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Abstract

This paper presents a variational Bayesian kernel selection
(VBKS) algorithm for sparse Gaussian process regression
(SGPR) models. In contrast to existing GP kernel selection
algorithms that aim to select only one kernel with the high-
est model evidence, our VBKS algorithm considers the ker-
nel as a random variable and learns its belief from data such
that the uncertainty of the kernel can be interpreted and ex-
ploited to avoid overconfident GP predictions. To achieve
this, we represent the probabilistic kernel as an additional
variational variable in a variational inference (VI) framework
for SGPR models where its posterior belief is learned to-
gether with that of the other variational variables (i.e., induc-
ing variables and kernel hyperparameters). In particular, we
transform the discrete kernel belief into a continuous para-
metric distribution via reparameterization in order to apply
VI. Though it is computationally challenging to jointly op-
timize a large number of hyperparameters due to many ker-
nels being evaluated simultaneously by our VBKS algorithm,
we show that the variational lower bound of the log-marginal
likelihood can be decomposed into an additive form such
that each additive term depends only on a disjoint subset of
the variational variables and can thus be optimized indepen-
dently. Stochastic optimization is then used to maximize the
variational lower bound by iteratively improving the varia-
tional approximation of the exact posterior belief via stochas-
tic gradient ascent, which incurs constant time per iteration
and hence scales to big data. We empirically evaluate the per-
formance of our VBKS algorithm on synthetic and massive
real-world datasets.

1 Introduction

A Gaussian process regression (GPR) model is a kernel-
based Bayesian nonparametric model that represents the cor-
relation/similarity of the data using a kernel for perform-
ing nonlinear probabilistic regression. A limitation of such a
full-rank GPR model is its poor scalability to big data since
computing its predictive belief and learning the kernel hy-
perparameters incur cubic time in the data size. To over-
come this limitation, a number of sparse GPR (SGPR) mod-
els have been proposed (Chen et al. 2012; 2013; 2015; Gal
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and Turner 2015; Hensman et al. 2015; Hoang, Hoang, and
Low 2015; 2016; 2017; Lázaro-Gredilla et al. 2010; Low et
al. 2015a; 2015b; Quiñonero-Candela and Rasmussen 2005;
Titsias 2009; Titsias and Lázaro-Gredilla 2013; Xu et al.
2014; Yu et al. 2019b). These SGPR models exploit a small
set of inducing variables or a spectral representation of the
kernel to derive a low-rank GP approximation for achieving
scalable training and prediction to big data.

All the SGPR models mentioned above are either de-
signed only for the widely-used squared exponential (SE)
kernel (Titsias and Lázaro-Gredilla 2013; Yu et al. 2019b)
or assume the kernel type to be specified by the user a pri-
ori. However, in the era of big data, it has become all but
impossible for non-experts to manually select an appropriate
kernel for a GP model since the underlying correlation struc-
tures of massive datasets are usually too complex to be cap-
tured by the commonly-used base kernels (e.g., SE and peri-
odic kernels). Such an issue can be resolved by kernel selec-
tion algorithms (Duvenaud et al. 2013; Kim and Teh 2018;
Lu et al. 2018; Malkomes, Schaff, and Garnett 2016) which
are designed to automatically find a kernel with the high-
est model evidence (e.g., marginal likelihood, Bayesian in-
formation criterion) given a dataset. These algorithms have
demonstrated success in improving the GP predictive perfor-
mance over that of using the manually specified kernel. But,
selecting only one kernel with the highest model evidence
and ignoring the uncertainty of it being the true kernel may
result in overconfident predictions, especially if other ker-
nels yield similar model evidences (Hoeting et al. 1999).
This motivates the need to design and develop a Bayesian
kernel selection (BKS) algorithm that, instead of searching
for the best kernel, considers the kernel as a random variable
defined over a kernel space and learns a belief of the proba-
bilistic kernel from data such that the uncertainty of the ker-
nel can be interpreted and exploited to avoid overconfident
GP predictions, which is the focus of our work here.

Most existing BKS algorithms for GP models approx-
imate the kernels using their spectral density representa-
tion and thus only work for stationary kernels (Benton et
al. 2019; Oliva et al. 2016; Wilson and Adams 2013). The
BKS algorithm of Malkomes and Garnett (2015) caters to
any kernel but is designed for the full-rank GPR model
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only. So, its approach of updating the kernel belief scales
poorly in the data size. This paper presents a variational BKS
(VBKS) algorithm for SGPR models without any stationary
assumption on the kernels. In particular, we represent the
probabilistic kernel as an additional variational variable in
a variational inference (VI) framework for the SGPR mod-
els where its posterior belief is learned together with that
of the other variational variables (i.e., inducing variables
and hyperparameters) by minimizing the Kullback-Leibler
(KL) divergence between a variational approximation and
their exact posterior belief or, equivalently, maximizing a
variational lower bound of the log-marginal likelihood (Sec-
tion 3). Unfortunately, the existing variational SGPR mod-
els (Hensman et al. 2015; Hoang, Hoang, and Low 2015;
2016; Titsias 2009; Titsias and Lázaro-Gredilla 2013; Yu et
al. 2019b) cannot be straightforwardly used by our VBKS
algorithm since (a) they commonly use continuous distri-
butions (e.g., normal distribution) that cannot directly ac-
commodate the discrete kernel belief involving further con-
straints, and (b) the VBKS algorithm has to jointly learn
the posterior belief of a large number of hyperparameters
from big data as many kernels of different types are evalu-
ated simultaneously, which is computationally more expen-
sive than approximating the posterior belief of hyperparam-
eters for only one specified kernel.

To address the above challenges, we first reparameterize
the discrete kernel belief using variational variables to a con-
tinuous parametric distribution (Section 3) and then decom-
pose the variational lower bound into an additive form such
that each additive term depends only on a disjoint subset
of the variational variables and can thus be maximized in-
dependently (Section 4). To maximize the variational lower
bound, stochastic optimization is used to iteratively improve
the variational approximation of the exact posterior belief
via stochastic gradient ascent where the stochastic gradient
is estimated by first sampling from the variational distribu-
tions and then from the observed data (Section 4.1). The for-
mer sampling step makes the gradient estimation applica-
ble to any differentiable kernel function in the kernel space
(rather than only the SE kernel adopted in the works of Tit-
sias and Lázaro-Gredilla (2013) and Yu et al. (2019b)) while
the latter step enables our VBKS algorithm to incur con-
stant time per iteration and hence scale to big data. Conse-
quently, the kernel posterior belief can be updated as and
when more training data is used, which makes it possible to
perform BKS without using the full massive dataset and thus
achieve competitive predictive performance fast. We empir-
ically evaluate the performance of our VBKS algorithm on
synthetic and two massive real-world datasets.

2 Background and Notations

2.1 Gaussian Process Regression (GPR)

Let X denote a d-dimensional input domain such that each
input vector x ∈ X is associated with a noisy output
y(x) � f(x) + ε observed from corrupting the function f
evaluated at x by an additive noise ε ∼ N (0, σ2

n) where
σ2
n is the noise variance. Let {f(x)}x∈X denote a Gaus-

sian process (GP), that is, every finite subset of {f(x)}x∈X

follows a multivariate Gaussian distribution. Such a GP is
fully specified by its prior mean E[f(x)] and covariance
k(x,x′) � cov[f(x), f(x′)] for all x,x′ ∈ X , the latter of
which is usually defined by one of the widely-used kernels
(e.g., squared exponential (SE), periodic (PER)) with a vec-
tor of hyperparameters θk. In this paper, E[f(x)] is assumed
to be zero and f(x; k) is used to denote a function f(x) with
GP prior covariance k(x,x′) for notational simplicity.

Supposing a column vector yD � (y(x))�x∈D of noisy
outputs are observed by evaluating function f at a set D ⊂
X of training inputs, a full-rank GPR model can perform
probabilistic regression by providing a GP predictive belief
p(f(x∗)|yD) � N (μx∗|D, σ

2
x∗|D) for any test input x∗ ∈ X

with the following posterior mean and variance:

μx∗|D � Σx∗D(ΣDD + σ2
nI)

−1yD

σ2
x∗|D � k(x∗,x∗)− Σx∗D(ΣDD + σ2

nI)
−1ΣDx∗

(1)

where Σx∗D � (k(x∗,x))x∈D, ΣDD � (k(x,x′))x,x′∈D,
and ΣDx∗ � Σ�

x∗D. Due to the inversion of ΣDD + σ2
nI ,

computing the above predictive belief incurs O(|D|3) time
and thus scales poorly in the size |D| of observed data.

2.2 Sparse Gaussian Process Regression (SGPR)

To improve the scalability of the GP model, a number of
SGPR models have been proposed. These SGPR models ex-
ploit a vector uk � {f(x; k)}x∈U of inducing variables1 for
a small set U ⊂ X of inducing inputs (i.e., |U| � |D|) for
approximating the GP predictive belief:

p(f(x∗)|yD) =

∫
p(f(x∗)|α,yD) p(α|yD) dα

≈
∫

q(f(x∗)|α,yD) q(α) dα
(2)

where α is a vector of variables that can be set as ei-
ther α � uk (i.e., θk is assumed to be a point estimate)
(Hoang, Hoang, and Low 2015; 2016; Quiñonero-Candela
and Rasmussen 2005; Titsias 2009) or α � vec(uk,θk)
(Hensman et al. 2015; Titsias and Lázaro-Gredilla 2013;
Yu et al. 2019b). Variational inference has been used to de-
rive q(α) by minimizing the KL divergence between q(α)
and the exact posterior belief p(α|yD). Various conditional
independence assumptions of f(x∗) and yD given α have
been imposed for computing q(f(x∗)|α,yD), which result
in different sparse GP approximations (Hoang, Hoang, and
Low 2015; 2016; Quiñonero-Candela and Rasmussen 2005).

2.3 Automatic Kernel Selection

All the GPR and SGPR models mentioned above assume the
kernel type k(x,x′) to be specified by the user and learn uk

and θk from the data. However, the kernel choice is criti-
cal to the performance of the (sparse) GP models since var-
ious kernel types can capture different underlying correla-
tion structures of the data (see Chapter 4 in (Rasmussen and

1Let uk denote a vector of inducing variables whose prior co-
variance is computed using the kernel function k(x,x′).
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Williams 2006) for a detailed discussion of various kernels).
Let K be a set of candidate kernels (e.g., SE, PER). The au-
tomatic kernel selection algorithms (Duvenaud et al. 2013;
Kim and Teh 2018; Lloyd et al. 2014; Lu et al. 2018;
Malkomes, Schaff, and Garnett 2016) aim to automatically
find a kernel k ∈ K with the highest model evidence
(e.g., marginal likelihood, Bayesian information criterion).
Since the sum or product of two valid kernels (i.e., positive
semidefinite kernels that define valid covariance functions)
is still a valid covariance function, the kernel space K can be
constructed by repeatedly applying the following composi-
tion rules:

k3(x,x
′) = k1(x,x

′) + k2(x,x
′)

k4(x,x
′) = k1(x,x

′)× k2(x,x
′)

where k1 and k2 can be either one of the base kernels (i.e.,
SE, PER, linear (LIN), and rational-quadratic (RQ)) or a
composite kernel (Duvenaud et al. 2013).

3 Variational Bayesian Kernel Selection

(VBKS) for SGPR Models

As mentioned in Section 1, most existing kernel selection al-
gorithms aim to find only one kernel k ∈ K with the highest
model evidence (Duvenaud et al. 2013; Kim and Teh 2018;
Lloyd et al. 2014; Lu et al. 2018; Malkomes, Schaff, and
Garnett 2016). However, if several kernels achieve similar
model evidences, ignoring the uncertainty among the ker-
nels and selecting only one kernel with the highest model
evidence may result in overconfident inferences/predictions
or overfitting, especially if some composite kernel structures
in the kernel space are complex. To resolve this issue, the
Bayesian kernel selection (BKS) problem considers k as a
random variable and introduces a kernel belief p(k) over k.
Then, the GP predictive belief (2) has to consider an addi-
tional variable k of the kernel, which yields

p(f(x∗)|yD) = Ep(fD,α,k|yD)[p(f(x∗)|fD,α, k)] (3)

where α � vec(uk,θk), fD � (f(x))�x∈D, and uk and θk

still, respectively, denote the vectors of inducing variables
and hyperparameters of kernel k to ease notations, even
though k is now probabilistic. The exact definitions of uk,
θk, and p(k) will be introduced later. Next, the key issue is to
approximate the intractable posterior belief p(fD,α, k|yD)
in (3) such that the GP predictive belief p(f(x∗)|yD) can
be computed analytically and efficiently. To achieve this, the
active structure discovery algorithm of Malkomes and Gar-
nett (2015) has proposed to approximate p(θk|yD, k) and
p(yD|k) via Laplace approximation such that the posterior
belief of the kernel p(k|yD) can be computed by applying
Bayes’ rule. However, such a BKS algorithm is designed for
the full-rank GPR model only. So, it still incurs O(|D|3)
time and scales poorly in the size |D| of observed data.

To scale BKS of GP models to big data, we propose to
approximate the posterior belief p(fD,α, k|yD) in (3) via
variational inference (VI) for SGPR models, which we call
variational BKS (VBKS)2. In particular, the intractable pos-
terior belief p(fD,α, k|yD) in (3) can be approximated with

2Though our proposed VBKS algorithm performs Bayesian

a variational distribution:

q(fD,α, k) � p(fD|α, k) q(α) q(k) (4)

by minimizing the KL divergence between q(fD,α, k) and
the exact posterior belief p(fD,α, k|yD). The variational ap-
proximation in (4) is similar to those used by existing VI
frameworks of SGPR models (Titsias and Lázaro-Gredilla
2013; Yu et al. 2019b) except that an additional term q(k)
is included due to the probabilistic kernel k whose posterior
belief needs to be learned from data together with that of α.
We will consider a finite kernel space K and hence a discrete
distribution over k in our work here.

Let K � {ki}Ki=1 be a set of kernels where each ki
represents a kernel which can either be the base kernel or
the composite kernel, as described in Section 2.3. The ker-
nel belief p(k) can be defined as a vector p � (pi)

K
i=1

where pi � p(k = ki) for i = 1, . . . ,K. Similarly, the
variational distribution q(k) can be represented by a vector
q � (qi)

K
i=1 of variational parameters where qi � q(k = ki)

for i = 1, . . . ,K. Then, the objective of VBKS is to mini-
mize KL[q(fD,α, k)‖p(fD,α, k|yD)] w.r.t. q and the varia-
tional parameters of q(α) with the following constraints:

0 ≤ qi ≤ 1 for i = 1, . . . ,K, and
∑K

i=1 qi = 1 .

A commonly-used method to solve such a constrained opti-
mization problem is to convert it to that of unconstrained
optimization via some tricks (e.g., substitution, Lagrange
multiplier). In this work, we achieve this by introducing a
K-dimensional vector of continuous variables g ∈ R

K and
reparameterizing pi using

p(ki|g) � exp(gi)/
∑K

j=1 exp(gj)

where gi is the i-th element of g. Then, let the variational
distribution q(k) � p(k|g) q(g). The above-mentioned con-
strained optimization problem is transformed to that of mini-
mizing KL[q(fD,α, k,g)‖p(fD,α, k,g|yD)] w.r.t. the vari-
ational parameters (i.e., detailed later) of q(α) and q(g)
without any constraints. An additional benefit of introduc-
ing g as a vector of variational variables is that we can then
place parametric multivariate distributions on p(g) and q(g)
such that the prior knowledge of the kernel set can be in-
cluded in p(g) and the true correlations between different
kernels can be learned from data by learning the covariance
parameters of q(g), which is useful in interpreting the rela-
tionship between kernels (e.g., a high correlation between gi
and gj can be interpreted as a high similarity between ki and
kj with potentially similar learning performances).

Then, minimizing KL[q(fD,α, k,g)‖p(fD,α, k,g|yD)]
is equivalent to maximizing a variational evidence lower
bound (ELBO):

L(q) �Eq(fD,α,k,g) [log p(yD | fD)]
− KL [q(fD,α, k,g)‖p(fD,α, k,g)]

(5)

since the log marginal likelihood log p(yD) = L(q) +
KL[q(fD,α, k,g)‖p(fD,α, k,g|yD)] is a constant. The

kernel inference instead of “selecting” a specific kernel(s), we call
it “kernel selection” to be consistent with the Bayesian model se-
lection framework (Rasmussen and Williams 2006).
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Figure 1: Graphical model of our SGPR model with the
probabilistic kernel.

derivation of (5) is in (Teng et al. 2020). Unfortunately, the
evaluation of L(q) is intractable since it contains the inverse
of the prior covariance matrix of the inducing variables uk

which depends on θk but cannot be analytically integrated
over θk. Some works (Titsias and Lázaro-Gredilla 2013;
Yu et al. 2019b) have resolved this issue by introducing a
standardized kernel and reparameterizing the prior covari-
ance matrix such that its inversion does not depend on the
hyperparameters. However, such a reparameterization trick
cannot be applied to our work here since the standardized
kernel is only defined for the SE kernel and cannot be gen-
eralized to cater to the other kernels, especially the compos-
ite ones. The doubly stochastic VI framework of Titsias and
Lázaro-Gredilla (2014) has proposed to generalize the op-
timization of L(q) to any differentiable kernel function by
sampling from the variational distribution, which cannot be
straightforwardly used to optimize L(q) in VBKS since it is
designed for GP models with only one kernel and does not
consider the scalability in K when many kernels have to be
evaluated simultaneously. Next, a scalable stochastic opti-
mization method for VBKS will be introduced to circumvent
the above-mentioned issues.

4 Scalable Stochastic Optimization for VBKS

Let θk � (θi)
K
i=1 and uk � (ui)

K
i=1 where θi are the

hyperparameters of kernel ki and ui � (f(x; ki))x∈U is
a vector of inducing variables whose prior covariance is
computed using kernel ki. Optimizing L(q) jointly w.r.t. θk

and uk is computationally challenging since they are both
high-dimensional, especially if K is large. To improve the
scalability of the optimization in K, we assume that (a)
αi � vec(ui,θi) for i = 1, . . . ,K are independent and
also independent of k and g, and (b) fD is conditionally in-
dependent of g given k. Then,

p(fD,α, k,g) = p(fD|α, k) p(k|g) p(g)
∏K

i=1 p(αi).
(6)

The graphical model in Fig. 1 shows the relationship be-
tween the variables of our SGPR model with the probabilis-
tic kernel. Let the variational distribution be factorized as

q(fD,α, k,g) = p(fD|α, k) p(k|g) q(g)
∏K

i=1 q(αi)
(7)

where p(fD|α, k) and p(k|g) are the exact posterior beliefs
of fD and k. The ELBO L(q) in (5) can be decomposed as

L(q) = Eq(g)

[
K∑
i=1

p (ki|g)Li(q)

]
− KL [q(g)‖p(g)] (8)

where

Li(q) � Eq(αi)p(fD|αi,ki)[log p(yD|fD)]− KL[q(αi)||p(αi)]

(9)
includes only the variational variables αi and is thus called
a local ELBO. The derivation of (8) is in (Teng et al. 2020).
Interestingly, to maximize (8), we can maximize each local
ELBO Li(q) over q(αi) independently for i = 1, ...,K and
then maximize (8) over q(g) since p(ki|g) ≥ 0 and Li(q)
is independent of g and the variational variables of Lj(q)
for j 
= i, which makes the optimization of L(q) incur linear
time in the kernel size K and thus easily parallelizable. Next,
we will discuss how to maximize L(q) and each Li(q) via
stochastic gradient ascent, which incurs only constant time
per iteration and hence makes our VBKS algorithm scale
well to big data.

4.1 Stochastic Optimization

In this section, we will first discuss the optimization of the
local ELBOs Li(q) for i = 1, . . . ,K and then the optimiza-
tion of L(q) via stochastic gradient ascent (SGA).

Optimizing the local ELBOs. To optimize Li(q) via
stochastic optimization, we reparameterize the variational
variables ui and θi by assuming that they are affine trans-
formations of a vector of variables which follow a standard
distribution. In particular, let ui � Cui

ηui
+mui

and θi �
Cθiηθi

+ mθi where Φi � vec(Cui ,mui ,Cθi ,mθi) are
variational parameters that are independent of ui and θi, and
ηi � vec(ηui

,ηθi
) follows a standard multivariate Gaus-

sian distribution3: q(ηi) ≈ p(ηi|yD) � N (ηi;0, I). We can
factorize the variational distribution q(αi) � q(ui,θi) =
q(ui) q(θi) and obtain

q(αi) = N (ui|mui
,Σui

) N (θi|mθi
,Σθi

) (10)

where Σui � CuiC
�
ui

and Σθi � CθiC
�
θi

. Then, the gradi-
ent of the local ELBOs can be computed with respect to the
variational parameters Φi using

∇ΦiLi =Eq(ηi)

[
∇ΦiEp(fD|αi,ki)[log p(yD|fD)]

]
−∇Φi

KL[q(αi)||p(αi)]
(11)

The derivation of (11) can be obtained by applying the re-
sults in Appendix D of Hoang, Hoang, and Low (2017).
Note that the reparameterization trick introduced above is
used to make the first expectation operator Eq(ηi)

in (11)
independent of the variational parameters Φi such that the
gradient operator can be moved inside the first expectation

3We use the widely-used standard multivariate Gaussian distri-
bution as an example here. Similar to doubly stochastic VI (Titsias
and Lázaro-Gredilla 2014), q(ηi) can be any standard continuous
density function which yields a different q(αi).
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over ηi ∼ q(ηi). Otherwise, if we assume (10) and opti-
mize each Li in (9) directly w.r.t. the variational parameters
Φ′

i � vec(mui
,Σui

,mθi
,Σθi

), then the gradient operator
cannot be moved into the first expectation in (9) since Eq(αi)

depends on Φ′
i, which makes the estimation of the gradient

∇Φ′
i
Li non-trivial.

Given (11), the gradient of Li w.r.t. Φi can be ap-
proximated by sampling ηi ∼ q(ηi), as detailed
in (Teng et al. 2020). Unfortunately, the approxima-
tion of (11) is still computationally expensive for mas-
sive (e.g., million-sized) datasets since the estimation of
∇ΦiEp(fD|αi,ki)[log p(yD|fD)] incurs linear time in the data
size |D| per SGA update. To resolve this issue, we exploit
the deterministic training conditional (DTC) assumption of
conditional independence among f(x) for x ∈ D given the
inducing variables for deriving

∇Φi
Ep(fD|αi,ki)[log p(yD|fD)]

= ∇ΦiEp(fD|αi,ki)[
∑

x∈D log p(y(x)|f(x))]
=

∑
x∈D ∇Φi

Ep(f(x)|αi,ki) [log p(y(x)|f(x))] .
(12)

Then, we can obtain an unbiased stochastic gradient estimate
of Li w.r.t. Φi by uniformly sampling a mini-batch y

˜D of the
observed data where D̃ ⊆ D and the (fixed) batch size |D̃|
is much smaller than |D|. As a result, the SGA update of Φi

incurs only constant time per iteration.

Optimizing L(q) w.r.t. q(g). The optimization of L(q)
can be performed by applying similar reparameterization
trick and SGA. Specifically, let L∗

i be the maximal local
ELBO achieved using the above SGA and g � Cgηg +mg

with q(ηg) � N (ηg;0, I). The gradient of L(q) can be de-
rived in the same manner as that of (11):

∇ΦgL = Eq(ηg)

[
K∑
i=1

L∗
i∇Φgp (ki|g)

]
−∇ΦgKL [q(g)‖p(g)]

where Φg � vec(Cg,mg). Then, the variational parame-
ters Φg can also be updated via SGA by approximating the
expectation operator in ∇ΦgL from sampling ηg ∼ q(ηg).

5 Kernel Posterior Belief and Predictive

Belief of SGPR Model

The optimized variational parameters Φ∗
g and {Φ∗

i }Ki=1 can
be computed from the above-mentioned stochastic optimiza-
tion and used to induce the optimal variational distributions
q∗(g) and q∗(αi) for i = 1, . . . ,K via (10). Then, the pos-
terior belief of the probabilistic kernel can be approximated
by Monte Carlo (MC) sampling:

p(k|yD) ≈ q∗(k) = Eq∗(g)[p(k|g)] ≈
1

S

S∑
s=1

p(k|g(s))

(13)
where g(1), . . . ,g(S) are i.i.d. samples from q∗(g). Such an
approximated kernel posterior belief is a discrete distribu-
tion where each q∗(ki) ∈ [0, 1] for i = 1, . . . ,K can be (a)

easily interpreted to identify the “best” kernel whose pos-
terior probability is much larger than that of the other ker-
nels, and (b) exploited to avoid overconfident predictions by
Bayesian model averaging, as will be shown in Section 6.

Recall from Section 3 that we approximate the poste-
rior belief p(fD,α, k,g|yD) using the variational distribu-
tion for computing the predictive belief p(f(x∗)|yD). Given
the optimal variational distributions q∗(g) and q∗(αi) for
i = 1, . . . ,K, the predictive belief in (3) can be approxi-
mated using

p(f(x∗)|yD) ≈
K∑
i=1

q∗(ki)

∫
p(f(x∗)|αi, ki) q

∗(αi) dαi

(14)
which yields the following approximated predictive mean
and variance for p(f(x∗)|yD):

μx∗|D ≈
∑K

i=1
q∗(ki) μ〈x∗,i〉

σ2
x∗|D ≈

∑K

i=1
q∗(ki)(σ

2
〈x∗,i〉 + μ2

〈x∗,i〉)− μ2
x∗|D

(15)

where μ〈x∗,i〉 and σ2
〈x∗,i〉 are the predictive mean and vari-

ance of
∫
p(f(x∗)|αi, ki) q

∗(αi) dαi approximated by MC
sampling. The derivations of (14), (15), and the steps for
computing μ〈x∗,i〉 and σ2

〈x∗,i〉 are in (Teng et al. 2020).
As can be seen from (15), the time incurred to compute

the predictive mean and variance is linear in the kernel size
K, which is still expensive for GP prediction if K is large.
To overcome this issue, we can consider constructing a much
smaller kernel set K̃ ⊂ K including only the kernels with
top-ranked posterior probabilities. Then, a new kernel pos-
terior belief over K̃ can be easily computed by optimizing
a new ELBO L̃(q) constructed from reusing the optimized
local ELBOs of the kernels in K̃. As a result, the GP predic-
tion can incur less time by pruning away kernels with low
posterior probabilities while still maintaining the kernel un-
certainty to avoid overconfident predictions.

In addition, one may notice that the GP predictive be-
lief with the probabilistic kernel in (14) is in fact perform-
ing Bayesian model averaging (BMA) (Hoeting et al. 1999)
over multiple GP models, each of which considers only one
kernel ki. Though it may seem straightforward to use BMA
for GP prediction when multiple kernels are considered, our
VBKS algorithm provides a principled way of doing so by
deriving (14) from (3) using the VI framework and can scale
the GP inference with the probabilistic kernel to big data,
which is the main contribution of our work here.

6 Experiments and Discussion

This section empirically evaluates the performance of our
VBKS algorithm on two small synthetic datasets and two
massive real-world datasets. The kernel posterior belief is
computed using (13) with S = 2000. The real-world ex-
periments are performed on a Linux system with 5 Nvidia
GeForce GTX 1080 GPUs. Stochastic optimization for
VBKS is performed in a distributed manner over the 5 GPUs
using GPflow (Matthews et al. 2017).
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Figure 2: Graphs of kernel posterior belief achieved by
VBKS vs. proportion of data used in stochastic optimiza-
tion for two synthetic datasets with (a-b) kernel set K12 and
(c-d) kernel set K144. The ‘s’, ‘r’, ‘p’, and ‘l’ in the legend
denote SE, RQ, PER, and LIN kernels, respectively.

6.1 Synthetic Experiments

We will first demonstrate the performance of our VBKS al-
gorithm in identifying kernel(s) that can capture the under-
lying correlation structure of two synthetic datasets. These
two synthetic datasets are generated using the respective true
composite kernels PER×LIN×RQ and (PER+RQ)×LIN
with fixed hyperparameters (Teng et al. 2020). We set the in-
put dimension as d � 1 and input domain as X � [−10, 10].
A set D0 of 256 inputs are randomly sampled from X and
their corresponding outputs yD0

are sampled from a full-
rank GP prior. Then, we sample another set D1 of 1000
inputs from X , compute their predictive mean μD1|D0

�
(μx∗|D0

)x∗∈D1
via (1), and use (D1,μD1|D0

) as the syn-
thetic dataset. In all the synthetic experiments, we use |U| =
16 inducing inputs and a batch size |D̃| = 32 to perform the
SGA update per iteration. Two kernel sets |K12| = 12 and
|K144| = 144 are used to evaluate the performance of our
VBKS algorithm where K144 contains kernels constructed
from the base kernels (i.e., SE, RQ, LIN, PER) by applying
the grammar rules of Duvenaud et al. (2013) until level 3
while K12 includes 10 kernels randomly sampled from K144

and the two true kernels, as shown in (Teng et al. 2020).
The small kernel set K12 is constructed such that the poste-
rior probabilities of all the kernels in the kernel space can be
easily observed and visualized.

Figs. 2a and 2b show the kernel posterior belief over K12

that is produced by our VBKS algorithm. Figs. 2c and 2d
include only the kernels whose posterior probabilities have
ever been ranked as the top two among K144 during stochas-
tic optimization for VBKS. It can be observed in all the ex-
periments that the posterior probability of the true kernel is
small at the beginning and, with a growing data size, is in-
creased by our VBKS algorithm to be around 0.8 which is

much larger than that of the other kernels. Though the SGPR
model used by our VBKS algorithm produces a low-rank
approximation of the true covariance structure of the data
using a small set of inducing variables, our algorithm can
find the kernel that correctly interprets the underlying corre-
lation structure. It can be observed from Figs. 2a and 2b that
the kernel uncertainty is large (i.e., no kernel has a much
larger posterior probability than the others) when less than
half of the data is used in these experiments. In such cases,
the high kernel uncertainty shows that the current observed
data is insufficient in identifying a single kernel that fits the
true correlation structure much better than the other kernels.
This implies the need to collect more data (as has been done
in the experiments) or perform GP prediction with the kernel
uncertainty.

6.2 Real-World Experiments

This section empirically evaluates the performance and time
efficiency of our VBKS algorithm on two massive real-
world datasets: (a) Swissgrid dataset4 contains 210, 336
records of the total energy consumed by end users in the
Swiss control block from January 1, 2009 to December 31,
2015 in every 15 minutes, and (b) indoor environmental
quality (IEQ) dataset5 contains temperature (◦C) taken in
every 31 seconds between February 28 and April 5, 2004
by 54 sensors deployed in the Intel Berkeley Research lab.

The candidate kernel set K144 is used in the experi-
ments for both datasets. The predictive performance of our
VBKS algorithm is obtained using BMA over 10 kernels
with top-ranked posterior probabilities and compared with
that of (a) Bayesian optimization (BO) for kernel selection
(Malkomes and Garnett 2015) which automatically finds the
kernel with the highest model evidence using BO, (b) ran-
dom algorithm which randomly selects a kernel from K144

at the beginning of each experiment, and (c) VBKS per-
forming GP prediction with a single kernel that yields the
highest posterior probability (VBKS-s). For each dataset,
20, 000 observations are randomly selected to form the
test set T . The root mean squared error (RMSE) metric√
|T |−1

∑
x∗∈T (y(x∗)− μx∗|D)

2 is used to evaluate the
predictive performance of the tested algorithms. The RMSEs
of the VBKS(-s) and random algorithms are averaged over
10 and 50 independent runs, respectively. The error bars are
computed in the form of standard deviation. To save some
time from sampling q(θi), the hyperparameters used by all
tested algorithms are point estimates by setting Cθi as a zero
matrix.

Swissgrid Dataset. We use |U| = 800 inducing inputs
and a batch size |D̃| = 128 for SGA update per iteration.
The kernel posterior belief produced by our VBKS algo-
rithm is evaluated after every 1.28% of data are used, as
shown in Fig. 3a. For clarity, we only visualize the kernels
whose posterior probabilities have ever been ranked as the
top three during stochastic optimization for VBKS. It can be
observed that a group of three kernels (rather than a single

4https://www.swissgrid.ch
5http://db.csail.mit.edu/labdata/labdata.html
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Figure 3: Graphs of (a) kernel posterior belief over selected
kernels that is produced by our VBKS algorithm in one run
vs. proportion of data used in stochastic optimization, and
(b) RMSE vs. time incurred by tested algorithms for Swiss-
grid dataset.
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Figure 4: Graphs of (a) kernel posterior belief over selected
kernels that is produced by our VBKS algorithm in one run
vs. proportion of data used in stochastic optimization, and
(b) RMSE vs. time incurred by tested algorithms for IEQ
dataset.

kernel) achieve comparable posterior probabilities which are
larger than that of the other kernels. This implies that the un-
certainty among the kernels need to be considered when the
selected kernels are used to interpret the correlation struc-
ture or perform GP prediction, which is a key benefit of us-
ing our VBKS algorithm. The predictive performance of the
tested algorithms for Swissgrid dataset is shown in Fig. 3b:
Both the VBKS and VBKS-s algorithms converge faster to
a smaller RMSE than the other tested algorithms. VBKS
performs better than VBKS-s since BMA can benefit from
different kernels in modeling the data when no kernel truly
stands out. The BO algorithm performs poorly because it has
to approximate the distance between kernels using a small
subset of data (i.e., of size 200 here).6 If the small subset of
data is not large enough to approximate the kernel distances
well, the BO performance will degrade, which is the case in
our experiments.

IEQ Dataset. In this experiment, the time and locations of
the sensors for producing the temperature readings are used
jointly as the input (i.e., d = 3). The first 1 million valid data
points are selected for our experiments. We use |U| = 1000

inducing inputs and a batch size |D̃| = 512 for SGA up-
date per iteration. Fig. 4 shows the kernel posterior belief
and RMSE of the tested algorithms for IEQ dataset. Differ-

6We also tried a larger subset of data of size 500 to better ap-
proximate the kernel distances in BO, which yields similar predic-
tive performance but incurs much more time.
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Figure 5: Graph of total incurred time of our VBKS algo-
rithm vs. number of iterations of SGA updates with |U| =
800 and varying batch sizes |D̃|.

ent from the results in Fig. 3a for Swissgrid dataset, Fig. 4a
shows that the posterior probability of a specific kernel (i.e.,
PER×SE+PER) increases fast to be much larger than that of
the other kernels. However, it can be observed from Fig. 4b
that VBKS still outperforms VBKS-s because the training
of GP model using PER × SE + PER overfits to the training
data and our VBKS algorithm with BMA helps to reduce the
overfitting. VBKS also converges to a smaller RMSE than
all other tested algorithms, as shown in Fig. 4b. In addition,
for both Swissgrid and IEQ datasets, we observe that VBKS
has consistently achieved smaller RMSE than VBKS-s (al-
beit slightly) in all 10 independent runs, which demonstrates
the benefit of applying BMA. The results of all these 10 runs
(instead of the averaged RMSE) are in (Teng et al. 2020).

Scalability. Fig. 5 shows the time efficiency of our VBKS
algorithm for different batch sizes for SGA update per itera-
tion. As expected, the total time incurred by VBKS increases
linearly in the number of iterations of SGA updates.

7 Conclusion

This paper describes a novel VBKS algorithm for SGPR
models that considers a probabilistic kernel and exploits
the kernel uncertainty to avoid overconfident predictions. A
stochastic optimization method for VBKS is proposed for
learning the kernel variational distribution together with the
other variational variables (i.e., inducing variables and ker-
nel hyperparameters). Our VBKS algorithm achieves scala-
bility in the kernel size K by decomposing the variational
lower bound into an additive form such that each additive
term (i.e., local ELBO) depends on the variational vari-
ables of only one kernel and can thus be maximized in-
dependently. Then, each additive local ELBO is optimized
via SGA by sampling from both the variational distribu-
tion and the data, which scales to big data since it incurs
constant time per iteration of SGA update. The predictive
performance of our VBKS algorithm with BMA is shown
to outperform the other tested kernel selection algorithms.
A limitation of VBKS is that it uses a finite and fixed ker-
nel space, which does not allow flexible exploration. In our
future work, we will consider expanding the kernel space
during stochastic optimization according to the intermediate
learning outcomes and extending VBKS to operate with an
infinite kernel space and a deep GP model (Yu et al. 2019a).
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