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Abstract

Multivariate time series (MTS) forecasting is widely used in
various domains, such as meteorology and traffic. Due to lim-
itations on data collection, transmission, and storage, real-
world MTS data usually contains missing values, making it
infeasible to apply existing MTS forecasting models such
as linear regression and recurrent neural networks. Though
many efforts have been devoted to this problem, most of them
solely rely on local dependencies for imputing missing val-
ues, which ignores global temporal dynamics. Local depen-
dencies/patterns would become less useful when the missing
ratio is high, or the data have consecutive missing values;
while exploring global patterns can alleviate such problem.
Thus, jointly modeling local and global temporal dynamics
is very promising for MTS forecasting with missing values.
However, work in this direction is rather limited. Therefore,
we study a novel problem of MTS forecasting with missing
values by jointly exploring local and global temporal dynam-
ics. We propose a new framework LGnet, which leverages
memory network to explore global patterns given estima-
tions from local perspectives. We further introduce adversar-
ial training to enhance the modeling of global temporal dis-
tribution. Experimental results on real-world datasets show
the effectiveness of LGnet for MTS forecasting with missing
values and its robustness under various missing ratios.

Introduction

Multivariate time series (MTS) forecasting is widely used
in many applications such as weather forecasting (Xingjian
et al. 2015), clinical diagnosis (Che et al. 2018), sales fore-
casting (Wu et al. 2018; 2019) and traffic analysis (Yao et
al. 2019b; 2018; 2019a; Tang et al. 2019). The popular-
ity of MTS forecasting has attracted increasing attention,
and many efforts have been taken to address the problem
in the past few years (Box et al. 2015; Qin et al. 2017;
Chang et al. 2018). Recurrent neural networks (RNNs), a
class of deep learning frameworks designed for modeling
sequential data, have been successfully applied to this prob-
lem. For example, LSTNet (Lai et al. 2018) adopts LSTM to
capture long-term dependencies for time series forecasting.
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Figure 1: Two time series from Beijing air pollution dataset.

Qin et al. (Qin et al. 2017) designed two attention mecha-
nisms in RNN to improve forecasting accuracy. Despite their
success, the majority of the aforementioned models assume
MTS data is complete.

In the real-world, MTS data are usually incomplete due
to various reasons, such as broken sensors, failed data trans-
missions, or damaged storages. For example, Figure 1 gives
two multivariate time series snippets from Beijing air pol-
lution data, both of which contain apparent missing values
marked by gray boxes (i.e., 20 of the 144 data points are un-
observed). Missing values damage temporal dependencies in
MTS sequences (Luo et al. 2018; Cao et al. 2018), make it
hard to apply existing RNN-based models on incomplete se-
quences and increase the difficulty of MTS forecasting tasks.
As shown in Figure 1, because of missing values, the sec-
ond peak of the blue signal is not observed, and cannot be
inferred by simply relying on existing RNNs. Therefore, it
is vital to design models that handle missing values in MTS
data to perform accurate forecasting. Many prior efforts have
been dedicated to this direction. For example, two-step ap-
proaches that first omit or impute missing values then pro-
cess time series forecasting based on the pre-processed data
are explored in (Yi et al. 2016; Garcı́a-Laencina, Sancho-
Gómez, and Figueiras-Vidal 2010). End-to-end solutions,
where the missing patterns are modeled jointly with fore-
casting tasks, are investigated in (Che et al. 2018; Cao et
al. 2018; Luo et al. 2018). However, those methods only
explore local statistical features, while the global temporal
patterns in exogenous sequences are neglected.

Jointly modeling local and global temporal dynamics is
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very promising for MTS forecasting with missing values.
Though constructing local statistics (e.g., empirical mean
and last observations) to estimate missing variables have cer-
tain potential (Che et al. 2018), these local statistics are unre-
liable when the missing ratio raises up or consecutive miss-
ing values occur as illustrated in Figure 1. This problem can
be alleviated by adopting global temporal dynamics. From
a global perspective, there exist many MTS snippets with
close temporal patterns. For example, in Figure 1, two MTS
sequences from different air quality stations share similar
temporal patterns. Although it is hard to recover consecutive
missing values (i.e., circled by the grey dash boxes) purely
from local statistics of one MTS, aggregating temporal pat-
terns in both sequences is rather promising. The temporal
patterns of one time series can be utilized for the other when
dealing with missing values. However, how to take advan-
tage of global temporal dynamics is a very challenging prob-
lem, which is under-explored in existing work.

To address the aforementioned challenges, we propose a
novel framework LGnet to model Local and Global tem-
poral dynamics jointly for MTS forecasting. LGnet absorbs
model designs from previous work (Che et al. 2018), where
LSTM is leveraged for MTS forecasting. Since the original
LSTM is unable to handle incomplete input, we first con-
struct estimations for missing values. Specifically, represen-
tative local statistic features are constructed for each vari-
able in an MTS. Besides, a memory module is designed for
LGnet to explicitly leverage knowledge from exogenous se-
quences to generate global estimations for missing values.
This is achieved by using local statistics as keys to query
a global optimized memory component. We further intro-
duce adversarial training to enhance the modeling of global
temporal distribution. A discriminator is built to identify the
generated MTS from real samples. Meanwhile, LGnet aims
at producing forecasting sequences that are hard to be iden-
tified, which are also closer to the actual global distribution
of real MTS data. The main contributions of the paper are:

• We study a new problem of MTS forecasting with missing
values by exploring local and global temporal dynamics.

• We propose a novel framework LGnet, with a memory
module to capture global temporal dynamics for missing
values and adversarial training to enhances the modeling
of global temporal distribution.

• We conduct extensive experiments on four large-scale
real-world datasets to validate the proposed approach.

Related Work

Various methods have been proposed for MTS forecast-
ing, such as Autoregressive (AR), Vector Autoregression
(VAR), Autoregressive moving average (ARMA), standard
regression models (e.g., support vector regression (Smola
and Schölkopf 2004), linear regression, and regression tree
methods (Chen and Guestrin 2016)). Inspired by the recent
success of deep neural networks, many RNN-based meth-
ods (Lai et al. 2018; Qin et al. 2017) are developed for MTS
forecasting. Even some vanilla RNNs, such as GRU (Chung
et al. 2014) and LSTM (Hochreiter and Schmidhuber 1997),

can outperform the non deep learning models significantly
(Chang et al. 2018). However, none of those approaches can
handle input with missing values.

To handle missing values in MTS, the simplest solution
would be removing all samples with missing values, such
as pairwise deletion (Marsh 1998). Obviously, such methods
ignore many useful information, especially with a high miss-
ing ratio (King et al. 1998). General data imputation meth-
ods such as statistical imputation (e.g., mean, median), EM-
based imputation (Nelwamondo, Mohamed, and Marwala
2007), K-nearest neighborhood (Friedman, Hastie, and Tib-
shirani 2001), and matrix factorization (Friedman, Hastie,
and Tibshirani 2001) can be applied for the unobserved
variables. However, those general approaches fail to model
temporal dynamics of time series. Even if MTS imputation
methods, such as multivariate imputation by chained equa-
tions (Azur et al. 2011) and generative adversarial network
Luo et al., can be applied to fill in missing values first, train-
ing a forecasting model on pre-processed MTS data would
lead to sub-optimal results, since the temporal patterns of
missing values are totally isolated from forecasting models
(Wells et al. 2013). To tackle this issue, some researchers
propose end-to-end frameworks that jointly estimate missing
values and forecast future MTS. Che et al. introduce GRU-
D that imputes missing values using the linear combination
of statistical features. Yoon, Zame, and van der Schaar pro-
pose M-RNN that leverages bi-directional RNN for the im-
putation. Cao et al. model the relationships between missing
variables to simultaneously perform imputation and classi-
fication/regression in one neural graph. However, those so-
lutions focus on localized temporal dependencies and fail to
model global temporal dynamics.

Problem Formulation

In practice, many multivariate time series signals are sam-
pled evenly. Thus, we assume time span is divided into
equal-length time intervals. Let X = {x1,x2, . . . ,xn} de-
note one MTS of length n, where xi ∈ R

d is the ob-
servation at the i-th time interval, xj

i is the j-th variable
of xi, and d is the number of variables. Let mask matrix
M = {m1,m2, . . . ,mn},mi ∈ {0, 1}d denote the miss-
ing status of each variable, where mj

i = 0 if xj
i is unob-

served/missing, otherwise, mj
i = 1. Note that we can use a

symbol to denote missing values in X (e.g., null).
We are interested in a general MTS forecasting task.

Given N incomplete MTS observation {Xj}Nj=1 and
their masks {Mj}Nj=1, we aim at learning a function f
that can forecast the values in future k time intervals
({xn+1, . . . ,xn+k}) of any new MTS, given its historical
n observations X with the mask matrix M.

The Proposed Framework

Figure 2 illustrates the proposed framework LGnet. LGnet
is built on LSTM to forecast future MTS values. We de-
sign a memory module which contains temporal informa-
tion from exogenous sequences to impute MTS during the
running time of LSTM. Specifically, we first extract local
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Figure 2: An illustration of LGnet.

statistic features for every time interval, then use them as
keys to query a memory component, which is jointly op-
timized with LSTM on all MTS data. The query results,
which preserve global temporal dynamics, are further com-
bined with local statistic features to serve as the input of the
LSTM. We also introduce adversarial training on forecasted
sequences to make sure they follow the global distribution.
The whole framework of LGnet is trained in an end-to-end
manner. Next, we introduce each module of LGnet in detail.

MTS forecasting with LSTM

Recurrent neural networks (RNNs) have demonstrate re-
markable success in various MTS forecasting tasks (Lai et
al. 2018; Chang et al. 2018). To leverage the advances of
RNN, we build LGnet on the top of Long short-term mem-
ory (LSTM) network, a variant of RNN which is able to cap-
ture long/short term dependency. Note that other RNN vari-
ants such as GRU (Cho et al. 2014) can serve as the replace-
ment of the LSTM. Formally, LSTM takes one data point of
the time series as input in each step, and iterates from x1 to
xn. Suppose xt is currently fed to the LSTM, ht−1 and ct−1

are the hidden state and memory cell of LSTM at previous
step t− 1, then the hidden state of memory cell at time t can
be calculated as:

it = σ
(
xtW

i + ht−1U
i + bi

)
, ft = σ

(
xtW

f + ht−1U
f + bf

)

ot = σ
(
xtW

o + ht−1U
o + bo

)
, c̃t = tanh

(
xtW

c + ht−1U
c
)

ct = ft � ct−1 + it � c̃t, ht = tanh(ct)� ot

where it is the input gate, ft is the forget gate, ot is the out-
put gate, � is the element-wise product, σ is the sigmoid
function, and W∗, U∗,b∗ are parameters. Given the current
hidden state ht, the forecasting of next data point x̃t+1 can
be generated recurrently as:

x̃t+1 = htU+ b. (1)

However, the original LSTM cannot handle missing values
in its input. Obviously, if xt contains unobserved variables,
matrix productions such as xtW

i are invalid. One solution
is using x̃t as an alternative of xt. However, early errors in
x̃t can be quickly amplified in the following steps (Bengio
et al. 2015), leading to inaccurate forecasting.

Therefore, appropriate estimations of missing values
should be constructed for the LSTM. We tackle the problem

by exploring temporal dynamics from both local and global
perspectives with a memory module. In the next section, we
discuss its technical details.

Memory Module

The basic idea of the memory module is to learn a parame-
terized memory which caches global temporal patterns and
projects each variable to the same feature space with the
memory. For each variable in a MTS, we first capture in-
formative statistics from the local context of this time series,
then leverage local statistics as keys to query the memory
component, which returns representation vectors with global
temporal dynamics. The memory module brings two advan-
tages: (i) learn and store meaningful temporal patterns from
a global perspective; and (ii) utilize the knowledge of tem-
poral patterns to construct global representations. Note that
the memory module is not the memory cell of the LSTM as
shown in Figure 2 and 3.

Capturing Local Statistics We extract useful local statis-
tic features using the contextual information from observed
parts of the time series for missing values. Following prior
studies (Che et al. 2018), we first generate empirical mean
and last observation of every time stamp as follows:

Empirical Mean: for variable xj
i , we construct its empiri-

cal mean using all available observations of xj
∗ before time

i, i.e., x̄j
i =

∑i−1
l=1 m

j
lx

j
l

/∑i−1
l=1 m

j
l . The mean of previous

observations reflects the time-aware data distribution of xj
i

and serves as the prior knowledge of the variable.
Last Observation: the last observation of xj

i is the first
available j-th variable before time interval i, which is the
most temporally close neighbor. We use ẋj

i to denote the
last observation of xj

i . Note that ẋj
i isn’t necessary equal to

xj
i−1 because xj

i−1 could also be missing. We further intro-
duce an indicator δ ∈ R

d×n
+ to record the temporal distance

between each xj
i and its last observation, which reflects the

confidence and trustworthy of previous values:

δji =

{
0, if i = 1 or mj

i = 1

δji−1 + 1, if mj
i = 0

. (2)

Generally, when δji is small, we tend to trust ẋj
i more; and

when δji becomes larger, the averaged value x̄j
i would be

more representative. Based on the above assumption, we
propose the following decaying mechanism to balance em-
pirical mean and last observation:

γ(δji ) = exp (−max(0, wjδji + bj)), (3)

where wj and bj are parameters. The above decay mech-
anism leverages an exponentiated negative rectifier so that
the decay value γ is monotonous decreasing in the range be-
tween 0 and 1 w.r.t δji (Che et al. 2018; Luo et al. 2018). The
localized estimation for xj

i is constructed as follows:

zji ← mj
ix

j
i + (1−mj

i )[γ(δ
j
i )ẋ

j
i + (1− γ(δji ))x̄

j
i ]. (4)

We use zi = [z1i , . . . , z
d
i ] to denote local statistic features for

xi. For observed variables, their original values are directly
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used. For missing values, we combine empirical mean with
last observation to construct zi.

However, zi only takes data points observed before the
i-th time interval into consideration. Similar local statistics
can also be extracted from time interval i + 1 to n. This
is achieved by first reverse X and M on the temporal di-
mension, then extracting local statistics following the same
definition of zi on time interval 1 to n − i + 1. We use z′i
to denote local statistics from time interval i + 1 to n. As
shown in Figure 2, zi and z′i are forward and backward local
statistic features, respectively.

In addition to the forward and backward local statistic fea-
tures, the LSTM naturally provides estimations for missing
variables. Specifically, we follow Equation 1 and use the out-
put of LSTM at the previous time step i− 1 as another local
statistic from a model view:

x̃i = hi−1U+ b (5)

Modeling Global Dynamics The above imputations zi,
z′i, and x̃i can fed directly in LSTM to train a MTS fore-
casting model (Che et al. 2018). However, such an approach
is sub-optimal. zi and z′i become less trustful as the missing
ratio raises up. Besides, purely relying on local statistics ig-
nores global temporal dynamics from exogenous sequences,
which potentially benefit the estimation of missing values. It
is likely to capture time series snippets/patterns from other
sequences that are temporally similar (e.g., periodicity) to
the contextual of a missing value. For example, to impute
one missing data point in a trajectory, similar time series
snippet may be found from other trajectories.

However, capturing such global temporal dynamics to
find informative temporal patterns for missing values is very
challenging. Simply comparing with all potential snippets
to find similar ones is impractical due to high computa-
tional costs. Recently, memory network (Weston, Chopra,
and Bordes 2014) has shown promising results in captur-
ing patterns for sequential data (Sukhbaatar et al. 2015;
Chang et al. 2018). Generally, a memory network initializes
a memory component to store feature representations that
optimized explicitly on the whole dataset. Those stored rep-
resentations can be retrieved and utilized for specific tasks
(Tang et al. 2017; Kumar et al. 2016). We design a memory
module to capture global temporal dynamics explicitly, as
shown in Figure 3. We assume there are L temporal patterns
existing in the dataset (L is a hyperparameter), and initial-
ize a parameterized memory G ∈ R

L×dG
, where dG is the

dimension of pattern representation. The memory G is up-
dated jointly with the LSTM. We utilize local statistics as

keys to query the memory module because they can repre-
sent the uniqueness of variables. Specifically, queries to the
memory module are constructed as follows:

qi = Wq[zi||z′i||x̃i] + bq, (6)

where || denotes concatenation on column. Wq and Bq are
parameters. Then we calculate the similarity between qi and
the memory component G:

si = Softmax(G · qi). (7)

The similarity scores measure the importance of each tem-
poral patterns in the memory. Any pattern with a higher
attention score is more similar to the context of targeting
missing value. The representation vector of xi that pre-
serves global temporal dynamics is then constructed from
the weighted sum of all temporal patterns in G:

ai =

L∑
l=1

sliG(l), (8)

where G(l) represents the l-th row of the memory compo-
nent. Besides, since variables at the same time interval in-
teract with each other in Equation 6, ai also preserves in-
ner correlations of variables at the same time interval. We
combine local statistic features and global representations
to construct the input of LSTM. Specifically, zi, z′i, x̃i,
and ai are averaged as the input at time interval i. Note
that some of the local statistics can become unavailable in
some cases. For example, we cannot construct zi for the
first missing value, and no z′i is available for the forecast-
ing stage. We set unavailable local statistics to 0. However,
we can generate either the forward or the backward local
statistic features unless the whole time series is empty. This
ensures LGnet is more reliably than those purely using the
forward local statistic (Che et al. 2018). The forecasting re-
sults Xp = [x̃n+1, . . . , x̃n+k] are generated after n-th it-
eration of LSTM. The aligned ground truth data for Xp is
denoted as X̂p, which also contains missing values. There-
fore, we incorporate the mask matrix into mean-square-error
and propose the following objective function to train LGnet:

min
θ
Lp(θ) =

1

N

N∑
j=1

‖(Xj
p − X̂j

p)�Mj
p‖2, (9)

where θ are parameters of LGnet, including parameters of
the LSTM and the memory component, Mj

p is the mask ma-
trix of the j-th MTS data sample Xj over the predicted vari-
ables, and � is dot-production. Because of the mask matrix,
LGnet is optimized over the observed part of X̂j

p.

Adversarial Training

The objective function of LGnet in Equation 9 only con-
siders available variables. When the missing ratio is rela-
tively high, the proposed objective function becomes inef-
ficient because most values of Mp is zero when sampling
under the same data distribution. The predicted future se-
quences should also follow the same data distribution of the
true MTS data. If we can encourage LGnet to generate more
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realistic data distribution, the overall accuracy of MTS fore-
casting can be improved. To achieve this goal, we introduce
adversarial training to control the distribution of generated
MTS.

Recently, generative adversarial networks (GANs)
(Goodfellow et al. 2014) have been widely applied
to various domains (Yu et al. 2017; Sun et al. 2019;
Shu et al. 2018). Typical GAN consists of a generator and a
discriminator. The discriminator tries to distinguish samples
from the generator and those from read data. The generator
tries to generate samples that can “fool” the discriminator by
modeling data distribution With such a min-max game, the
generator can create more realistic samples. This motivates
us to adopt adversarial learning to enhance the forecasting.
We design a discriminator D, as illustrated in Figure 2.
LSTM generates future sequences as the forecasting to
“fool” the discriminator D; while D is trained to identify
whether the input sequence is fake. Through iterative
training, the LSTM is more capable of generating time
series that fit the underlying distribution (Goodfellow et al.
2014), which makes the forecasting result more accurate.

Specifically, we adopt W-GAN (Arjovsky, Chintala, and
Bottou 2017) and construct a two-layer convolution net as
D. Given a MTS s as input, D outputs a real value D(s),
which is higher if s is real, and lower if s is “fake”. The
“fake” multivariate time series of length k′ are generated af-
ter the forecasting part. Let X = {[x̃n+k+1, . . . , x̃n+k+k′ ]}
denote a generated (fake) time series. To compile a “true”
dataset that preserves latent data distribution, we sample a
subset of complete time series snippets with same length
k′ from the raw dataset. Let S denote the sampled subset
of time series snippets. Empirically, it is not a difficult task
when k′ is small (i.e., k′ ≤ 5). The training objective of the
discriminator is:

min
θD
LD = min

θD
− E

s∼S
D(s) + E

s∼X
D(s), (10)

where ∼ denotes “sampling from”, and θD is parameters of
the discriminator. Generally, time series with a high proba-
bility of being a “true” sample will receive a higher score.
To generate more realistic sequences, the objective function
for the LSTM is defined as:

min
θ
La = min

θ
− E

s∼X
D(s), (11)

which aims at faking the discriminator. Note that there is no
overlap between the forecasting and the generated part, as
we imperially find that adding adversarial loss on the fore-
casting part may hurt the performance. A potential reason
is that the best time series to “fool” the discriminator might
not be the most accurate forecasting result. Therefore, we
put La on extra generated sequences to achieve the best per-
formance. Luo et al. state a similar conclusion.

Objective Function and Training

We define the overall objective function to learn model pa-
rameters θ for an accurate MTS forecasting with adversarial
training as follows:

θ, θD = min
θ
Lp + λ

[
max
θD

E
s∼S

D(s)− E
s∼X

D(s)
]
,

where λ balances the MTS forecasting part and the adver-
sarial training part.

We use stochastic gradient descent to update model pa-
rameters. The discriminator and the LSTM are trained alter-
natively until converged. We first update θD with real MTS
snippets and generated ones, then optimize θ for the LSTM
and the memory module while fixing θD.

Experiment

In this section, we present experiments to evaluate the pro-
posed framework LGnet. Specifically, we aim at answering
the following research questions: (i) RQ1: Can LGnet im-
prove the accuracy of MTS forecasting with missing val-
ues? (ii) RQ2 How robust is LGnet w.r.t different missing
ratios? (iii) RQ3 How the memory module benefits LGnet?
(iv) RQ4 How adversarial training contributes to LGnet?
Next, we start by introducing various experiments on MTS
forecasting to answer the above questions.

Datasets

Four large-scale real-world MTS datasets from different do-
mains are selected to validate LGnet: Beijing Air1: This
dataset is introduced by KDD Cup 2018. We extract PM2.5
values from 35 monitoring stations in Beijing, and formulate
multivariate time series. The values are reported every hour
between 05/01/2014 and 04/30/2015. It has a missing rate
of 13% over the temporal dimension. We use past 9-hour
observations to train each model, and forecast PM2.5 val-
ues for the following 3 hours. PhysioNet: PhysioNet (Silva
et al. 2012) provides 4000 multivariate clinical time series
from intensive care unit (ICU). Each time series records 35
measurements such as glucose and heart-rate from the first
48 hours since the patient entered the hospital. We com-
pile time series from 12 important measurements such as
heart-rate and temperature. The missing ratio of PhysioNet
is about 78% over the temporal dimension. We use the past 6
observations to forecast values in the coming 3 hours. Porto
Taxi2: This dataset includes approximately one million tra-
jectories for 442 taxis running in the city of Porto during a
complete year (from 01/07/2013 to 30/06/2014). Each tra-
jectory contains many GPS coordinates (i.e., longitude and
latitude) recorded chronologically. The sampling speed is 15
second per coordinates. We use the past 7 GPS coordinates
to forecast the location of future points. London Weather1:
The dataset includes temperature, pressure, humidity, wind
direction, and wind speed from 861 regions in London from
01/01/2017 to 03/27/2018. All features are collected hourly.
We use the past 5 observations to forecast the coming values.

The first and second datasets naturally contain missing
values, which are used as real-world settings to answer the
first question. For the rest two datasets, we randomly remove
p% of observed values (p ∈ {10, 30, 50, 70, 90}) to study
the robustness of LGnet and compared methods.

1https://www.kdd.org/kdd2018/kdd-cup
2https://www.kaggle.com/c/pkdd-15-predict-taxi-service-

trajectory-i
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Compared Baselines

We compare LGnet with classical and state-of-the-art base-
lines, including two non-RNN methods, two time series im-
putation methods, and two RNN methods:

• Linear Regression (LR): Because conventional linear re-
gression model cannot directly handle missing values, we
concatenate each MTS with its mask matrix as the input
features to train LR for the forecasting task.

• XGBoost (Chen and Guestrin 2016): XGBoost is widely
used in time series analysis and machine learning fields.
We use the same setting of LR to train XGBoost.

• MICE (Azur et al. 2011): MICE fills the missing values
using multiple imputations with chained equations. We
first apply MICE to impute miss values. We then train
LSTM for the forecasting task.

• GRUI (Luo et al. 2018): GRUI leverages GAN and RNN
for time series imputation. Similar to MICE, we first train
GRUI for time series imputation. Then we train LSTM on
imputed data as the forecasting model.

• GRU-D (Che et al. 2018): GRU-D combines statistical
features and linear decay in RNN to tackle missing vari-
ables in time series. It is proposed for multivariate time
series forecasting task.

• BRITS (Cao et al. 2018): BRITS designs bi-direction re-
current neural architecture for time series imputation and
forecasting. It models missing patterns explicitly and im-
proves forecasting accuracy.

Experimental Settings

We normalize each dataset and ensure all time series vari-
ables have the same scale (i.e., mean and variance) on each
dataset so that their averaged results are comparable. For
each dataset, we randomly select 70% of MTS data for train-
ing, 10% for validation to tune hyperparameters, and the re-
maining 20% for testing. We set the dimension of the hidden
unit to 32 for the LSTM. We select L from {8, 16, 32, 64} to
create the memory component according to the performance
on validation sets. The dimension of each memory slot is
128. We tune λ that balance MTS forecasting and adver-
sarial training on validation sets for the best performance.
The discriminator contains two convolutional layers follow-
ing by two fully-connected layers. 3× 3 kernels are used for
both convolutional layers. The channel sizes are 64 and 128
for the first and second convolutional layer, respectively. The
dimensions of fully connected layers are 1024 and 1.

Two widely used evaluation metrics, i.e., root mean
square error (RMSE) and mean absolute error (MAE), are
adopted. Since different variables have different scales, we
report the RMSE and MAE on their normalized values. The
smaller RMSE and MAE are, the better the performance is.

Performance Comparisons

To answer RQ1, we compare LGnet with baselines on Bei-
jing Air and PhysioNet, where missing values naturally
exist. We report the performance on the two datasets for
k = 1, 2, 3 (forecasting horizon) in Table 1, and make the

following observations: (i) LGnet outperforms all the base-
line methods for the majority of the cases, which shows the
effectiveness of the memory module and adversarial learn-
ing for multivariate time series forecasting with missing val-
ues. The memory module explores global temporal dynam-
ics and generates appropriate estimations for missing values;
(ii) when k increases, i.e., when forecasting far future values,
the performance of all the methods decreases, which is rea-
sonable because it’s more difficult to forecast far future val-
ues than near ones. However, LGnet still significantly out-
perform the compared methods, which is because we adopt
adversarial training on the predicted sequences to make the
forecasting more realistic; (iii) In addition, the performance
improvement of LGnet is much more significant on Phys-
ioNet than Beijing Air. Compared with Beijing Air, Phys-
ioNet has a higher missing ratio, which challenges the base-
line methods; while LGnet can still handle such high missing
ratio, which further implies the effectiveness of LGnet by
designing memory network and adopting adversarial train-
ing.

Robustness of LGnet

Real-world applications could encounter various data miss-
ing conditions. It is interesting to understand the robust-
ness of LGnet under different missing ratios. To this end,
we design experiments on two complete MTS datasets, in-
cluding Porto taxi and London weather. In particular, for
each dataset, we randomly drop p% of observed values to
generate synthetic missing condition and we alter p from
{10, 30, 50, 70, 90}. We train LGnet and compared meth-
ods to forecast the next observation of all variables (i.e.,
k = 1). The performance of LGnet and all compared meth-
ods in terms of RMSE and MAE varying p is reported in
Figure 4. Clearly, the forecasting error of non-RNN meth-
ods raises dramatically as p increasing, because they fail to
model missing temporal patterns for the forecasting. GRU-
D and BRITS explicitly handle missing values and achieve
lower errors compared with LR and XGBoost. However,
they fail to maintain accurate forecasting when the missing
ratio is high. LGnet achieves the highest accuracy even if
the data is extremely sparse (e.g., p = 90), which illustrate
the effectiveness of the memory module and the adversar-
ial schema. The global temporal patterns in memory module
help LGnet perform well as the missing ratio increasing. Ex-
tra guidance from the discriminator improves the capability
of LSTM in modeling the global distribution of MTS.

Ablation Study

Memory Module Analysis We analyze the contribution
of the memory module. We create an ablation named
LGnetadv by removing the memory module from LGnet,
and use qi as the input for LSTM. The performance of
LGnetadv is reported in Table 2. Obviously, LGnet sig-
nificantly out-performs LGnetadv , indicating that modeling
global temporal dynamics with the memory module benefits
the forecasting. Moreover, the performance improvement of
LGnet over LGnetadv is relatively bigger as the missing ratio
raises up. This is because local statistic features are less re-
liable with a high missing ratio. Under such circumstances,
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Table 1: MTS forecasting performances on Beijing Air and PhysioNet.

Datasets k 1 2 3
Metric RMSE MAE RMSE MAE RMSE MAE

Beijing Air

LR 0.0398±0.0018 0.0261±0.0003 0.0550±0.0014 0.0371±0.0001 0.0661±0.0015 0.0454±0.0007
XGB 0.0389±0.0004 0.0229±0.0017 0.0542±0.0010 0.0376±0.0015 0.0663±0.0009 0.0406±0.0013
MICE 0.0646±0.0001 0.0417±0.0004 0.0703±0.0012 0.0452±0.0017 0.0766±0.0018 0.0493±0.0008
GRUI 0.0601±0.0012 0.0387±0.0009 0.0667±0.0001 0.0433±0.0001 0.0754±0.0007 0.0502±0.0012

GRU-D 0.0459±0.0014 0.0305±0.0001 0.0554±0.0020 0.0366±0.0011 0.0649±0.0003 0.0432±0.0001
BRITS 0.0501±0.0001 0.0335±0.0012 0.0570±0.0003 0.0384±0.0008 0.0707±0.0017 0.0493±0.0002
LGnet 0.0451±0.0010 0.0300±0.0009 0.0519±0.0008 0.0332±0.0006 0.0597±0.0002 0.0373±0.0006

PhysioNet

LR 0.2401±0.0003 0.1839±0.0006 0.2520±0.0009 0.1948±0.0007 0.2622±0.0001 0.1997±0.0004
XGB 0.2308±0.0004 0.1753±0.0006 0.2481±0.0005 0.1913±0.0019 0.2598±0.0017 0.1972±0.0001
MICE 0.1113±0.0000 0.0783±0.0011 0.1148±0.0008 0.0793±0.0006 0.1116±0.0018 0.0789±0.0019
GRUI 0.1142±0.0017 0.0776±0.0012 0.1176±0.0001 0.0812±0.0008 0.1270±0.0005 0.0813±0.0016

GRU-D 0.1125±0.0013 0.0998±0.0003 0.1202±0.0011 0.0796±0.0014 0.1348±0.0002 0.0971±0.0011
BRITS 0.1082±0.0002 0.0720±0.0010 0.1158±0.0012 0.0734±0.0018 0.1158±0.0001 0.0785±0.0003
LGnet 0.1021±0.0004 0.0706±0.0002 0.0998±0.0002 0.0713±0.0002 0.1080±0.0005 0.0762±0.0007

Figure 4: MTS forecasting performance on Porto taxi and
London Weather with varying missing ratios.

Table 2: MTS forecasting performance of variants.

p
Porto Taxi London Weather

LGnetadv LGnetmem LGnet LGnetadv LGnetmem LGnet
0.1 0.0157 0.0132 0.0137 0.0627 0.0595 0.0573
0.3 0.0241 0.0153 0.0151 0.0773 0.0745 0.0666
0.5 0.0303 0.0170 0.0168 0.1020 0.0816 0.0732
0.7 0.0451 0.0208 0.0204 0.1287 0.0852 0.0825
0.9 0.0710 0.0348 0.0337 0.2015 0.1327 0.1316

it is vital to leverage global patterns stored in the memory
component as support to estimate missing values.

Adversarial Schema Analysis We further study the effec-
tiveness of adversarial training. The parameter λ balances
the weight between the forecasting loss and the adversar-
ial part. A variant of LGnet without the adversarial train-
ing (i.e., λ = 0) is denoted as LGnetmem, and its perfor-
mance is reported in Table 2. Clearly, the adversarial train-
ing contributes a lot to the forecasting, reducing RMSE by
2% – 10% under different circumstances. More concretely,
more significant error reductions occur on London weather
dataset compared with Proto taxi dataset. One possible rea-

Table 3: Analysis of hyper-parameter λ.

λ 0 0.1 1 10 100
RMSE 0.0483 0.0451 0.0471 0.0522 0.0518
MAPE 0.0322 0.0300 0.0315 0.0360 0.0354

son is that MTS from London weather dataset contain more
variables and have a better description of the realistic data
distribution. Besides, improvements from incorporating the
discriminator are relatively greater when the missing ratio
increases. This is because the original MTS forecasting ob-
jective is less efficient with a high missing ratio, as it only
relies on observed parts of the time series. In conclusion, it
is beneficial to introduce adversarial training for LGnet.

Hyper-parameter Analysis

We investigate the sensitivity of λ, which balances the fore-
casting loss and the adversarial training part. Generally,
More emphasis is put to the forecasting part when λ is closer
to 0. We alter the value of λ among {0, 0.1, 1, 10, 100} and
report the performance of LGnet on Beijing Air dataset with
k = 1. As shown in Table 3, the forecasting accuracy of
LGnet first increases as λ becomes larger. However, ex-
tremely large values of λ result in low performances.

Conclusion

In this paper, we investigate a novel problem of exploring
local and global temporal dynamics for MTS forecasting
with missing values. We propose a new framework LGnet,
which adopts memory network to capture global temporal
patterns using local statistics as keys. To make the generated
MTS more realistic, we further adopt adversarial training to
enhance the modeling of global temporal data distribution.
Experimental results on four large-scale real-world datasets
show the efficacy of LGnet.
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