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Abstract

Feature selection has been shown to be beneficial for many
data mining and machine learning tasks, especially for big
data analytics. Mutual Information (MI) is a well-known
information-theoretic approach used to evaluate the relevance
of feature subsets and class labels. However, estimating high-
dimensional MI poses significant challenges. Consequently, a
great deal of research has focused on using low-order MI ap-
proximations or computing a lower bound on MI called Vari-
ational Information (VI). These methods often require certain
assumptions made on the probability distributions of features
such that these distributions are realistic yet tractable to com-
pute. In this paper, we reveal two sets of distribution assump-
tions underlying many MI and VI based methods: Feature In-
dependence Distribution and Geometric Mean Distribution.
We systematically analyze their strengths and weaknesses
and propose a logical extension called Arithmetic Mean Dis-
tribution, which leads to an unbiased and normalised estima-
tion of probability densities. We conduct detailed empirical
studies across a suite of 29 real-world classification problems
and illustrate improved prediction accuracy of our methods
based on the identification of more informative features, thus
providing support for our theoretical findings.

1 Introduction

In the era of big data, we are often confronted with ma-
chine learning tasks involving a large number of features (Li
et al. 2017; Bolón-Canedo, Sánchez-Maroño, and Alonso-
Betanzos 2015). In many real-world applications, it is possi-
ble to improve the predictability, interpretability and training
efficiency of specific machine learning models, including
deep learning models (Gao, Ver Steeg, and Galstyan 2016;
Cai et al. 2018), by selecting a subset of features for process-
ing and/or by removing the irrelevant or redundant features
(Bagherzadeh-Khiabani et al. 2016; Pascoal et al. 2012;
Saeys, Inza, and Larrañaga 2007).

Feature selection methods can be divided into three cate-
gories: wrapper, embedded and filter (Guyon and Elisseeff
2003; Xue et al. 2016; Vergara and Estévez 2014). Wrapper
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and embedded methods rely on a classifier, using classifica-
tion accuracy as an indication of feature quality. In contrast,
filter methods employ an objective function, which measures
the relevance between features and class labels. Perhaps the
most widely used information-theoretic measure for objec-
tive function design is based on Mutual Information (MI)
(see (Vergara and Estévez 2014; Li et al. 2017) for a compre-
hensive review and (Brown et al. 2012) for a unifying frame-
work). However, it is a significant challenge to estimate
high-dimensional MI from a limited number of samples
(Wolpert and Wolf 1995; Brown et al. 2012). Consequently,
many information-theoretic methods use low-dimensional
MI approximations which necessitates specific assumptions
to be made on the probability distribution of features (Bala-
gani and Phoha 2010; Brown et al. 2012; Vinh et al. 2016;
Gao, Ver Steeg, and Galstyan 2016). An alternative way to
design objective function for feature selection is based on
a lower bound on MI called Variational Information (VI)
(Gao, Ver Steeg, and Galstyan 2016). This lower bound is
tractable to compute if a variational probability distribution
of features is carefully chosen, and it becomes exact when
the variational distribution matches the real distribution of
features. Thus the assumption on variational probability dis-
tribution of features also has a key role in VI based methods.

In this paper, we re-examine the assumptions on the prob-
ability distributions of features used in typical information-
theoretic feature selection methods. Our overarching re-
search goal is to answer the following questions: “Which
distribution of features in a given information-theoretic fea-
ture selection method is both realistic and tractable to com-
pute?” and “How do particular assumptions related to
the probability distribution of features impact on classifi-
cation accuracy?” Importantly, we will show that many
information-theoretic feature selection methods in literature
differ only in their underlying assumptions on feature distri-
butions. Specifically, we systematically analyze three sets of
assumptions on feature distributions: Feature Independence
Distribution (FID), Geometric Mean Distribution (GMD)
and Arithmetic Mean Distribution (AMD).

• The FID assumption has been widely accepted in litera-
ture. However we show that the probability density esti-
mation under the FID assumption has certain bias.
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• The GMD assumption relaxes FID and has potential to re-
duce the estimation bias. However we show that the prob-
ability density estimates under GMD may not be normal-
ized, i.e., the probability density integration is not one.

• The AMD assumption is a logical extension to fix the nor-
malization issue inherent in the GMD assumption.

To demonstrate the efficacy of assumptions related to the
probability distributions of features, we report classification
results across a suite of 29 real-world datasets, where each
of the distribution assumptions was incorporated into the MI
and VI frameworks. The experimental results show that the
AMD assumption typically leads to better classification ac-
curacy than both the FID and GMD assumptions.

2 Mutual Information Based Methods

Given a supervised learning task with feature vector X and
class label C, the goal of MI based feature selection methods
is to search for a subset of K features (S) such that the MI
between S and C is maximized:

S = argmax
S⊂X,|S|=K

I(S;C), (1)

where I(·) denotes MI (Cover and Thomas 2012).
This search problem can be modeled as quadratic pro-

gramming problem and solved globally (Rodriguez-Lujan
et al. 2010; Nguyen et al. 2014; Venkateswara et al. 2015).
In contrast, Sequential Forward Selection (Kittler 1986;
Pudil, Novovičova, and Kittler 1994) is a class of greedy
methods that selects a candidate feature Xm at a time such
that the MI between Xm and C given the selected feature
subset (S) is maximized:

Xm = argmax
Xm∈X\S

{
J(Xm) := I(Xm;C|S)}, (2)

where X \S denotes X excluding S (the unselected fea-
tures), and J(·) denotes the objective function.

In practice, it is difficult to estimate the high-order condi-
tional MI I(Xm;C|S). A possible way to do this is using the
functional estimation, where MI is directly estimated with-
out computing probability densities (Wu and Yang 2016;
Noshad, Zeng, and Hero 2019). However, in the feature se-
lection community, a large number of methods has used
low-order MI to approximate the high-order MI, includ-
ing (Yang and Moody 1999; Peng, Long, and Ding 2005;
Vinh et al. 2016; Wang et al. 2017; Zadeh et al. 2017;
Singha and Shenoy 2018; Sharmin et al. 2019). These meth-
ods are typically based on the concept of feature rele-
vancy, redundancy and complementarity (Brown et al. 2012;
Vergara and Estévez 2014). To justify the low-order esti-
mation, probability distribution assumptions such as feature
independence and class-conditional feature independence
have been used (Balagani and Phoha 2010; Brown et al.
2012; Vergara and Estévez 2014; Venkateswara et al. 2015;
Vinh et al. 2016; Gao, Ver Steeg, and Galstyan 2016). In the
following subsection, we will revisit these assumptions.

2.1 Methods Based on Feature Independence
Distribution

Given selected features S and a candidate feature Xm, let
Sk ⊆ S contain k (0 ≤ k ≤ |S|) randomly selected features
from S. Define a trial feature set T = Xm∪S and its subset
Tk = Xm ∪ Sk−1 where the first feature is Xm and the
remaining k − 1 features are from S; T0 = ∅. The feature
independence distribution assumption is presented as

Feature Independence Distribution (FID). The selected
features S and a candidate feature Xm are independent and
class-conditionally independent at order k (0 ≤ k ≤ |S|):

p(T \Tk|Tk) �
∏

Xi∈T \Tk

p(Xi|Tk), (3)

p(T \Tk|Tk, C) �
∏

Xi∈T \Tk

p(Xi|Tk, C). (4)

We use � to denote “asymptotic” equality, in the sense that
Eq. (3) and (4) will become exact when k = |S|.

The hyper-parameter k controls the trade-off between the
amount of information loss and model complexity. In theory,
considering a larger k leads to a more realistic estimation for
p(T \Tk|Tk). But in practice, this is not guaranteed to be
beneficial because estimating high-order probability density
function is typically problematic and requires many samples
and computational resources. Existing assumptions made on
feature distribution are often up to order 2.

Note that FID is a generic case of several feature distribu-
tion assumptions used in literature. By simply setting k = 0,
1 or 2, we restore the assumptions used in (Balagani and
Phoha 2010; Brown et al. 2012; Vinh et al. 2016). These
assumptions are generally strong, and only hold when the
given features are independent or conditionally independent.

Theorem 1. Under the FID assumption of order k, the ob-
jective function in Eq. (2) is equivalent to:

Jk,k
FID(Xm) ∼

k∑
i=1

I(Xti ;C|Ti−1) +
∑

Xi∈T \Tk

I(Xi;C|Tk),

(5)
where Ti−1 = {Xt1 , · · · , Xti−1} and Xt1 = Xm; and ∼
denotes “equivalent to”. More generally, we consider dif-
ferent values of k in Eq. (3) and (4), denoted as k1 and k2
respectively. The objective function J(Xm) is equivalent to:

Jk1,k2

FID (Xm) ∼
k1∑
i=1

H(Xti |Ti−1) +
∑

Xi∈T \Tk1

H(Xi|Tk1
)

−
k2∑
i=1

H(Xti |Ti−1, C)−
∑

Xi∈T \Tk2

H(Xi|Tk2
, C),

(6)

where H(·) denotes entropy (Cover and Thomas 2012).

In Theorem 1, we have obtained a set of methods based
on the FID assumption with the objective function defined
in Eq. (6). The proof of Theorem 1 is in Appendix I.A.
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Table 1: A brief summary of existing MI based methods that use the FID (JFID) and GMD (JGMD) assumptions.
J k1 k2 Name Objective Function Reference

JFID
0 0 MIM I(Xm;C) (Lewis 1992)
1 0 MIFS I(Xm;C)− β

∑
Xi∈S I(Xm;Xi) with β = 1 (Battiti 1994)

1 1 CIFE I(Xm;C)−∑
Xi∈S I(Xm;Xi) +

∑
Xi∈S I(Xm;Xi|C) (Lin and Tang 2006)

JGMD

0 0 MIM I(Xm;C) (Lewis 1992)
1 0 MRMR I(Xm;C)− 1/|S|∑Xi∈S I(Xm;Xi) (Peng, Long, and Ding 2005)
1 1 JMI I(Xm;C)− 1/|S|∑Xi∈S I(Xm;Xi) + 1/|S|∑Xi∈S I(Xm;Xi|C) (Yang and Moody 1999)

2 1 RMRMR I(Xm;C)− 1/|S|∑Xi∈S I(Xm;Xi) + 1/|S|∑Xi∈S I(Xm;Xi|C) (Vinh et al. 2016)−1/|S|/(|S| − 1)
∑

Xi∈S

∑
Xj∈S\Xi

I(Xm;Xj |Xi)

Existing Methods Using FID. By varying the values of
k1 and k2, we can recover three existing MI based methods:
Mutual Information Maximization (MIM) (Lewis 1992),
Mutual Information Feature Selection (MIFS) (Battiti 1994)
and Conditional Informative Feature Extraction (CIFE) (Lin
and Tang 2006). Their objective functions are listed in Ta-
ble 1 (JFID), and the proof shown in Appendix I.A. We have
identified these three methods are all based on the FID as-
sumption, and differ only in the order k used.

Time Complexity of FID Methods. We briefly analyze
the time complexity of the methods presented in Theorem 1
with different k1 and k2 values (Jk1,k2

FID ). Suppose N is the
number of samples; M is the number of features. We as-
sume the number of joint probability states in p(Xi|Tk;C)
is less than the sample size (otherwise the sample size is
insufficient), so that the joint entropy H(Xi|Tk, C) can be
calculated in O(N) time. If the maximum number of fea-
tures to be selected is K, the number of joint entropy values
to be calculated is in O(KM). Thus, the time complexity
of Jk1,k2

FID is O(KMN) when k1 ≥ 1 or k2 ≥ 1. When
k1 = k2 = 0, the time complexity of J0,0

FID is O(MN), as
only M MI values need to be calculated.

Strength and Limitation of FID. The FID assumption is
simple and easy to interpret. Under the FID assumption, the
high-dimensional MI is tractable to compute as it can be di-
rectly decomposed into a series of low-order MI approxi-
mations. However, the FID assumption is strong and causes
bias in the estimation of probability density, as shown sub-
sequently. This assumption needs to specify a feature subset
Tk as conditional features. As the order of features to be
selected is not fixed, it is reasonable to assume that Tk is
any subset of T (Venkateswara et al. 2015). Specifically we
assume Tk = Sk, i.e., Tk is any k features from S. A sim-
ple calculation yields p(Xm|S) = p(T \Sk|Sk)

p(S\Sk|Sk)
. Using the

assumption that features in T \Sk are independent given
Sk, we obtain p(Xm|S) = p(Xm|Sk). Thus the estimation
of p(Xm|S) is biased towards the conditional features Sk

used. In Section 2.2, we will show how some existing meth-
ods attempt to reduce this bias.

2.2 Methods Based on Geometric Mean
Distribution

First let us describe the concept of k-combination. A k-
combination of a set S is a subset of k distinct elements of

S. The number of k-combinations of the set S is equal to the
binomial coefficient

(|S|
k

)
= |S|!

k!(|S|−k)! . We denote the ith k-
combination of S as Si

k and all the possible k-combinations
of S as Sk. Thus Si

k ∈ Sk, where 1 ≤ i ≤ (|S|
k

)
. The geo-

metric mean distribution assumption is then defined as:

Geometric Mean Distribution (GMD). The (class-
conditional) probability density function of a candidate fea-
ture Xm given the selected features S is equal to the ge-
ometric mean of the (class-conditional) probability density
function of Xm conditioning on any k (0 ≤ k ≤ |S|) fea-
tures in S:

p(Xm|S) �
( ∏

Si
k∈Sk

p(Xm|Si
k)
) 1

(|S|
k ) , (7)

p(Xm|S, C) �
( ∏

Si
k∈Sk

p(Xm|Si
k, C)

) 1

(|S|
k ) . (8)

This GMD assumption is a relaxed version of FID in the
sense that if FID holds, GMD is true. Using the geometric
mean of probability densities across all conditional feature
subsets Sk, GMD assumption removes the estimation bias
towards any specific conditional feature subsets Sk. As be-
fore, k is a hyper-parameter that controls the information
loss and model complexity. Note that Eq. (8) with k = 1 has
been used in (Gao, Ver Steeg, and Galstyan 2016).
Theorem 2. Under the GMD assumption of order k, the
objective function in Eq. (2) becomes:

Jk,k
GMD(Xm) ∼ 1(|S|

k

)
∑

Si
k∈Sk

I(Xm;C|Si
k). (9)

More generally, we consider different values of k in Eq. (7)
and (8), denoted as k1 and k2 respectively. The objective
function J(Xm) is equivalent to:

Jk1,k2

GMD(Xm) ∼ 1(|S|
k1

)
∑

Si
k1

∈Sk1

H(Xm|Si
k1
)

− 1(|S|
k2

)
∑

Si
k2

∈Sk2

H(Xm|Si
k2
, C).

(10)

In Theorem 2, we have derived a class of methods that use
the GMD assumption, and their objective function is shown
in Eq. (10). See Appendix I.B for the proof.
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Existing Methods Using GMD. By varying k1 and k2 in
Theorem 2, we recover four existing MI based methods,
i.e., MIM, Minimum-Redundancy Maximum-Relevance
(MRMR) (Peng, Long, and Ding 2005), Joint Mutual In-
formation (JMI) (Yang and Moody 1999; Meyer, Schretter,
and Bontempi 2008) and Relaxed Minimum-Redundancy
Maximum-Relevance (RMRMR) (Vinh et al. 2016). Their
objective functions are listed in Table 1 (JGMD), and the
proof is shown in Appendix I.B. Note that GMD has not
been explicitly used to derive the objective functions for
these methods before. We contribute here by identifying the
GMD assumption as their common theoretical foundations
and showing these methods differ only in order k.

Time Complexity of GMD Methods. To analyze the time
complexity of the methods presented in Theorem 2 with dif-
ferent k1 and k2 values (Jk1,k2

GMD), we assume all the joint
entropy or MI values can be calculated in O(N) time. Let
t = max{k1, k2}, and K denote the maximum number of
features to be selected. The number of entropy values needs
to be calculated is in O(

KM
(

K
t−1

))
. Thus, the overall time

complexity is O(
KMN

(
K
t−1

))
if t ≥ 1, and O(MN) if

t = 0.

Strength and Limitation of GMD. The GMD assump-
tion is tractable and reasonable as a relaxation of the FID as-
sumption. The probability density estimates under the GMD
assumption are not biased towards the conditional features
used. However, the GMD assumption is more complex and
it is hard to describe the exact condition under which the
GMD assumption holds. Furthermore, these probability den-
sity estimates may not sum up to 1, because the geometric
mean of nonnegative real numbers is less than or equal to
their arithmetic mean, which sums up to 1:
∑
Xm

p(Xm|S) �
∑
Xm

( ∏
Si

k∈Sk

p(Xm|Si
k)
) 1

(|S|
k )

≤
∑
Xm

1(|S|
k

)
( ∑

Si
k∈Sk

p(Xm|Si
k)
)
= 1.

(11)

where the equality holds only when all p(Xm|Si
k) are equal.

The unnormalization of probability densities may have a
large impact on the calculation of MI, e.g., resulting in a
negative MI value. One possible way to solve this issue is
to divide probability densities by a normalization constant
(Wolpert and Wolf 1995; Rajwade, Banerjee, and Rangara-
jan 2008; Berglund, Raiko, and Cho 2015). However, com-
puting the normalization constant is nontrivial in our case.

2.3 Methods Based on Arithmetic Mean
Distribution

In this subsection, we introduce a logical extension of the
GMD assumption that uses arithmetic mean to estimate
probability densities:

Arithmetic Mean Distribution (AMD). The (class-
conditional) probability density function of a candidate fea-
ture Xm given the selected features S is equal to the arith-
metic mean of the (class-conditional) probability density

function of Xm conditioning on any k (0 ≤ k ≤ |S|) fea-
tures in S:

p(Xm|S) � 1(|S|
k

)
( ∑

Si
k∈Sk

p(Xm|Si
k)
)
, (12)

p(Xm|S, C) � 1(|S|
k

)
( ∑

Si
k∈Sk

p(Xm|Si
k, C)

)
. (13)

The AMD assumption is another relaxation of the FID as-
sumption. But unlike GMD, the probability densities esti-
mated by AMD are always normalized, i.e., sum up to 1.

Methods Using AMD. Consider the objective function:

I(Xm;C|S) =
∑

Xm,S,C

p(Xm,S, C) log
p(Xm|S, C)

p(Xm|S) .

(14)
We use sample mean to approximate the expectation term

Î(Xm;C|S) = 1

N

∑

X
(i)
m ,S(i),C(i)

log
p
(
X

(i)
m |S(i), C(i)

)

p
(
X

(i)
m |S(i)

) ,

(15)
where {X(i)

m ,S(i), C(i)} denotes the ith sample, N is sam-
ple size, and Î(·) denotes the sample estimate for I(·). By
substituting p(Xm|S) and p(Xm|S, C) using AMD, we ob-
tain a new class of methods, denoted as Jk1,k2

AMD , where k1
and k2 are the values of k in Eq. (12) and (13) respectively.
We will consider four pairs of k1 and k2 values in our exper-
iments, J0,0

AMD, J1,0
AMD, J1,1

AMD, and J2,1
AMD, to investigate the

effects of order k. Note that J0,0
AMD is essentially equivalent

to J0,0
GMD and J0,0

FID, that are all the same as the MIM method.

Time Complexity of AMD Methods. Although the high-
dimensional MI, i.e., I(Xm;C|S), cannot be decomposed
into a series of low-order MI approximations when using
the AMD assumption, the calculation of I(Xm;C|S) is still
tractable, simply because AMD is tractable to compute. We
note the time complexity of the AMD methods (Jk1,k2

AMD) is
the same as that of the methods based on GMD (Jk1,k2

GMD).

Strength and Limitation of AMD. The AMD assump-
tion is a reasonable relaxation of the FID assumption, in the
sense that if FID holds, AMD is true. The probability density
estimates under the AMD assumption are unbiased and al-
ways sum up to one. But like GMD, it is hard to describe the
exact condition under which AMD holds. Furthermore, the
high-dimensional MI cannot be simply written as a series of
low-order MI approximations under the AMD assumption.

3 Variational Information Based Methods

Instead of estimating high-order MI using low-order approx-
imations, a lower bound on MI called Variational Informa-
tion (VI) can be used to design objective function for feature
selection (Gao, Ver Steeg, and Galstyan 2016).
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3.1 Variational Mutual Information

Consider two random variables X and Y and their joint
probability distribution p(X,Y ). A lower bound on the MI
between X and Y is defined as (Barber and Agakov 2004):

I(X;Y ) ≥ H(Y ) +
∑

X,Y

p(X,Y ) log q(Y |X) := Ilb(X;Y ), (16)

where q(Y |X) is an arbitrary variational distribution
as long as it is normalized. This lower bound is de-
rived based on the Kullback-Leibler divergence i.e.,∑

Y p(Y |X) log p(Y |X) − p(Y |X) log q(Y |X) ≥ 0, and
becomes exact when the variational distribution q(Y |X)
matches the real one p(Y |X) (Barber and Agakov 2004).

3.2 Methods Based on Variational Information

The VI bound has been used to design objective function for
feature selection in (Gao, Ver Steeg, and Galstyan 2016):

Ilb(T ;C) :=
∑
T ,C

p(T , C) log
q(T |C)∑

C

q(T |C)p(C)
, (17)

where T = Xm∪S defines a trial feature subset. It has been
verified that this lower bound is valid for any distribution
q(T |C) used in Eq. (17), and becomes exact if q(C|T ) =
p(C|T ) (Gao, Ver Steeg, and Galstyan 2016).

For Sequential Forward Selection, maximizing Ilb(T ;C)
is equivalent to maximizing Ilb(Xm;C|S):

Ilb(Xm;C|S) :=
∑

Xm,S,C

p(Xm,S, C) log
q(Xm|S, C)∑

C

q(Xm|S, C)p(C)
.

(18)
Using sample mean to estimate the expectation term yields

J̃(Xm) ∼ 1

N

∑

X
(i)
m ,S(i),C(i)

log
q
(
X(i)|S(i), C(i)

)
∑
C

q
(
X(i)|S(i), C(i)

)
p
(
C(i)

) ,

(19)

where {X(i)
m ,S(i), C(i)} denotes the ith sample, N is sam-

ple size. We denote the objective function of VI methods
as J̃(·), in contrast to that of MI methods J(·). In or-
der to calculate the lower bound, we need to specify a
proper choice of probability distribution q(Xm|S, C) that
is both realistic and tractable to compute. Note that the VI
based methods only require the class-conditional probabil-
ity distribution of features (i.e., q(Xm|S, C)), in contrast to
the MI based methods which require both conditional and
class-conditional probability distributions of features (i.e.,
p(Xm|S) and p(Xm|S, C)). In this sense, the VI based
methods are more relaxed than the MI based methods.

The FID, GMD and AMD assumptions can also be
plugged in Eq. (18) to compute q(Xm|S, C) and thus the ob-
jective function for the VI based methods. In fact the GMD
assumption, Eq. (8) with k = 0 and k = 1, has been tested
in (Gao, Ver Steeg, and Galstyan 2016). As discussed be-
fore, the GMD assumption may result in an unnormalized
estimate of probability densities. In the experiments section,
we will investigate whether the AMD assumption can lead to

Table 2: Description of the data sets used in the experiments.
M : the number of features; N : the number of samples; C:
the number of classes.

ID Name M N C M/N MN

d1 Allaml 7129 72 2 9.9e+01 5.1e+05
d2 Breast 30 569 2 5.2e-02 1.7e+04
d3 Carcinom 9182 174 11 5.2e+01 1.6e+06
d4 Coil20 1024 1440 20 7.1e-01 1.4e+06
d5 Colon 2000 62 2 3.2e+01 1.2e+05
d6 Congress 16 435 2 3.6e-02 6.9e+03
d7 Glioma 4434 50 4 8.8e+01 2.2e+05
d8 Heart 13 270 2 4.8e-02 3.5e+03
d9 Ionosphere 34 351 2 9.6e-02 1.1e+04
d10 Isolet 617 1560 26 3.9e-01 9.6e+05
d11 Krvskp 36 3196 2 1.1e-02 1.1e+05
d12 Landsat 36 6435 6 5.5e-03 2.3e+05
d13 Leuk 7070 72 2 9.8e+01 5.0e+05
d14 Lung 3312 203 5 1.6e+01 6.7e+05
d15 Lungcancer 56 32 3 1.7e+00 1.7e+03
d16 Lymphoma 4026 96 9 4.1e+01 3.8e+05
d17 NCI9 9712 60 9 1.6e+02 5.8e+05
d18 ORL 1024 400 40 2.5e+00 4.1e+05
d19 Parkinsons 22 195 2 1.1e-01 4.2e+03
d20 Semeion 256 1593 10 1.6e-01 4.0e+05
d21 Sonar 60 208 2 2.8e-01 1.2e+04
d22 Soybeansmall 35 47 4 7.4e-01 1.6e+03
d23 Spect 22 267 2 8.2e-02 5.8e+03
d24 Splice 60 3175 3 1.8e-02 1.9e+05
d25 TOX 171 5748 171 4 3.3e+01 9.8e+05
d26 WarpAR10P 2400 130 10 1.8e+01 3.1e+05
d27 WarpPIE10P 2420 210 10 1.1e+01 5.0e+05
d28 Waveform 40 5000 3 8.0e-03 2.0e+05
d29 Wine 13 178 3 7.3e-02 2.3e+03

the selection of more informative features by fixing the nor-
malization issue of GMD. We note that the time complexity
of the VI based methods is the same as the corresponding
MI based methods using the same distribution assumption.

4 Experiments

In this section, we systematically compare the perfor-
mance of three probability distribution assumptions, i.e.,
FID, GMD and AMD. We combine each assumption with
the MI and VI frameworks, resulting in a number of dif-
ferent feature selection methods. The Python and C++
source codes of these methods are available online at
https://github.com/yuansuny/pda. These methods are then
used to select a subset of features for 29 real-world clas-
sification tasks from the UCI Machine Learning Reposi-
tory (Lichman 2013). A brief description of these datasets
is shown in Table 2. The features selected by each method
are evaluated using two classifiers – K Nearest Neighbour
(KNN) with K = 3 and linear Support Vector Machine
(SVM) with the regularization parameter set to 1. We cal-
culate the average 10-folder cross-validation error rate on
the range of 10 to 100 features (or 10 to M if the number
of features M < 100) as an indication of the effectiveness
of feature selection methods, following (Nguyen et al. 2014;
Gao, Ver Steeg, and Galstyan 2016). This process is repeated
50 times to alliterative randomness. The Wilcoxon rank-
sum test (α = 0.05) with Holm p-value correction (She-
skin 2003) is used to determine statistical significance. For
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Figure 1: Comparison between the FID, GMD and AMD assumptions incorporated with the MI (left and middle figures) and
VI frameworks (right figures). The horizontal axis represents the datasets (d), and the vertical axis the mean classification error
rates (ē) generated by KNN or SVM using the features selected by each method. For each method, we sort the error rates on
the 29 datasets in ascending order to generate the plots for better visualization.

datasets with continuous features, the Minimum Descrip-
tion Length method (Fayyad and Irani 1993) is employed
to evenly divide the continuous values into five bins, follow-
ing (Vinh et al. 2016). Note that the discretization is only
used in the feature selection procedure, while the classifiers
still use the original continuous values.

4.1 Comparison of Probability Distributions
Within the MI and VI Frameworks

Setup We compare the efficacy of FID, GMD and AMD
assumptions, each within the MI and VI frameworks. We
denote the objective function of MI based methods using
J , while the VI based methods as J̃ . To see the effects of
different probability distribution assumptions, we fix the or-
der k (i.e., the number of conditional features), and only
vary the assumptions. Specifically, we consider two sets of
comparisons for the MI based methods: 1) J1,0

AMD vs. J1,0
GMD

(MRMR) vs. J1,0
FID (MIFS with β = 1); and 2) J1,1

AMD vs.
J1,1
GMD (JMI) vs. J1,1

FID (CIFE). Note, unlike MI based meth-
ods, the VI based methods only use the class-conditional
feature distributions, thus we only consider one set of com-
parison for VI based methods: J̃1

AMD vs. J̃1
FID vs. J̃1

GMD
(i.e., VMIpairwise (Gao, Ver Steeg, and Galstyan 2016)). We
do not compare J̃0

FID vs. J̃0
GMD vs. J̃0

AMD because they are
equivalent in the sense that FID, GMD and AMD degenerate
to the same distribution when k = 0.

Table 3: The average ranking of the classification error rates
generated by the methods based on the FID, GMD and AMD
assumptions. The best ranking is highlighted in bold.

Methods Classifier FID GMD AMD

J1,0 SVM 2.52 1.79 1.31
KNN 2.62 1.59 1.44

J1,1 SVM 2.27 1.90 1.24
KNN 2.69 1.69 1.24

J̃1 SVM 2.17 1.83 1.38
KNN 2.28 1.93 1.38

Results The classification error rates of KNN and SVM
using the features selected by these methods under different
probability distribution assumptions are plotted in Figure 1.
To generate these plots, we sort the classification error rates
produced by each method on the 29 datasets in ascending
order. Therefore, the dataset index in these figures does not
match that in Table 2. We also rank these methods according
to their classification accuracy on each dataset using statis-
tical tests. The average ranking of each method is shown
in Table 3. The detailed classification error rates on each
dataset can be found in Appendix Table A1 and A2.

We observe that the feature selection methods based on
AMD and GMD generally achieve much lower classification
error than those based on FID. It confirms our hypothesis
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Table 4: The average ranking of the classification accuracy
generated by the methods based on GMD and AMD with
different order k. The best ranking is highlighted in bold.

Distribution Classifier J0,0 J1,0 J1,1 J2,1

GMD SVM 3.34 1.59 2.41 1.48
KNN 3.41 2.03 2.20 1.55

AMD SVM 3.31 1.83 2.38 1.79
KNN 3.18 2.14 2.20 1.82

that the AMD and GMD assumptions can potentially reduce
the estimation bias of FID. Moreover, the methods based on
AMD yield equally well or statistically significantly better
classification accuracy than those based on GMD, and the
average ranking of AMD-based methods is consistently bet-
ter than those based on GMD. It empirically demonstrates
that by fixing the normalization issue of GMD using AMD,
we can potentially select more informative features, result-
ing in a higher classification accuracy.

4.2 Effects of Order k in Probability Distributions

Setup To investigate the effects of order k on the perfor-
mance of feature selection methods, we fix the probabil-
ity distribution assumptions and only vary k. Specifically,
we consider two sets of comparisons: 1) J0,0

AMD (MIM) vs.
J1,0
AMD vs. J1,1

AMD vs. J2,1
AMD; and 2) J0,0

GMD (MIM) vs. J1,0
GMD

(MRMR) vs. J1,1
GMD (JMI) vs. J2,1

GMD (RMRMR). We limit
the value of k up to 2, because: 1) the existing methods
based on GMD (JGMD) are mainly low-order, and 2) esti-
mating a higher-order probability distribution requires sig-
nificantly more samples. We do not consider the VI-based
methods here because, when k = 2, the VI based methods
require to compute probability distributions conditional on
three variables: two features plus one class label.

Results For each dataset, we rank the methods with differ-
ent order k based on their SVM or KNN classification error
rates. The average ranking of each method is shown in Ta-
ble 4, and the detailed classification error rates can be found
in Appendix Table A1 and A2. The plots of classification
error rates and convergence curves are placed in Appendix
Figure A2 and A3 due to page limits. We observe that the
performance of these methods based on the GMD and AMD
distributions improves as k increases from 0 to 2. This is
not surprising because, in theory as k increases, the GMD
and AMD assumptions become more realistic. However, in-
creasing the value of k also significantly increases the com-
putational cost, as shown in Appendix Figure A4.

4.3 Comparison Between the Methods Based on
AMD Against Other State-of-the-arts

Setup In Appendix III.C, we have found that the two
methods based on AMD, J̃1

AMD and J2,1
AMD, are very com-

petitive among the 12 methods considered. Here we further
compare J̃1

AMD and J2,1
AMD against three other information-

theoretic methods that have not been included in our frame-

Table 5: The average ranking of the classification accuracy
generated by the methods based on AMD compared to other
state-of-the-arts. The best and second best ranking are high-
lighted in bold and italics respectively.

Classifier J̃1
AMD J2,1

AMD MRI SPECCMI CMIM Trace SPEC

SVM 2.58 2.34 2.86 4.24 2.72 4.82 6.52
KNN 2.41 2.65 3.00 4.17 3.03 4.62 6.31

work – MRI (Wang et al. 2017), SPECCMI (Nguyen et al.
2014) and CMIM (Fleuret 2004), as well as two methods
that are not based on information theory – Trace (Nie et al.
2008), and SPEC (Zhao and Liu 2007).

Results The average ranking results in Table 5 show that
the two methods based on the AMD assumption achieve
overall better performance than the other state-of-the-art
methods. It confirms that the AMD assumption on feature
distributions is reasonable and can be used to select infor-
mative features for many real-world datasets. The detailed
classification error rates of each method on each dataset are
presented in Appendix Table A3 and A4.

5 Conclusion

In this paper, we have revealed the key role of the Feature
Independence Distribution (FID) and Geometric Mean Dis-
tribution (GMD) assumptions used in many information-
theoretic feature selection methods. We showed that the
probability density estimates under the FID assumption are
biased, and the GMD assumption, although reducing this
estimation bias, introduces an additional normalization is-
sue, i.e., its probability density estimates may not sum up
to one. We resolved this issue by proposing the Arithmetic
Mean Distribution (AMD) assumption. Our numerical ex-
periments confirmed that the AMD assumption improves
over the GMD and FID assumptions in selecting informative
features within both the Mutual Information and Variational
Information frameworks.
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