CNN e-NN | 0.894 0977 0.761 | 0.821 0.970 0.793 | 0.588 0.942 0.844 | 0.001 1.000 0.678
(95.40) H-2 0.856 0982 0.791 | 0.765 0.986 0.785 | 0.543 0957 0.836 | 0.001 1.000 0.678

Nominal Gaussian Uniform Adv-Noise

Frx Ak Aurx | Fik Ak Ak | Fik Ak Ak Frx Ak Aok
SynCon Base 0.907 0996 0.929 | 0.730 0.995 0.728 | 0.727 0977 0.756 | 0.243 0.562 0.577
model: k-NN | 0.907 1.000 0.893 | 0.733 0991 0.738 | 0.730 0.977 0.753 | 0.440 0.955 0.274
CNN e-NN | 0.897 1.000 0.903 | 0.493 0.980 0.868 | 0.433 0985 0.865 | 0.343 0942 0.381
(99.00) H-2 0.863 1.000 0.927 | 0.437 0.992 0.870 | 0.393 0983 0.874 | 0.307 0.957 0.404
MNIST Base 0.622 0998 0.899 | 0.424 0.988 0.738 | 0.306 0.888 0.491 | 0.851 0.026 0.011
model: k-NN | 0.671 0.999 0.881 | 0.449 0996 0.720 | 0.234 0.976 0.501 0.222 0.028 0.023
FC e-NN | 0.590 0.997 0.907 | 0.371 0.982 0.763 | 0.108 0.901 0.577 | 0.000 0.000 0.024
(96.03) H-2 0.495 0999 0922 | 0.279 0.997 0.785 | 0.071 0982 0.584 | 0.000 0.000 0.024
GTSRB Base 0466 1.000 0.952 | 0.475 1.000 0913 | 0485 1.000 0.833 | 0.631 0.064 0.112
model: k-NN | 0.595 1.000 0936 | 0.574 1.000 0.892 | 0.535 0.999 0.816 | 0.414 0.099 0.069
CNN e-NN | 0488 0.999 0950 | 0.488 0.998 0912 | 0.485 0.996 0.837 | 0.140 0.015 0.092
97.41) H-2 0.377 1.000 0.959 | 0.373 1.000 0927 | 0.359 1.000 0.865 | 0.102 0.018 0.089

Table 1: Results on feature-based (Grid Stability and Iris), time-series (Italy Power and SynCon), as well as image (MNIST and
GTSRB) datasets. Base model test accuracy on nominal data is provided in the first column.

In Fig. 5, we conduct an experiment with similar setup but
now study variation due to extent of overlap. Irrespective of
choice of parameters, we should not be able to provide relia-
bility for inputs coming from region that has overlap, but we
should be able to characterize that region of confusion. Here
we show the scatter plot of complete dataset and variation
in accuracy of IK (A;g) and fraction of IK (F7x) metrics
with choice of €. Note that maximum value of F; g reduces
as overlap increases implying that region where reliable pre-
dictions can be made has reduced, e.g. Frx ~ 1.00, when
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noise std. o = 0.5 and Fjx =~ 0.44, when noise std. is 1.5.

We then conducted experiments using Grid Stabil-
ity (Arzamasov, Bohm, and Jochem 2018) and Iris dataset
from UCI Repository (Dua and Graff 2017), Italy Power De-
mand classification (Keogh et al. 2006) and Synthetic Con-
trol (SynCon) dataset (Alcock, Manolopoulos, and others
1999) from UCR Time-series Repository (Chen et al. 2015),
MNIST image dataset (LeCun 1998), and German Traffic
Sign Recognition Benchmark (GTSRB) dataset (Stallkamp
et al. 2012) to test prediction reliability under various pertur-



bations for different baseline models. We used convolutional
neural networks (CNN) for Italy Power, SynCon, and GT-
SRB datasets and for other datasets we used fully-connected
(FC) neural networks as base classifiers. After generating
these base classifers, we build Epistemic classifiers using
Algorithm 1. We show performance of the Epistemic classi-
fier on normal holdout testing data as well as on test datasets
with perturbations. In top part of Table 1, we consider Gaus-
sian noise, uniform noise, and large uniform noise to cre-
ate rubbish and highly overlapping examples. In bottom part
of Table 1, we consider Gaussian noise, uniform noise, and
adversarial perturbation using Basic Iterative Method (Ku-
rakin, Goodfellow, and Bengio 2016) from Adversarial Ro-
bustness Toolbox (Nicolae et al. 2018). Details of individual
datasets, base model architectures, and perturbation magni-
tudes are reported in Supplementary material (S2) in (Virani,
Iyer, and Yang 2019). The baseline approach for comparison
uses a calibrated threshold over softmax layer output that al-
lows to abstain when the maximum of softmax layer values
is below a certain threshold. To make the comparison fair,
we first determine the optimal € for e-NN neighborhood op-
erator, where F7 is maximized. We tune the parameters for
our baseline and £-NN support such that they have the sim-
ilar coverage as e-ball support, then we make comparison in
the table to compare accuracy and performance under nom-
inal data and various perturbations.

Few insights from Table 1 are discussed next. Softmax
thresholding baseline performs well on zero-mean small per-
turbations and is comparable to performance with k-NN
neighborhood operator. However, specifically consider Grid,
MNIST, and GTSRB dataset, under large uniform noise and
adversarial perturbation cases, where distance to hyperplane
and location of other data points would start to differ, we see
that baseline has high fraction of IK but very poor accuracy
on IK. Under these cases, ideal solution is to have high F7x
and high Ajx for adversarial robustness or at least be able to
assert IDK and get very low Fx for detection of malicious
perturbations. This is true for e-NN and H-2 neighborhood
operator as highlighted in bold. Note that accuracy metric
for large perturbation does not matter as the test samples are
more likely to be rubbish examples in vicinity of the wrong
class. The results also highlight that e-NN and H-2 cases
have lower coverage than k-NN in all cases, however it has
superior reliability under large perturbations. The results for
H-1 support are similar to k-NN operator (see Supplemen-
tary material in (Virani, Iyer, and Yang 2019)). In Supple-
mentary material (S3), we have provided additional results
where we consider neighborhood only in logit layer as well
as in logit and intermediate layers together. Like baseline,
support in only logit layer has good coverage, but lacks ro-
bustness under perturbations, thus gathering support from at
least two layers is preferable. Although, the metrics in Ta-
ble 1 denote ability of developed approach to provide indi-
vidual reliability in scenarios of extrapolation (i.e. anomaly
detection) and overlap, additional outcomes showing ability
to characterize overlap between subset of classes are omitted
due to space restrictions.

This paper deals with the reliability due to observabil-
ity and noise. While BIM-based adversarial attacks have
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been considered, we have explored other inference-time and
backdoor attacks as well. A detailed treatment of adversarial
robustness is being planned for a follow-on paper.

Challenges and Limitations

We identify 5 primary challenges related to the proposed
approach. Firstly, large dimensionality of input and embed-
ded space in early layers results in the ball-tree search algo-
rithm to be computationally expensive for large early convo-
lutional layers of state-of-the-art models. Locality-sensitive
hashing (Slaney and Casey 2008) and other approximate
neighbor search approaches (Andoni and Indyk 2006) can be
used to alleviate these issues. Secondly, number of training
data points, i.e., | X| leads to O(log|X]|) average case com-
plexity for search and O(|X|) for space, which becomes of
concern for large datasets. Thirdly, a more crucial challenge
is the closeness of semantic distance between points and the
mathematically-convenient /5-norm distance metric in input
and early layers. The closeness of these metrics increases
as we go deeper in the network, since neural network train-
ing is expected to bring data points from same classes closer
to enable linear separation, however in input and initial lay-
ers this closeness is usually not available. Fourthly, sparsity
of data in neighborhood either due to high dimensionality or
low sample size will also adversely affect the performance of
this classifier. Finally, the current approach is suited only for
neural networks, a model-agnostic approach using suitable
input representation and output with Platt scaling (Platt and
others 1999) will be explored for other ML models. These
challenges will be further explored in near future.

Conclusion

In this work, we have introduced a novel approach to provide
individual reliability of predictions from ML models. We
leveraged the notion of Knowledge as Justified Belief from
the field of epistemology to create Epistemic classifiers in
ML. Epistemic classifier adds more contextual information
based on location of training data points in input and hid-
den layers to add reliability on individual predictions, wher-
ever plausible. We also introduced various domain-agnostic
neighborhood operators which are used to gather evidence
to construct justification that has utility for example-based
explanations (Molnar 2019) for model interpretability. We
analyzed the effect of parameter choices, noise in training
dataset, and benign/malign perturbations on performance,
where performance was reported using new metrics relevant
to the epistemic analysis. We contrasted the performance of
Epistemic classifiers with a baseline of thresholding softmax
layer values and demonstrated superiority in robustness. The
results were demonstrated on simulated and real datasets
with few features, time-series data, and image data to show
flexibility of the solution. Finally, key limitations were high-
lighted which will pave the way for future research.
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