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Abstract

While increasingly deep networks are still in general de-
sired for achieving state-of-the-art performance, for many
specific inputs a simpler network might already suffice. Ex-
isting works exploited this observation by learning to skip
convolutional layers in an input-dependent manner. However,
we argue their binary decision scheme, i.e., either fully ex-
ecuting or completely bypassing one layer for a specific in-
put, can be enhanced by introducing finer-grained, “softer”
decisions. We therefore propose a Dynamic Fractional Skip-
ping (DFS) framework. The core idea of DFS is to hypoth-
esize layer-wise quantization (to different bitwidths) as in-
termediate “soft” choices to be made between fully utiliz-
ing and skipping a layer. For each input, DFS dynamically
assigns a bitwidth to both weights and activations of each
layer, where fully executing and skipping could be viewed
as two “extremes” (i.e., full bitwidth and zero bitwidth). In
this way, DFS can “fractionally” exploit a layer’s expressive
power during input-adaptive inference, enabling finer-grained
accuracy-computational cost trade-offs. It presents a unified
view to link input-adaptive layer skipping and input-adaptive
hybrid quantization. Extensive experimental results demon-
strate the superior tradeoff between computational cost and
model expressive power (accuracy) achieved by DFS. More
visualizations also indicate a smooth and consistent transi-
tion in the DFS behaviors, especially the learned choices be-
tween layer skipping and different quantizations when the to-
tal computational budgets vary, validating our hypothesis that
layer quantization could be viewed as intermediate variants of
layer skipping. Our source code and supplementary material
are available at https://github.com/Torment123/DFS.

1 Introduction

Although convolutional neural networks (CNNs) have show
state of the art performance in many visual perception tasks
(Krizhevsky, Sutskever, and Hinton 2012; Taigman et al.
2014), the high computational cost has limited their ap-
plication in resource constrained platforms such as drones,
self-driving cars, wearables and many more. The growing
demand of unleashing the intelligent power of CNN into
these devices has posed unique challenges in developing al-
gorithms that enables more computationally efficient infer-
ence of CNNs. Earlier resource-efficient implementations
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assumed that CNNs are first compressed before being de-
ployed, thus being “static” and unable to adjust their own
complexity at inference. Later on, a series of works (Fig-
urnov et al. 2017; Wang et al. 2018a) pointed out that the
continuous improvements in accuracy, while significant, are
marginal compared to the growth in model complexity. This
implies that computationally intensive models may only be
necessary to classify a handful of difficult inputs correctly,
and they might become “wasteful” for many simple inputs.

Motivated by this observation, several works have tackled
the problem of input-dependent adaptive inference, by dy-
namically bypassing unnecessary computations on the layer
level, i.e., selectively executing a subset of layers (Figurnov
et al. 2017; Wu et al. 2018b). However, the binary decision
scheme of either executing a layer fully, or skipping it com-
pletely, leaves no room for intermediate options. We conjec-
ture that finer-grained dynamic execution options can con-
tribute to better calibrating the inference accuracy of CNNs
w.r.t. the complexity consumed.

On a separate note, CNN quantization appears to ex-
ploit model redundancy at the finest level - by reducing the
bitwidth of the element-level numerical representations of
weights and activations. Earlier works (Han, Mao, and Dally
2015; Zhu et al. 2016) presented to quantize all layer-wise
weights and activations to the same low bitwidth, yet ignored
the fact that different layers can have different importance.
The latest work (Wang et al. 2019) learned to assign different
bitwidths for each layer. However, no work has yet discussed
an input-adaptive, layer-wise bitwidth allocation at the infer-
ence time, not to mention linking between quantization with
dynamic inference.

In an effort to enable finer-grained dynamic inference be-
yond “binary” layer skipping, we propose a Dynamic Frac-
tional Skipping (DFS) framework, that treats layer quantiza-
tion (to different bitwidths) as softer, intermediate versions
of layer-wise skipping. Below are our contributions:

• We propose to link two efficient CNN inference mindsets:
dynamic layer skipping and static quantization, and show
that they can be unified into one framework. Specifically,
DFS considers a quantized layer to be a “fractionally ex-
ecuted” layer, in contrast to either a fully executed (se-
lected) or non-executed (bypassed) layer in the existing
layer skipping regime. In this way, DFS can more flexibly
calibrate the trade-off between the inference accuracy and
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the total computational costs.

• We introduce input-adaptive quantization at inference for
the first time. Based on each input, DFS learns to dy-
namically assign different bitwidths to both weights and
activations of different layers, using a two-step training
procedure. That is in contrast to (Wang et al. 2019) that
learns layer-wise bit allocation during training, which is
then fixed for inference regardless of inputs. The existing
layer skipping could be viewed as DFS’s coarse-grained
version, i.e., allowing only to select between full bits (ex-
ecuting without quantization) and zero bit (bypassing).

• We conduct extensive experiments to illustrate that DFS
strikes a better computational cost and inference accuracy
balance, compared to dynamic layer skipping and other
relevant competitors. Moreover, we visualize the skipping
behaviors of DFS when varying the total inference com-
putations in a controlled way, and observe a smooth tran-
sition from selecting, to quantizing, and to bypassing lay-
ers. The observation empirically supports our conjecture
that layer quantization can be viewed as soft and interme-
diate variants of layer skipping.

2 Related Works

Model Compression. Model compression has been widely
studied to speedup CNN inference by reducing model size
(Wu et al. 2018a). Existing works focus on pruning unim-
portant model weights, or quantizing the model into low
bitwidths.

Pruning: There has been extensive studies on model
pruning in different granularities. (Han, Mao, and Dally
2015; Han et al. 2015) reduce the redundant parameters by
performing element-wise weight pruning. Coarser-grained
channel level pruning has been explored in (Yu et al. 2017;
Liu et al. 2017; He, Zhang, and Sun 2017) by enforcing
group sparsity. (Wen et al. 2016) exploits parameter redun-
dancy in a multi-grained manner by grouping weights into
structured groups during pruning, each with a Lasso reg-
ularization. (Xu, Park, and Brick 2018) proposes a hybrid
pruning by performing element-wise pruning on top of the
filter-wise pruned model. (Kim, Ahn, and Oh 2018) per-
forms multi-grained model pruning by adding explicit ob-
jectives for different levels. (Cheng et al. 2017) presents a
comprehensive review on pruning techniques. These meth-
ods are applied to well-trained networks and do not dynam-
ically adjust the model complexity conditioned on the input.

Network Quantization: Quantizing network weights and
activations has been proven to be an effective approach to
reduce the memory and computational budgets. Most of
the existing works quantize the model to varied bitwidths
with a marginal accuracy loss. (Rastegari et al. 2016) bi-
narized each convolution filter into

{
-w, +w

}
. (Zhou et al.

2016) used one bit for network weights and two bits for
activations. (Jacob et al. 2018) made use of 8-bit integers
for both weights and activations. With the recent develop-
ment of hardware design, it becomes possible to use flexi-
ble bitwidths for different layers (Wang et al. 2019). (Han,
Mao, and Dally 2015) determines the layer-wise bit alloca-
tion policy based on domain experts; (Wang et al. 2019) fur-

ther enhanced the idea by automating the decision process
with a reinforcement learning method. These works either
empirically find fixed bitwidths or automatically learn fixed
layer-wise bit allocation regardless of input, ignoring that
the importance of each layer may vary with different inputs.
Our proposed DFS models are orthogonal to existing static
quantization methods.

Dynamic Inference. While model compression presents
“static” solutions, i.e., the compressed models cannot adap-
tively adjust their complexity at inference, for improving in-
ference efficiency, the recently developed dynamic inference
methods offer a different option to execute partial inference,
conditioned on input complicacy or resource constraints.

Dynamic Layer Skipping: Many works (Wu et al. 2018b;
Wang et al. 2018a; 2018b) have formulate dynamic infer-
ence as a sequential decision problem, and selectively by-
pass subsets of layers in the network conditioned on the
input. The common approach of these works is to use gat-
ing networks to determine the layer-wise skipping policy in
ResNet-style models (He et al. 2016), which is inherently
suitable for skipping design due to its resiudal structure.
The work of SkipNet uses a hybrid learning algorithm that
sequentially performs supervised pretraining and reinforce-
ment fine-tuning, achieving better resource saving and accu-
racy tradeoff than existing static model compression meth-
ods (Wang et al. 2018a). BlockDrop (Wu et al. 2018b) uses a
decision network to train a global skipping policy for resid-
ual blocks, and (Liu and Deng 2018) trains separate con-
trol units for the execution policy of sub parts of the net-
work. In these works, a layer will either be executed fully
or skipped completely, leaving no space for any interme-
diate options. We show that by adding “softer” intermedi-
ate quantization options between the two extremes, the DFS
framework exploits the layer’s expressive power in a finer
granularity, achieving a better accuracy than layer skipping
methods under the same computational cost.

Dynamic Channel Selection/Pruning: Since layer skip-
ping only works well in network architectures with resid-
ual connections, channel pruning methods have been devel-
oped to exploit the redundancy in CNNs at a finer level. (Lin
et al. 2017) formulates the channel pruning problem as a
Markov decision process, and apply RNN gating network to
determine which channel to prune conditioned on the input.
GaterNet (Chen et al. 2018) uses a separate network to cal-
culate the channel activation strategy. The slimmable neu-
ral network (Yu et al. 2018) trains the network with varied
layer widths, and adjust channel number during inference to
meet resource budgets. (Teja Mullapudi et al. 2018) selec-
tively executes branches of network based on input. Com-
pare to quantization, the idea of channel selection exploits
fine-grained model redundancy in the channel level, which
is orthogonal to our method, and can potentially be com-
bined with our framework to yield further resource savings.

Early Exiting: In many real world applications, there are
strict resource constraints: the networks should hence allow
for “anytime prediction” and be able to halt the inference
whenever a specified budget is met. A few prior works en-
able CNNs with “early exit” functions. (Teerapittayanon,
McDanel, and Kung 2016) adds additional branch classi-

5701



fiers to the backbone CNNs, forcing a large portion of in-
puts to exit at the branches in order to meet resource de-
mands. (Huang et al. 2017) further boosts the performance
of early exiting by aggregating features from different scale
for early prediction. The early exiting works have been de-
veloped for resource-dependent inference, which is orthog-
onal to our input-dependent inference, and the two can be
combined to yield further resource savings.

3 The Proposed Framework

In resource constrained platforms, the ideal efficient CNN
inference should save as much resource as possible with-
out non-negligible accuracy degradation. This requires the
algorithm to maximally take advantage of the model’s ex-
pressive power, while dropping any redundant parts. Exist-
ing works like SkipNet exploit the model redundancy on the
layer level, the binary decision of either executing a layer
fully or skipping it completely makes it impossible to make
use of the layer’s representational power in any finer lev-
els. In contrast, CNN quantization exploits the model redun-
dancy in the finest level - by reducing the bitwidth of the
numerical representation of weights and activations. Thus, a
natural thought is to use bitwidth options to fill in the gap
between the binary options of layer skipping, striking an op-
timal tradeoff between computational cost and accuracy.

We hereby propose a Dynamic Fractional Skipping (DFS)
framework that combines the following two schemes into
one continuous fine-grained decision spectrum:
• Input-Dependent Layer Skipping. On the coarse-

grained level, the “executed” option of the layer skip de-
cision is equivalent to the full bitwidth option of layer
quantization in the DFS framework, and the “skip” option
is equivalent to a zero-bit option of layer quantization.

• Input-Dependent Network Quantization. On the fine-
grained level, any lower than full bitwidth execution can
be viewed as “fractionally” executing a layer, enabling the
model to take advantage of the expressive power of the
layer in its low bitwidth version.
To our best knowledge, DFS is the first attempt to unify

binary layer skipping design and one alternative of its inter-
mediate “soft” variants, i.e., quantization, into one dynamic
inference framework. Together they achieve optimal trade-
offs between accuracy and computational usage by skipping
layers if possible or executing varied “fractions” of the lay-
ers. Meanwhile, state-of-the-art hardware design of CNNs
have shown that such DFS schemes are hardware friendly.
For example, (Sharma et al. 2018) proposed a bit-flexible
CNN accelerator that constitutes an array of bit-level pro-
cessing elements to dynamically match the bitwidth of each
individual layer. With such dedicated accelerators, the pro-
posed DFS’s energy savings would be maximized.

DFS Overview. We here introduce how the DFS frame-
work is implemented in ResNet-style models, which has
been the most popular backbone CNNs for dynamic infer-
ence (Wang et al. 2018a; Wu et al. 2018b). Figure 1 illus-
trates the operation of our DFS framework. Specifically, for
the i-th layer, we let Fi ∈ Rs×s×m denote its output fea-
ture maps and therefore Fi−1 as its input ones, where m

Figure 1: An illustration of the DFS framework where C1,
C2, C3 denote three consecutive convolution layers, each
of which consists of a column of filters as represented us-
ing cuboids. In this example, the first conv layer is executed
fractionally with a low bitwidth, the second layer is fully ex-
ecuted using the full bitwidth, while the third one is skipped.

denotes the total number of channels and s × s denote the
feature map size. Also, we employ Ck

i to denote the convo-
lutional operation in the i-th layer executed in k bits (e.g.,
k = 32 corresponds to the full bitwidth) and design a gating
network Gi for determining fractional skipping of the i-th
layer. Suppose there are a total of n decision options, in-
cluding the two binary skipping options (i.e., SkipNet) and
a set of varied bitwidth options for quantization, and then Gi

outputs a gating probability vector of length n. The opera-
tion of a convolutional layer under the DFS framework can
then be formulated as:

Fi =

n−1∑

k=1

Gk
iC

bk
i (Fi−1) +G0

iFi−1 (1)

Where Gi is the gating probability vector of the ith layer,
Gk

i denotes the value of its k-th entry, and bk represents the
bitwidth option corresponding to the k-th entry. When k = 0,
we let G0

i represent the probability of a complete skip.
Gating Design of DFS. In the DFS framework, the exe-

cution decision of a layer is calculated based on the output of
the previous layer. Therefore, the gating network should be
able to capture the relevance between consecutive layers in
order to make informative decision. As discussed in (Wang
et al. 2018a), recurrent neural networks (RNNs) have the ad-
vantages of both light weight (due to its parameter sharing
design, which accounts for only 0.04% of the computational
cost of a residual block) and being able to learn sequen-
tial tasks (due to its recurrent structure), thus, we adopt this
convention and implement the gating function G as a Long
Short Term Memory (LSTM) network, as depicted in Figure
2. Specifically, suppose there are n options including the bi-
nary skipping options and the intermediate bitwidth options,
then the LSTM output will be projected into a skipping prob-
ability vector of length n via softmax function. During infer-
ence, the largest element of the vector will be quantized to
1 and selected for execution; during training, the skipping
probability will be used for backpropagation, which will be
introduced in more detail in the subsection of DFS training.
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Figure 2: An illustration of the RNN gate used in DFS.
The output is a skipping probability vector, where the green
arrows denote the layer skip options (skip/keep), and the
blue arrows represent the quantization options. During in-
ference, the skip/keep/quantization options corresponding to
the largest vector element will be selected to be executed.

Training of DFS. Objective Function: The learning ob-
jective of DFS is to boost the prediction accuracy while min-
imizing the computational cost, and is defined as follows,

min
W,G

L(W,G) + αE(W,G) (2)

where L represents the accuracy loss, E is the resource-
aware loss, α is a weighted factor that trades off importance
between accuracy and resource budget, and W and G denote
the parameters of the backbone model and the gating net-
work, respectively. The resource-aware loss E is calculated
as the total computational cost associated with executed lay-
ers (measured in FLOPs in this paper).

Skipping Policy Learning with Softmax Approximation:
During inference, the execution decision is automatically
made based on the skipping probability vector of each gate:
the layer is either skipped or executed in one of the cho-
sen bitwidths. This discrete and therefore non-differentiable
decision process can make it difficult to train DFS with
stochastic gradient descent methods. One alternative is to
use softmax approximation for backpropagation, and quan-
tize to discrete decisions for inference (Greff, Srivastava,
and Schmidhuber 2016; Wang et al. 2018a). In this paper,
we adopt the same technique for training the gating network.

Two-Step Training Procedure: Given a pre-trained CNN
model A, our goal is to jointly train A and its gating net-
work for targeted computational budget. However, directly
training A with randomly initialized gating networks results
in much lower accuracy than that of A. One possible reason
is that with random gate initialization, the model may start
at a point with a majority of its layers skipped or executed in
low bitwidths, causing large deviation of the feature maps’
statistics, which cannot be captured by the batch normaliza-
tion parameters from the originally trained A. To tackle this
problem, we conjecture that if the training starts with fully
executed model, and then gradually reduces the computa-
tional cost towards the target budget, the batch normalization
parameters will adapt to the new feature statistics. Motivated
by this idea, we use a two-step training procedure:

1) Fix the parameters of A and train the gating network to
reach the state of executing all the layers with full bitwidth.

2) With the initialization obtained from the first step, we
jointly train A and the gating network to achieve the targeted
computational budget.

The computational cost is controlled via computation per-
centage (cp), which is defined as the ratio between the
FLOPs of executed layers and the FLOPs of the full bitwidth
model. During training, we dynamically change the sign of
α in in Equation (2) to stablize the cp of the model: for each
iteration, if the cp of the current batch of samples is above
the targeted cp, we set α to be positive, enforcing the model
to reduce its cp by suppressing the resource loss E in Equa-
tion (2); if the cp is below the targeted cp, we set α to be
negative, encouraging the model to increase its cp by rein-
forcing E. In the end the cp of the model will be stabilized
around the targeted cp. The absolute value of α is the step
size to adjust the cp, since we empirically found out that the
performance of our model is robust to a wide range of step
sizes, we fix the absolute value of α. More detailed experi-
ments of the choice of α will be presented in section 4.

4 Experimental Results

Experiment Setup. Models and Datasets: We evaluate the
DFS method using ResNet38 and ResNet74 as the backbone
models on two datasets: CIFAR-10 and CIFAR-100. In par-
ticular, the structure of the ResNet models follow the design
in (He et al. 2016). For layer quantization, we consider 4
dynamic execution choices: skip, 8 bits, 16 bits, keep (full
bitwidth), and follow the suggestion in (Wang et al. 2018a)
to keep the first residual block always executed with full
bitwidth. Metrics: We compare DFS with relevant state-of-
the-art techniques in terms of the tradeoff between predic-
tion accuracy and computation percentage. Note that for a
layer that is executed with a bitwidth of 8 bits, its corre-
sponding computation percentage is 8/32×8/32 = 1/16 of
the full bitwidth layer.

Training Details: The training of DFS follows the two-
step procedure as described in Section 3. For the first step,
we set the initial learning rate as 0.1, and train the gating
network with a total of 64000 iterations; the learning rate
is reduced by 10× after the 32000-th iteration, and further
reduced by 10× after the 48000-th iteration. The specified
computation budget is set to 100%. The hyperparameters in-
cluding the momentum, weight decaying factor, and batch
size are set to be 0.9, 1e-4, and 128, respectively, and the
absolute value of α in Equation (2) is set to 5e-6.

After the first step is finished, we use the resulting LSTM
gating network as the initialization for the second step,
where we jointly train the backbone model and gating net-
work to reach the specified computation budget. Here we use
an initial learning rate of 0.01, with pre-specified target cp,
and all other settings are the same as the first step.

DFS Performance Evaluation. We evaluate the proposed
DFS against the competitive dynamic inference technique
SkipNet (Wang et al. 2018a) and two state-of-the-art static
CNN quantization techniques proposed in (Banner et al.
2018) and (Wang et al. 2019).
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Comparison with SkipNet (Dynamic Inference Method):
In this subsection, we compare the performance of DFS
with that of the SkipNet method. Specifically, we compare
the performance of DFS on ResNet38 and ResNet74
with that of SkipNet38 and SkipNet74, respectively, on
both the CIFAR-10 and CIFAR-100 datasets. We denote
DFS-ResNetxx as the models with DFS applied on top of
ResNexx backbone.

Experimental results on CIFAR-10 are shown in Fig-
ure 3 (vs. ResNet38) and Figure 4 (vs. ResNet74). Specif-
ically, Figures 3-4 show that (1) given the same compu-
tation budget, DFS-ResNet38/74 consistently achieves a
higher prediction accuracy than that of SkipNet38/74 under
a wide range of computation percentage (20%-80%), with
the largest margin being about 4% (93.61% vs. 89.26%)
at the computation percentage of 20%; (2) given the
same or even with a higher accuracy, DFS-ResNet38/74
achieves more than 60% computational saving as compared
to SkipNet38/74; (3) interestingly, DFS-ResNet38/74 even
achieves better accuracies than the original full bitwidth
ResNet38/74. We conjecture that this is because DFS can
help in relieving model overfitting thanks to its finer-grained
dynamic feature.

Figure 5 (vs. ResNet38) and Figure 6 (vs. ResNet74)
show the results on CIFAR-100. We can see that the ac-
curacy improvement (or computational savings) achieved
by DFS-ResNet38/74 over SkipNet38/74 is even more pro-
nounced given the same computation percentage (or the
same/higher accuracy). For example, as shown in Figure 5,
DFS-ResNet38 achieves 8% (68.91% and 60.38%) better
prediction accuracy than SkipNet38 under the computation
percentage of 20%; and Figure 6 shows that DFS-ResNet74
outperforms SkipNet74 with 6% (70.94% and 65.09%) ac-
curacy when computation percentage is 20%.

The four sets of experimental results above (i.e., Figures
3-6) show that (1) CNNs with DFS outperform the corre-
sponding SkipNets even at a high computation percentage
of 80% (i.e., small computational savings of 20% over the
original ResNet backbones); (2) as the computation percent-
age decreases from 80% to 20% (corresponding to compu-
tational savings from 20% to 80%), the prediction accuracy
of CNNs with DFS stays relatively stable (slightly fluctu-
ate within a range of 0.5% while being consistently higher
than that of SkipNet under the same computation percent-
age), whereas the accuracy of SkipNet decreases drastically.
These observations validate our conjecture that DFS’s finer-
grained dynamic execution options can better calibrate the
inference accuracy of CNNs w.r.t. the complexity consumed.

Comparison with Statically Quantized CNNs: In this sec-
tion, we compare DFS with two state-of-the-art static CNN
quantization methods: the scalable network (Banner et al.
2018) and HAQ (Wang et al. 2019), with ResNet38 as the
backbone on CIFAR-10. Specifically, for the scalable net-
work (Banner et al. 2018), we train it under a set of bitwidths
of (8bit, 10bit, 12bit, 14bit, 16bit, 18bit, 20bit, 22bit); ac-
cording to HAQ’s official implementation1, only the weights
are quantized, we control HAQ quantized models’ computa-

1https://github.com/mit-han-lab/haq-release

Figure 3: Comparing the accuracy vs. computation percent-
age of DFS-ResNet38 and SkipNet38 on CIFAR10.

Figure 4: Comparing the accuracy vs. computation percent-
age of DFS-ResNet74 and SkipNet74 on CIFAR10.

Figure 5: Comparing the accuracy vs. computation percent-
age of DFS-ResNet38 and SkipNet38 on CIFAR-100.

methods under the same settings.
Figure 7 shows the results. It can be seen that DFS-

ResNet38 achieves similar or slightly better accuracy (up to
1.2% over the scalable method and 0.2% over HAQ) than
both the scalable and HAQ methods, even with a much more
coarser-grained quantization options (keep, skip, 8bits, and
16bits). Furthermore, among the three methods, the predic-
tion accuracy of the scalable method fluctuates the most as
the computation percentage changes, showing that CNNs
with layer-wise adaptive bitwidths can achieve better trade-
offs between accuracy and computational cost.

Choice of Parameter α: We conduct two sets of experi-
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Figure 6: Comparing the accuracy vs. computation percent-
age of DFS-ResNet74 and SkipNet74 on CIFAR-100.

Figure 7: Accuracy vs. computation percentage of DFS-
ResNet38, the scalable quantized ResNet38 and HAQ quan-
tized ResNet38.

ments to demonstrate how dynamically changing the sign of
α as described in section 3 is necessary for reaching the tar-
geted cp, and how the absolute value of α affect the model’s
performance. Table 1 compares two training scenarios of
DFS-ResNet74 on CIFAR10, DFS-ResNet74-D denotes the
case where dynamic changing sign of α is applied, and DFS-
ResNet74-C denotes the case where α is a positive constant,
and we set the absolute value of α to 1e-5. It can be seen
that when α is constant, the resulting actual cp significantly
deviates from the targeted cp, since a positive α will keep
enforcing the model to redcuce cp without constraint, while
the dynamic case achieves the desired cp. Table 2 shows how
the performance of the DFS-ResNet74 model varies with the
absolute value of α on CIFAR10. During training, the dy-
namic changing sing of α is applied. It can be seen that there
is an obvious accuracy drop ( 0.2%) under both targeted cps
when the absolute value of α increases to (1e-4,1e-3), where
the actual cp deviated from the target cp by around 3%. This
is because a larger step size will cause the cp of the model
to fluctuate, and thus the unstable training will results in de-
graded accuracy, while the stable performance in the range
(1e-6,1e-5) proves that the model is robust to smaller step
size under different targeted cps.

Model Target cp Actual cp Acc

DFS-ResNet74-D 40% 40.20% 93.53%
DFS-ResNet74-C 40% 8.20% 93.12%
Base-ResNet74 93.55%

Table 1: DFS performance under dynamic changing α and
constant α.

Target cp = 40 % Target cp = 50 %
abs of α Actual cp Acc Actual cp Acc

1e-6 40.10% 93.53% 50.08% 93.72%
1e-5 40.93% 93.54% 50.20% 93.74%
1e-4 40.80% 93.31% 51.01% 93.52%
1e-3 43.75% 93.27% 53.40% 93.42%

Table 2: Performance of DFS models under different α. The
’abs’ in the leftmost column represents absolute value.

Decision Behavior Analysis and Visualization

We then visualize and study the learned layer-wise deci-
sion behaviors of DFS, and how they evolve as cp increases.
We demonstrate that quantization options are indeed natu-
ral candidates as intermediate “fractional” skipping choices.
Specifically, we investigate how these decisions gradually
change to layer quantization at different bitwidths. In gen-
eral, the (full) layer skip options are likely to be taken only
when a very low cp is enforced. When the computational
saving requirement is mild, the model shows a strong ten-
dency to “fractioally” skip all its layers.

Figures 8-10 show the layer-wise “decision distributions”
(e.g., the skip option taken per layer) of DFS-ResNet74
trained on CIFAR-10, as the computation percentage in-
creases from 4% to 6.25%. In this specific case and (quite
low) percentage range, the model is observed to only choose
between “skip” and “8bit” in a vast majority of input cases.
Therefore, we only plot “skip” and “8bit” columns for com-
pact display. we can observe a smooth transition of deci-
sion behaviors as the computational percentage varies: from
a mixture of layer skipping and quantization, gradually to
all layer quantization. Specifically, from Figure 8 to Figure
9, within the first residual group, the percentage of skipping
options for blocks 2,4,9 remains roughly unchanged, while
we observe an obvious drop of skipping percentages at block
5 (from 55% to 0%) and block 8 (from 100% to 10%).
Similarly, for the second and third residual groups, the skip-
ping percentage of most residual blocks gradually reduces
to 0%, with that of the remaining blocks (20,22,23,24) stays
roughly unchanged. From Figure9 to Figure10, the decisions
of all the layers shift to 8bit. The smooth transition empir-
ically endorses our hypothesis made in Section 3, that the
layer quantization options can serve as a “fractional” inter-
mediate stage between the binary layer skipping options.

As cp increases, DFS apparently favors the finer-grained
layer quantization options than the coarser-grained layer
skipping. Figure 11 shows the accuracy of DFS-ResNet74
when the computation percentage increases from 4% to
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Figure 8: Visualization of layerwise decision distribution of DFS-ResNet74 on CIFAR10: computation percentage = 4 %.

Figure 9: Visualization of layerwise decision distribution of DFS-ResNet74 on CIFAR10: computation percentage = 5 %.

30%. From 4% to 6.25% (when the layer skipping options
gradually change to all-quantization options), there is a no-
table accuracy increase from 92.91% to 93.54%. The per-
formance then reaches a plateau after the computation per-
centage of 6.25%, while we observe DFS now tends to
choose quantization for all layers (see supplementary ma-
terial). This phenomenon demonstrates that as a “fractional”
layer skipping candidate, low bitwidth options can better re-
store the model’s accuracy under a wider range of cps.

Additionally, from Figures 8-10, we observe that the first
residual block within each residual group is learned not to
be skipped, regardless of the values of cps. That aligns with
the findings in (Greff, Srivastava, and Schmidhuber 2016),
which shows that for ResNet-style models, only the first
residual block within each group extracts a completely new
representation (and therefore being most important), and

that the remaining residual blocks within the same group
only refine this feature iteratively.

5 Conclusion

We proposed a novel DFS framework, which extends binary
layer skipping options with the “fractional skipping” ability
- by quantizing the layer weights and activations into dif-
ferent bitwidths. The DFS framework exploits model redun-
dancy in a much finer-grained level, leading to more flexi-
ble and effective calibration between inference accuracy and
complexity. We evaluate DFS on the CIFAR-10 and CIFAR-
100 benchmarks, and it was shown to compare favorably
against both state-of-the-art dynamic inference method and
static quantization techniques.

While we demonstrate that quantization indeed can be
viewed as “fractional” intermediate states in-between binary
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Figure 10: Visualization of layerwise decision distribution of DFS-ResNet74 on CIFAR10: computation percentage = 6.25 %.

Figure 11: DFS-ResNet74 under lower cps.

layer skip options (by both achieved results, and the visu-
alizations of skipping decision transitions), we recognize
that more possible alternatives to “fractionally” execute a
layer could be explored, such as channel slimming (Yu et al.
2018). We leave this as a future work.
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