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Abstract

In this paper, we improve the PAC-Bayesian error bound for
linear regression derived in Germain et al. (2016). The im-
provements are two-fold. First, the proposed error bound is
tighter, and converges to the generalization loss with a well-
chosen temperature parameter. Second, the error bound also
holds for training data that are not independently sampled. In
particular, the error bound applies to certain time series gen-
erated by well-known classes of dynamical models, such as
ARX models.

1 Introduction

When facing a machine learning problem, one must be care-
ful to avoid overfitting the training dataset. Indeed, it is well
known that minimizing the empirical prediction error is not
sufficient to generalize to future observations. This is es-
pecially important for sensitive “AI” applications that are
nowadays tackled by many industries (self-driving vehicles,
health diagnosis, personality profiling, to name a few). Sta-
tistical learning theories study the generalization properties
of learning algorithms. For the prediction problems, they
provide guarantees on the “true” error of machine learning
predictors (i.e., the probability of erroneously predicting the
labels of not seen yet samples).

The PAC-Bayesian learning theory, initiated by David
McAllester (1999; 2003)—see Guedj (2019) for a recent
survey—, has the particularity of providing computable
“non-vacuous” generalization bounds on popular machine
learning algorithms, such as neural networks (Dziugaite and
Roy 2017) and SVMs (Ambroladze, Parrado-Hernández,
and Shawe-Taylor 2006). Moreover, as its name suggests,
PAC-Bayesian framework bridges the frequentist Probably
Approximately Correct theory and the Bayesian inference.
This topic is namely discussed in Zhang (2006), Grünwald
(2012), Alquier, Ridgway, and Chopin (2016), Germain et
al. (2016), Sheth and Khardon (2017).

In this paper, we build on a result of Germain et al.
(2016), which analyses the Bayesian linear regression from a
PAC-Bayesian perspective, leading to generalization bounds
for the squared loss. We improve the preceding results
in two directions. First, our new generalization bound is

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tighter than the one of Germain et al. (2016), and con-
verges to the generalization loss for proper parameters (see
Section 3). Second, our result holds for training data that
are not independently sampled (see Section 4). The lat-
ter result is directly applicable to the problem of learning
dynamical systems from time series data, in particular, to
learning ARX models. ARX models are a popular class
of dynamical systems with a rich literature (Ljung 1999;
Hannan and Deistler 1988) due to their relative simplicity
and modelling power. Note that ARX models can be viewed
as a simple yet non-trivial subclass of recurrent neural net-
work regressions. For example, just like general recurrent
neural networks, ARX models have a memory, i.e., they are
able to remember past input data.

Noteworthy, Alquier and Wintenberger (2012) proposed
PAC-Bayesian oracle inequalities to perform model selec-
tion on different time series (weakly dependent processes
and causal Bernoulli shifts). Thus, their work is complemen-
tary to ours, as it relies on different assumptions and focuses
on other types of error bounds.

2 PAC-Bayesian Learning

Let us consider a supervised learning setting, where a learn-
ing algorithm is given a training set S = {(xi, yi)}ni=1 of
size n. Each pair (xi, yi) links a description xi ∈ X to a
label yi ∈ Y . Typically, the description is encoded by a real-
valued vector (X ⊆ R

d), and the label is a scalar (Y ⊆ N

for classification problems, or Y ⊆ R for regression ones).
Given S, the learning algorithm returns a prediction func-
tion f : X → Y , also referred to as a hypothesis. We restrict
attention to prediction functions/hypotheses that are measur-
able. The “quality” of the predictor f is usually assessed
through a measurable loss function � : Y × Y → R—such
as the zero-one loss �(y, y′) = 1y �=y′ in classification con-
text, or the squared loss �(y, y′) = (y − y′)2 in regression
context, by evaluating the empirical loss

L̂ �(f)(S) =
1

n

n∑
i=1

�(f(xi), yi) , for any S.

PAC Learning. When facing a machine learning problem,
one wants to use f to predict the label y ∈ Y from a de-
scription x ∈ X that does not belong to the training set S. A
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good predictor “generalize to unseen data”. This is the ob-
ject of study of the Probably Approximately Correct (PAC)
approach (Valiant 1984).

In order to study the statistical behavior of the average
loss, we introduce the following statistical framework. We
fix a probability space (Ω,P,F), where F is a σ-algebra
over Ω and P is a probability measure on F, see for example
Bilingsley (1986) for the terminology. We assume that there
exist random variables Xi : Ω → X , Yi : Ω → Y , i =
1, 2, . . . ,, such that the description-label pairs {(xi, yi)}ni=1
are samples from the first n variables {(Xi,Yi)}ni=1 and
there exists ω ∈ Ω such that xi = Xi(ω), yi = Yi(ω).
Moreover, we assume that Xi,Yi are identically distributed,
i.e. E g(Xi,Yi) does not depend on i for any measurable
function g.

Notation 1 (E). We will use E to denote expected value with
respect to the measure P.

That is, in the sequel, boldface symbols P and E will de-
note the probability and the corresponding mathematical ex-
pectation for the data generating distribution, and we will
use boldface to denote random variables on the probability
space (Ω,P,F) and simple font for their samples. As we
will see later on, we will also use a probability measure and
the corresponding mathematical expectation defined on the
space of predictors, which will be denoted differently.

The generalization loss of a predictor f is then defined as

L �(f) = E �(f(Xi),Yi) ,

and it expresses the average error for “unseen data”. It is then
of interest to compare this error with the average empirical
error, where the average is taken over all possible samples.
To this end, we define the random variable

L̂ �(f) =
1

n

n∑
i=1

�(f(Xi),Yi) ,

i.e., for any sample S = {(xi, yi) = (Xi(ω),Yi(ω)}ni=1 of
{(Xi,Yi)}ni=1, L̂ �(f)(S) = L̂ �(f)(ω) is a sample of the
random variable L̂ �(f). By slight abuse of terminology, we
will refer to L̂ �(f) as the empirical loss too. PAC theories
provide upper bounds of the form

P
(
L �(f) ≤ L̂ �(f) + ε

)
≥ 1− δ ,

where δ ∈ (0, 1] acts as a “confidence” parameter; the whole
challenge of the PAC theories is to derive the mathemat-
ical expression of ε. Among the various approaches pro-
posed to achieve this goal (reviewed in Shalev-Shwartz and
Ben-David (2014)), we can mention VC-dimension, sample
compression, Rademacher’s complexity, algorithmic stabil-
ity, and the PAC-Bayesian theory. In the current work, we
stand in the PAC-Bayesian learning framework.

PAC-Bayes. The PAC-Bayesian learning framework
(McAllester 1999; 2003) has the particularity of reconciling
the PAC learning standpoint with the Bayesian paradigm.

To be more precise, let us define a σ-algebra F on the set of
predictors F .1

Notation 2 (Ef∼ρ). If ρ is a probability distribution function
on F , in the sequel we denote by Ef∼ρ the mathematical
expectation with respect to the probability measure which
corresponds to ρ.

In the PAC-Bayesian paradigm, we consider a prior prob-
ability distribution π and a posterior probability distribution
ρ̂ over this σ-algebra. The prior must be chosen indepen-
dently of the training set S, and the learning algorithm role
is to output the posterior distribution, instead of a single pre-
dictor. The PAC-Bayesian bounds take the form2

P

(
E

f∼ρ̂
L �(f) ≤ E

f∼ρ̂
L̂ �(f) + ε

)
≥ 1− δ .

That is, in the PAC-Bayesian setting, the study focuses on
the ρ̂-averaged loss.3 Typically, the term ε takes into account
the prior via the Kullback-Leibler divergence:

KL(ρ̂‖π) = E
f∼ρ̂

ρ̂(f)

π(f)
.

Note that KL-diverence is defined only if ρ̂ is absolutely con-
tinuous with respect to π.

In this paper, we build on the PAC-Bayesian theorem of
Alquier, Ridgway, and Chopin (2016), which is also the
starting point of Germain et al. (2016) result improved in
upcoming sections.
Theorem 3 (Alquier, Ridgway, and Chopin (2016)). Given
a set F of measurable hypotheses X → Y , a measurable
loss function � : Y × Y → R, a prior distribution π over F ,
a δ ∈ (0, 1], and a real number λ > 0, ∀ρ̂ over F :

P

(
E

f∼ρ̂
L �(f) ≤ E

f∼ρ̂
L̂ �(f) (1)

+
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+Ψ�,π(λ, n)

])
≥ 1− δ ,

where Ψ�,π(λ, n) = ln E
f∼π

E e
λ
(
L �(f)−L̂ �(f)

)
. (2)

For completeness, we provide a proof of Theorem 3 in
Appendix A. This proof highlights that the result is obtained
without assuming that the random variables Xi, Yi are mu-
tually independent, unlike many “classical” PAC-Bayesian

1Note that F is completely different from the σ-algebra F of
the probability space for which the data generating random vari-
ables Xi,Yi are defined. This is not surprising, as the randomness
of the data represents an assumption on the nature of the process
which generates the data, while F will be used to define probability
distributions, which express our subjective preferences for certain
predictors, and which will be adjusted based on the observed data.

2Contrary to the example we give here, the relation between the
expected empirical loss and the term ε might be non-linear. This is
the case of the famous PAC-Bayes theorem of Seeger (2002).

3The PAC-Bayesian literature also studies the stochastic Gibbs
predictor, that perform each prediction on x ∈ X by drawing f
according to ρ̂ and outputting f(x) (e.g., Germain et al. (2015)).
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theorems. However, the i.i.d. assumption might be necessary
to obtain a computable expression from Theorem 3, because
it requires bounding the term Ψ�,π(λ, n) of Eq. (2). Indeed,
since Ψ�,π(λ, n) relies on the unknown joint distribution of
Xi,Yi for i = 1, 2, . . . its approximation needs assumption
on the data.

Interestingly, given a training set S, obtaining the opti-
mal posterior ρ̂∗ minimizing the bound of Theorem 3, does
not require evaluating Ψ�,π(λ, n), as this latter term is in-
dependent of both S and ρ̂. Indeed, for fixed S, π and λ,
minimizing the right-hand side of Eq. (1) amounts to solve
ρ̂∗ = argminρ̂

[
λEf∼ρ̂ L̂ �(f)(S) + KL(ρ̂‖π)], which is

given by the Gibbs posterior (Catoni 2007; Alquier, Ridg-
way, and Chopin 2016; Guedj 2019); for all f ∈ F ,

ρ̂∗(f) =
1

Z
π(f) exp

(
−λL̂ �(f)(S)

)
, (3)

where Z is a normalization constant. We refer to λ as a tem-
perature parameter, as it controls the emphasis on the empir-
ical loss minimization. The value of λ also directly impacts
the value of the generalization bound, and the convergence
properties of Ψ�,π(λ, n). In particular, if a non-negative loss
is upper bounded by a value L (i.e., �(y, y′)∈[0, L] for all
y, y′∈Y), and Xi,Yi are i.i.d., we have, for any f ∈ F (we
provide the mathematical details in Appendix A):

E exp
[
λ
(
L �(f)− L̂ �(f)

)]
≤ exp

[
λ2L2

8n

]
. (4)

Hence, we have Ψ�,π(λ, n)≤ lnEf∼π e
λ2L2

8n = λ2L2

8n , from
which the following result is obtained.

Corollary 4. Given F , π, a measurable and bounded loss
function � : Y × Y → [0, L], under i.i.d. observations, for
δ ∈ (0, 1] and λ > 0, for any ρ̂ over F :

P

(
E

f∼ρ̂
L �(f) ≤ E

f∼ρ̂
L̂ �(f)

+
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+

λ2L2

8n

])
≥ 1− δ .

Therefore, from Corollary 4, we obtain with λ =
√
n ,

E
f∼ρ̂

L �(f) ≤ E
f∼ρ̂̂

L �(f) +
1√
n

[
KL(ρ̂‖π)+ ln

1

δ
+
L2

8

]
. (5)

In turn, with λ = n ,

E
f∼ρ̂

L �(f) ≤ E
f∼ρ̂̂

L �(f) +
1

n

[
KL(ρ̂‖π)+ ln

1

δ

]
+

L2

8
, (6)

with probability at least 1-δ. The generalization bound given
by Eq. (5) has the nice property that its value converges to
the generalization loss (i.e., the 1√

n

[ · ] term tends to 0 as
n grows to infinity). However, the result of Eq. (6) does not
converge: the bound suffers from an additive term L2/8 even
with large n.

Relation with Bayesian inference. Despite its lack of
convergence, PAC-Bayesian theorem result of Eq. (6) is in-
teresting for being closely linked to Bayesian inference. As
discussed in Germain et al. (2016) (based on earlier re-
sults of Zhang (2006) and Grünwald (2012)), maximizing
the Bayesian maximum likelihood amounts to minimize the
PAC-Bayes bound of Theorem 3 with λ = n, provided the
Bayesian model parameters (typically denoted θ in the lit-
erature) are carefully reinterpreted as predictors (each θ is
mapped to a regressor fθ), and the considered loss function
� is the negative log likelihood (roughly4, �nll

(
y, fθ(x)

)
=

− ln p(y|x, θ), where p(y|x, θ) is a Bayesian likelihood).
That is, in these particular conditions, the posterior pro-
moted by the celebrated Bayesian rule (i.e., p(θ|X,Y ) =
p(θ)p(Y |X,θ)

p(Y |X) , where p(θ) is the prior) aligns with the Gibbs
posterior of Eq. (3).

Based on this observation, Germain et al. (2016) extends
Theorem 3 to Bayesian linear regression—for which the loss
is unbounded–, as discussed in the next section.

3 Bounds for Bayesian Linear Regression

In the Bayesian literature (Bishop 2006; Murphy 2012, . . . ),
it is common to model a linear regression problem by as-
suming that X = R

d, Y = R. The input-output pairs Xi,Yi

satisfy the following assumptions.

Assumption 5.

(a) the inputs Xi are such that Xi ∼ N (0, σ2
xI), and

Xi,Xj are independent for i �= j.
(b) the labels are given by Yi = w∗ · Xi + ei, where

ei∼N (0, σ2
e) and ei, ej are independent for i �= j.

Here, we consider that σe > 0 is fixed, and we want to
estimate the weight vector parameters w∗ ∈ R

d. Thus, the
likelihood function of Yi given Xi, w∗ ∈ R

d is given by

p(Yi|Xi,w)=N (Yi|w ·Xi, σ
2
e)

=(2πσ2
e)

− 1
2 e

(
1

2σ2
e
(Yi−w·Xi)

2
)
.

Therefore, the corresponding negative log-likelihood loss
function is proportional to the squared loss of a linear re-
gressor fw(x) = w · x :

�sqr(fw(Xi),Yi) = (Yi −w ·Xi)
2 . (7)

Previous theorem

Considering a family of linear predictors, Fd={fw|w∈Rd},
Germain et al. (2016) proposed a generalization bound for
Bayesian linear regression under the following assumptions.
To get a generalization bound for a squared loss in form
of Eq. (1), one needs to compute the term Ψ�sqr,π(λ, n) or
upper bound it. The following is the initial PAC-Bayesian
bound for unbounded squared loss proposed by Germain et
al. (2016).

4We omit several details here to concentrate on the general idea.
We refer the reader to Germain et al. (2016) for the whole picture.
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Theorem 6 (Germain et al. (2016)). Given Fd, �sqr, and δ
defined above, given a prior distribution π over Fd which
is a zero mean Gaussian with covariance σ2

πI, i.e., π(fw) =
N (w|0, σ2

π I), under Assumption 5, for constants c≥2σ2
xσ

2
π ,

and λ ∈ (0, 1
c ), for any posterior distribution ρ̂ over Fd:

P

(
E

fw∼ρ̂
L �(fw) ≤ E

fw∼ρ̂̂
L �(fw) +

1

λ

[
KL(ρ̂‖π) + ln

1

δ

]
+

1
2 (d+ ‖w∗‖2)c+ (1− λc)σ2

e

1− λc

)
≥ 1− δ . (8)

Theorem 6 expresses the result with λ stated explicitly,
while Germain et al. (2016)—see Appendix A.4 therein—
were focusing on the case λ = n. Here, we observe that the
bound does not converge; regardless the choice of λ, the last
term of Eq. (8) is not negligible.

Note that PAC-Bayesian guarantees for similar Bayesian
models has also been proposed by other authors, under dif-
ferent set of assumptions, either bounded loss (Sheth and
Khardon 2017) or non-random inputs (Dalalyan and Tsy-
bakov 2008).

Improved theorem

The first contribution of this paper is an improvement of
Theorem 6.

Theorem 7. Given Fd, �sqr defined above, under Assump-
tion 5, for any δ ∈ (0, 1], λ > 0, for any prior distribution
π over Fd, and for any posterior distribution ρ̂ over Fd, the
following holds:

P

(
E

fw∼ρ̂
L �(fw) ≤ E

fw∼ρ̂
L̂ �(fw)

+
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+Ψ�sqr,π(λ, n)

])
≥ 1− δ ,

(9)

where Ψ�sqr,π(λ, n) = ln E
fw∼π

exp (λvw)(
1 + λvw

n
2

)n
2

(10)

≤ ln E
fw∼π

exp

(
λ2v2w

n
2

)
, (11)

and vw = σ2
x ‖ w∗ −w ‖22 +σ2

e .

Proof. We get the complexity term in form of Eq. (10) by
simplifying the general form given in Eq. (2), and using as-
sumptions on inputs and a prior distribution.

Ψ�sqr,π(λ, n)

= ln E
fw∼π

E exp
[
λ
(
L �(fw)− L̂ �(fw)

)]
= ln E

fw∼π
exp

(
λL �(fw)

)
E exp

(
−λL̂ �(fw)

)
= ln E

fw∼π
exp

(
λL �(fw)

)
E exp

(
−λ

n

n∑
i=1

(Yi−w·Xi)
2
)

︸ ︷︷ ︸
(♣)

.

Note that random variable Yi−w ·Xi = (w∗−w)Xi+ei
has zero expectation

E(Yi −w ·Xi) = (w∗ −w)EXi +Eei = 0 ,

and its second moment, denoted vw, which by definition
equals L �(fw), is

L �(fw) = E(Yi −w ·Xi)
2

= E
[
(w∗ −w)XT

i Xi(w
∗ −w)

]
+E

[
2(w∗ −w)Xiei + e2i

]
= σ2

x ‖ w∗ −w ‖22 +σ2
e .

Hence, Yi−w·Xi√
vw

∼ N (0, 1) is a normalized random vari-
able, and its squared sum follows Chi-squared distribution
law. Note that the term (♣) of the function Ψ�sqr,π(λ, n) in
the form

E exp

(
−λvw

n

∑n
i=1

(
Yi−w·Xi√

vw

)2)
,

corresponds to the moment generating function (MGF) of a
Chi-squared distribution, i.e. (1− 2t)

n
2 with t = −λvw

n .
By replacing the term (♣) by Chi-Squared MGF and

L �(fw) by vw, we get the complexity term in form of
Eq. (10).

Eq. (11) is obtained by lower bounding the denominator
of Eq. (10) by using the inequality (1 + a

b )
b > exp( ab

a+b ),
for a, b > 0 :

Ψ�,π(λ, n) = ln E
fw∼π

exp (λvw)

exp
(

λvw
n
2

λvw+n
2

)
= ln E

fw∼π
exp

(
λ2v2

w

λvw+n
2

)
≤ ln E

fw∼π
exp

(
λ2v2

w
n
2

)
.

We are interested in the convergence properties of the
right side of Eq. (9). This will highly depend on the choice
of λ.

• If λ is fixed and does not depend on n, and the latter ap-
proaches to ∞, we get

E
fw∼ρ̂

L �(fw) ≤ E
fw∼ρ̂

L̂ �(fw) +
1

λ

[
KL(ρ̂‖π) + ln

1

δ

]
.

The term Ψ�,π(λ, n) amounts to 0, since the expression
under the expectation of Eq. (10) will converge to 1 due
to the fact that

exp (λvw) = lim
n→∞

(
1 + λvw

n
2

)n
2

.

Hence, an empirical error converges to the generaliza-
tion error with sufficiently large value of the parameter
λ, and small divergence between prior and posterior dis-
tributions.

• If λ is considered as a function of n, then we can ob-
tain convergence of the right side of the Eq. (9) to the left
side with a well-chosen temperature parameter. Let λ be
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n
1
d ln( 1δ ), then from Eq. (9) and (11), we have

E
fw∼ρ̂

L �(fw) ≤ E
fw∼ρ̂

L̂ �(fw) +
KL(ρ̂‖π)
n

1
d ln( 1δ )

+
1

n
1
d

+
1

n
1
d

ln E
fw∼π

exp

(
2n

2
d ln( 1δ )

2v2w
n

)
.

If the amount of training examples n→∞, then the bound
converges to generalization loss.

Theorems comparison

The new bound given by Theorem 7 is always tighter than
the previous one of Theorem 6. Indeed, the fraction of
Eq. (10) is upper bounded by its numerator exp (λvw). The
latter is the exact same expression as in the derivation of Ger-
main et al. (2016) (Supp. Material A4, p.11, line 4), which
lead us to the prior bound shown in Eq. (8). Moreover, the
new bound converges to zero for well-chosen temperature
parameter λ as the number of training observations goes to
infinity. For these reasons, the result of Theorem 7 is strictly
stronger than those of Theorem 6.

4 Extension to the non i.i.d. case

In this section we will study the case when the observed data
are no longer sampled independently from the underlying
distribution.

The learning problem and its relationship with
time series

We consider the same learning problem as in Section 3, but
we modify Assumption 5 by no longer assuming that Xi

are i.i.d. random variables, more precisely, we assume the
following:
Assumption 8. We assume Part (b) of Assumption 5 and
we assume that Xi ∼ N (0, Qx) for some positive definite
matrix Qx > 0.

It then follows that Yi are also identically distributed,
Yi ∼ N (0, σ2

y), where

σ2
y = w∗TQxw

∗ + σ2
eI .

Note that from the assumption that Xi are identically dis-
tributed it follows that L �(fw) does not depend on i and

L �(fw) = (w∗ −w)TQx(w
∗ −w) + σ2

e .

A particular instance of the learning problem above is the
problem of learning ARX models, which is a well-studied
problem in control theory and econometrics (Ljung 1999;
Hannan and Deistler 1988). For the sake of simplicity, we
will deal only with the scalar input, scalar output case. Con-
sider stationary zero mean discrete-time stochastic processes
yt,ut, t ∈ Z, t > 0.

Assume that there exist real numbers {ai, bi}ki=1 and a
stochastic process et such that

yt =

k∑
i=1

aiyt−i +

k∑
i=1

biut−i + et , (12)

where et is assumed to be an i.i.d. sequence of random
variables such that et ∈ N (0, σ2) and et is uncorrelated
with ys,us for s < t. Consider the polynomial a(z) =

zk −∑k
i=1 aiz

k−i−1. If a(z) has all its complex roots in-
side the unit disc, and ut is a stationary, then it is well known
(Hannan and Deistler 1988) that there yt is the unique sta-
tionary process which satisfies Eq. (12).

Moreover, if ut is a jointly Gaussian process, then the yt

and the parameters ({ai, bi}ki=1, σ
2) together with the joint

distribution of ut determine the distribution of yt uniquely
(Hannan and Deistler 1988).

Intuitively, the learning problem is to try to compute a
prediction ŷt of yt based on past values {yt−l,ut−l}∞l=1 of
the input and output processes. In the literature (Hannan and
Deistler 1988; Ljung 1999) one typically would like to min-
imize the prediction error E[(yt − ŷt)

2] In principle, this
generalization error may depend on t. However, if we as-
sume that the predictor f uses only the last L observations
and it is of the form ŷt =

∑L
i=1 âiyt−i +

∑L
i=1 b̂iut−i,

then by stationarity of yt,ut, t ∈ Z, the predictor will
not depend on t. Furthermore, if yt,ut come from an ARX
model Eq. (12) and they are Gaussian, then it can be shown
(Hannan and Deistler 1988) under some mild assumptions
that the best possible predictor is necessarily of the above
form with L = k, and in fact, we should take âi = ai,
b̂i = bi, i = 1, . . . , k, and in this case the generalization
error E[(yt−ŷt)

2] = σ2. For this reason, in the literature
(Ljung 1999; Hannan and Deistler 1988) the learning prob-
lem is often formulated as the problem of estimating the pa-
rameters of the true model (Eq. (12)). It is well known that
for ARX models, the latter point of view is essentially equiv-
alent to finding the predictor for which the generalization
error E[(yt − ŷt)

2] is the smallest.
This allows us to recast the learning problem into our

framework for linear regression as follows. For every i =
1, 2, . . ., define

Yi = yi+k ,

Xi = [yi+k−1 . . . yi−1 ui+k−1 . . . ui−1]
T
,

w∗ = [a1 . . . ak b1 . . . bk] , et = ei+k .

It then follows that Xi,Yi, ei satisfy Assumption 8.

PAC-Bayesian approach for linear regression with
possibly dependent observations

In this section we discuss the extension of Theorem 7 to the
case when the observations are not independently sampled.

Although Theorem 3 holds even when (Xi,Yi) are not
i.i.d., the proof of Theorem 7 relies heavily on the indepen-
dence of Xi, i = 1, . . . , n. More precisely, let us recall from
the proof of Theorem 7 the empirical prediction error vari-
ables

Zw,i = Yi −w ·Xi = (w∗ −w) ·Xi + ei . (13)

The proof of Theorem 7 relied on Zw,i, i = 1, . . . , n be-
ing independent and identically distributed zero mean Gaus-
sian random variables. In our case, the variables Zw,i are
still zero mean Gaussian variables which are identically dis-
tributed, but they no longer independent. Hence, we have to
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take into account the joint distribution of {Zw,i}ni=1, which
in turn depends on the joint distribution of {Xi}ni=1.

In order to deal with this phenomenon, we will define
the joint covariance matrix QX,n of the random variable
X1:n =

[
XT

1 , . . . , XT
n

]
as follows:

QX,n = E[X1:nX
T
1:n] ,

i.e., the (i, j)th d×d block matrix element of QX,n is
E[XiX

T
j ]. We can then formulate the following bound.

Theorem 9. Let ρn be the minimal eigenvalue of QX,n and
assume that ρn>0. Under Assumption 8, for any prior dis-
tribution π over Fd, any δ ∈ (0, 1], any real number λ > 0,
and for any posterior distribution ρ̂ over Fd, we have

P

(
E

fw∼ρ̂
L �(fw) ≤ E

fw∼ρ̂
L̂ �(fw)

+
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+ Ψ̂�,π(λ, n)

])
≥ 1− δ ,

(14)

where

Ψ̂�,π(λ, n) = ln E
fw∼π

exp (λvw)(
1 +

λρn,w
n
2

)n
2

(15)

≤ ln E
fw∼π

exp

(
λ2vwρn,w

n
2

+ λ(vw − ρn,w)

)
, (16)

with vw = (w∗ −w)TQx(w
∗ −w) + σ2

e ,
and ρn,w = ρn(w

∗ −w)T (w∗ −w) + σ2
e .

Remark 10 (Comparison with the i.i.d. case). If Xi, i =
1, 2, . . . , are independent and QX = σ2

xId, then QX,n is di-
agonal, with the diagonal elements being σ2

x. In this case,
ρn = σ2

x and ρn,w = vwb and hence the statement of Theo-
rem 9 boils down to that of Theorem 7.

Before presenting the proof of Theorem 9 some discus-
sion is in order.

Recall that one of the advantages of the error bound of
Theorem 7 was that it converged to zero as n → ∞. The
question arises if this is the case for the error bound of The-
orem 9. In order to answer this question we need to inves-
tigate the dependence on n of the smallest eigenvalue ρn
of the covariance matrix QX,n, since ρn is used in the er-
ror bound of Theorem 9. To this end, note that QX,n is
a positive semi-definite matrix, and hence by the proper-
ties of minimal eigenvalues of positive semi-definite matri-
ces (Golub and Van Loan 2013) ρnrT r ≤ rTQX,nr. From
Södeström and Stoica (1989)(Chapter 5, page 135) it fol-
lows that ρn ≥ ρn−1, i.e., ρn is a monotonically increas-
ing sequence. In particular, as ρn ≤ ρ1 and QX,1 = QX ,
ρ1‖w−w∗‖22 ≤ (w−w∗)TQx(w−w∗) and hence ρn,w ≤
vw. This means that the right-hand side of Eq. (15) is not
smaller than the right-hand side of Eq. (10), and Eq. (16) is
not smaller than Eq. (11).

That is, the error bounds of Theorem 9 are not smaller
than those of Theorem 7. Moreover, ρn ≥ 0 since it is an
eigenvalue of the positive definite matrix QX,n. In particu-
lar, ρ∗ = limn→∞ ρn = infn ρn exists.

Then we get the following corollary of Theorem 9, by
noticing that since ρn ≥ ρ∗, exp (λvw)(

1+
λρn,w

n
2

)n
2
≤ exp (λvw)(

1+
λρ∗,w

n
2

)n
2
.

Corollary 11. Assume ρ∗ > 0. For any prior π over Fd,
any δ ∈ (0, 1], and any λ > 0, and any ρ̂ over Fd, Eq. (14)
remains true if we replace Ψ̂�,π by Ψ̃�,π , where

Ψ̂�,π(λ, n) ≤ Ψ̃�,π(λ, n) = ln E
fw∼π

exp (λvw)(
1 +

λρ∗,w
n
2

)n
2
,

with vw = (w∗ − w)TQx(w
∗ − w) + σ2

e and ρ∗,w =
ρ∗(w∗ −w)T (w∗ −w) + σ2

e.

Corollary 11 gives a PAC-Bayesian bound, asymptotic be-
havior of which is easy to study. Indeed, since 1+

λρ∗,w
n/2 in-

creases with n and it converges to exp(λρ∗,w) as n → ∞,
the error bound Ψ̃�,π(λ, n) will decrease with n and

lim
n→∞ Ψ̃�,π,(λ, n) = ln E

fw∼π
exp (λ(vw − ρ∗,w)) . (17)

That is, contrary to the i.i.d. case in Theorem 9, PAC-
Bayesian error bound of Corollary 11 decreases with n,
but it will not converge to 0, rather, it will be bounded
from above by the right-hand side of Eq. (17). Note that
vw−ρ∗,w = (w−w∗)T (Qx−ρ∗Id)(w−w∗). The latter is a
monotonically increasing function of Qx−ρ∗Id: the smaller
this difference is, the close the right-hand side of Eq. (17) to
zero. The difference Qx − ρ∗Id is zero in the i.i.d. case, and
can be seen as a kind of measure of the degree of dependence
of Xi, i = 1, 2, . . . ,.

Note that Theorem 9 and Corollary 11 are meaningful
only for ρn > 0 and ρ∗ > 0.

For time series assumption that ρ∗ > 0 is equivalent to
Qx,n > mInd for all n for some m. This property is mild
modification of the well-known property of informativity of
the data set {yt,ut}∞t=1 (Ljung 1999). This can be seen by
an easy modification of the argument of Södeström and Sto-
ica (1989)(Chapter 5, page 122, proof of Property 1). In
turn, informativity of the data set is a standard assumption
made in the literature (Ljung 1999), and it is required for
learning ARX models. Note that under mild assumptions on
ut, from Ljung (1999)[Theorem 2.3] it then follows that the
L̂ �(fw) → L �(fw) as n → ∞ with probability one. That
is, even though the law of large numbers does not apply in
this case, we still know that the empirical loss converges to
the generalization error as n → ∞.

Proof of Theorem 9. The proof follows the same lines as
that of Theorem 9. From Theorem 3 it follows that

P

(
E

fw∼ρ̂
L �(fw) ≤ E

fw∼ρ̂
L̂ �(fw)

+
1

λ

[
KL(ρ̂‖π) + ln

1

δ
+Ψ�,π(λ, n)

])
≥ 1− δ .

(18)

Consider the random variable Zw,i defined in Eq. (13). Just
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like in the proof of Theorem 7,

Ψ�,π(λ, n) =ln E
fw∼π

E exp
[
λ
(
L �(fw)−L̂ �(fw)

)]
(19)

= ln E
fw∼π

{
exp

(
λL �(fw)

)
E exp

(
−λ

n

n∑
i=1

Z2
w,i

)}
.

And, it can be shown that Zw,i is zero mean Gaussian with
variance E[Z2

w,i] = vw. In the proof of Theorem 7 we
used the fact that under its assumptions {Zw,i}ni=1 were
mutually independent and identically distributed and hence
λvw
n

∑n
i=1

Zw,i

v2
w

had χ2 distribution. In our case, Zw,i are
not independent. In order to get around this issue, we define
the random variable Zw,1:n and its covariance matrix Qw,n :

Zw,1:n = [Zw,i, . . . , Zw,n]
T
,

Qw,n = E[Zw,1:nZ
T
w,1:n] .

It is easy to see that Qw,n = DT
wQX,nDw + σ2

eIn , where

Dw = diag((w −w∗)Id, . . . , (w −w∗)Id︸ ︷︷ ︸
n times

) .

Notice that rTQX,nr ≥ ρnr
T r for all r ∈ R

d by Golub
and Van Loan (2013). Then, for any z ∈ R

n, by taking r =
Dwz, it follows that

zTQw,nz = (Dwz)TQX,n(Dwz) + σ2
ez

T z

≥ ρn(Dwz)T (Dwz) + σ2
ez

T z = ρn,w .
(20)

where we used that ‖Dwz‖22 = ‖w −w∗‖22‖z‖22. Define

S = Q−1/2
w,n Zw,1:n .

and let Si be the ith entry of S, i.e., S = [S1 . . . Sn]
T .

Then from Eq. (20) it follows that
n∑

i=1

Z2
w,i = ZT

w,1:nQ
−1/2
w,n Qw,nQ

−1/2
w,n Zw,1:n

= STQw,nS ≥ STSρn,w =
( n∑

i=1

S2
i

)
ρn,w .

It then follows that

exp

(
−λ

n

n∑
i=1

Z2
w,i

)
≤ exp

(
−λ

n
ρn,w

n∑
i=1

S2
i

)
. (21)

Notice now that S is Gaussian and zero mean, with co-
variance E[SST ] = Q

−1/2
w,n E[Zw,1:nZ

T
w,1:n]Q

−1/2
w,n = In.

That is, the random variables Si are normally distributed and
Si,Sj are independent, and therefore

∑n
i=1 S

2
i has χ2 dis-

tribution. Hence,

E

[
exp

(
−λρn,w

n

n∑
i=1

S2
i

)]
=

1

(1 +
λρn,w

n
2

)
n
2

.

Combining this with Eq. (21) and (19), Eq. (18) implies
Eq. (15). By using the inequality

(
1+a

b

)b
>e

ab
a+b for a, b>0

with a=λρn,w and b=n
2 , Eq. (16) follows from Eq. (15).

Related works

Note that PAC bounds for learning time series has been
explored in the literature by Kuznetsov and Mohri (2017;
2018). Their approach is based on covering numbers and
Rademacher complexity instead of PAC-Bayes analysis, but
in contrast to the current paper, Kuznetsov and Mohri’s work
allows for non-stationary time series.

Alquier and Wintenberger (2012) includes a PAC-
Bayesian analysis in their model selection procedure for
time series. Among other differences, they provide oracle
inequalities type of bounds, whereas our analysis provides
generalization bounds relying on the empirical loss.

5 Conclusion

We have presented an improved PAC-Bayesian error bound
for linear regression and extended this error bound to the
case of non i.i.d. observations. Thus, the obtained bound ap-
plies to the learning problem of time series using ARX mod-
els, which can be viewed as a simple yet non-trivial subclass
of recurrent neural network regressions. For this reason, we
are hopeful that the results of Section 4 could potentially
lead to PAC-Bayesian bounds for recurrent neural networks.
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A Mathematical details

Proof of Theorem 3

Proof. The PAC-Bayesian theorem is based on the follow-
ing Donsker-Varadhan’s change of measure.

For any measurable function φ : F → R, we have
Ef∼ρ̂ φ(f) ≤ KL(ρ̂‖π) + ln

(
Ef∼π e

φ(f)
)
. Thus, with

φ(f)=λ
(L �(f)−L̂ �(f)

)
, we obtain ∀ ρ̂ on F :

E
f∼ρ̂

λ
(L �(f)− L̂ �(f)

)
≤ KL(ρ̂‖π) + ln

(
E

f∼π
eλ
(
L �(f)−L̂ �(f)

))
. (22)

Let’s consider the random variable ξ= E
f∼π

eλ
(
L �(f)−L̂ �(f)

)
.

By the Markov inequality, we have

P

(
ξ ≤ 1

δ
E ξ

)
≥ 1− δ ,

which, combined with Eq. (22), gives

P

(
E

f∼ρ̂
λ
(L �(f)− L̂ �(f)

) ≤ KL(ρ̂‖π) + ln

(
1

δ
E ξ

))
≥ 1− δ .
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By rearranging the terms of above equation, we obtain the
following equivalent form of the statement of the theorem:

P

(
E

f∼ρ̂
L �(f) ≤ E

f∼ρ̂
L̂ �(f)

+
1

λ

[
KL(ρ̂‖π) + ln

(
1

δ
E ξ

)])
≥ 1− δ .

To see that the inequality above is equivalent to the statement
of the theorem, note that by Fubini’s theorem,

E ξ = E E
f∼ρ̂

eλ
(
L �(f)−L̂ �(f)

)
= E

f∼ρ̂
E eλ

(
L �(f)−L̂ �(f)

)
,

and hence lnE ξ = Ψ�,π(λ, n). Moreover, ln( 1δ E ξ) =

ln 1
δ + lnE ξ.

Details leading to Eq. (4)
For any f ∈ F :

E exp
[
λ
(
L �(f)− L̂ �(f)

)]
=E e

λ
n

∑n
i=1(E �(f(Xk),Yk)−�(f(Xi),Yi))

=E

n∏
i=1

e
λ
n (E �(f(Xk),Yk)−�(f(Xi),Yi))

(Xi,Yi i.i.d.) =
n∏

i=1

E e
λ
n (E �(f(Xk),Yk)−�(f(Xi),Yi))

(Hoeff.) ≤
n∏

i=1

exp

[
λ2L2

8n2

]
=exp

[
λ2L2

8n

]
,

where the line (Hoeff.) is obtained from Hoeffding’s
lemma on the random variable

(L �(f)− �(f(Xi),Yi)
) ∈

[−L �(f), L−L �(f)], which has an expected value of zero.
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