
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Sequential Mode Estimation with Oracle Queries

Dhruti Shah,1 Tuhinangshu Choudhury,1 Nikhil Karamchandani,1∗ Aditya Gopalan2

1Indian Institute of Technology, Bombay
2Indian Institute of Science, Bangalore

{dhruti96shah, choudhurytuhinangshu}@gmail.com,
nikhilk@ee.iitb.ac.in, aditya@iisc.ac.in

Abstract

We consider the problem of adaptively PAC-learning a prob-
ability distribution P’s mode by querying an oracle for infor-
mation about a sequence of i.i.d. samples X1, X2, . . . gen-
erated from P . We consider two different query models: (a)
each query is an index i for which the oracle reveals the value
of the sample Xi, (b) each query is comprised of two indices
i and j for which the oracle reveals if the samples Xi and Xj

are the same or not. For these query models, we give sequen-
tial mode-estimation algorithms which, at each time t, either
make a query to the corresponding oracle based on past obser-
vations, or decide to stop and output an estimate for the dis-
tribution’s mode, required to be correct with a specified con-
fidence. We analyze the query complexity of these algorithms
for any underlying distribution P , and derive corresponding
lower bounds on the optimal query complexity under the two
querying models.

1 Introduction

Estimating the most likely outcome of a probability distri-
bution is a useful primitive in many computing applications
such as counting, natural language processing, clustering,
etc. We study the probably approximately correct (PAC) se-
quential version of this problem in which the learner faces
a stream of elements sampled independently and identically
distributed (i.i.d.) from an unknown probability distribution,
wishing to learn an element with the highest probability
mass on it (a mode) with confidence. At any time, the learner
can issue queries to obtain information about the identities
of samples in the stream, and aims to use as few queries
as possible to learn the distribution’s mode with high confi-
dence. Specifically, we consider two natural models for sam-
ple identity queries – (a) each query, for a single sample of
the stream so far, unambiguously reveals the identity (label)
of the sample, (b) each query, for a pair of samples in the
stream, reveals whether they are the same element or not.

A concrete application of mode estimation (and one of
the main reasons that led to this formulation) is the prob-
lem of adaptive, partial clustering, where the objective is to

∗N. Karamchandani’s research was supported in part by Indo-
French grant No. IFC/DST-Inria-2016-01/448 “Machine Learning
for Network Analytics”
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

find the largest cluster (i.e., equivalence class) of elements
as opposed to learning the entire cluster grouping (Mazum-
dar and Saha 2017a; 2017b; 2017c; 2016). We are given a
set of elements with an unknown clustering or partition, and
would like to find the elements comprising the largest clus-
ter or partition. Suppose a stream of elements is sampled
uniformly and independently from the set, and at each time
one can ask a comparison oracle questions of the form: “Do
two sampled elements u and v belong to the same cluster or
not?” Under this uniformly sampled distribution for the el-
ement stream, the probability of an element belonging to a
certain cluster is simply proportional to the cluster’s size, so
learning the heaviest cluster is akin to identifying the mode
of the distribution of a sampled element’s cluster label.

We make the following contributions towards understand-
ing the sequential query complexity for estimating the mode
of a distribution using a stream of samples. (a) For both
the individual-label and pairwise similarity query models,
we give sequential PAC query algorithms which provably
output a mode of the sample-generating distribution with
large probability, together with guarantees on the number
of queries they issue. These query complexity upper bounds
explicitly depend on parameters of the unknown discrete
probability distribution, in that they scale inversely with the
gap between the probability masses at the mode and at the
other elements in the distribution’s support. The proposed al-
gorithms exploit the probabilistic i.i.d. structure of the data
stream to resolve uncertainty about the mode in a query-
efficient fashion, and are based on the upper and lower con-
fidence bounds (UCB, LCB) principle from online learning
to guide adaptive exploration across time; in fact, we employ
more refined empirical Bernstein bounds (Maurer and Pon-
til 2009) to take better advantage of the exact structure of
the unknown sample distribution. (b) We derive fundamen-
tal limits on the query complexity of any sequential mode-
finding algorithm for both query models, whose constituents
resemble those of the query complexity upper bounds for
our specific query algorithms above. This indicates that the
algorithms proposed make good use of their queries and the
associated information in converging upon a mode estimate.
(c) We report numerical simulation results that support our
theoretical query complexity performance bounds.

5644

1.1 Related Work

The mode estimation problem has been studied classically
in the batch or non-sequential setting since many decades
back, dating to the work of Parzen (Parzen 1962) and Cher-
noff (Chernoff 1964), among others. This line of work, how-
ever, focuses on the objective of consistent mode estimation
(and the asymptotic distribution of the estimate) for contin-
uous distributions, instead of finite-time PAC guarantees for
large-support discrete distributions as considered here. Our
problem is essentially a version of sequential composite hy-
pothesis testing with adaptive “actions” or queries, and with
an explicit high-confidence requirement on the testing algo-
rithm upon stopping.

There has been a significant amount of work in the
streaming algorithms community, within computer science,
on the ”heavy hitter” problem – detecting the most fre-
quent symbol in an arbitrary (non-stochastic) sequence – and
generalizations thereof pertaining to estimation of the em-
pirical moments, see e.g., (Misra and Gries 1982), (Karp,
Shenker, and Papadimitriou 2003), (Manku and Motwani
2002). However the focus here is on understanding resource
limits, such as memory and computational effort, on com-
puting on arbitrary (non stochastic / unstructured) streams
that arise in highly dynamic network applications. We are
instead interested in quantifying the statistical efficiency of
mode estimation algorithms in terms of the structure of the
generating probability distribution.

Adaptive decision making and resolution of the explore-
exploit trade off is the subject of work on the well-known
multi-armed bandit model, e.g., (Bubeck, Cesa-Bianchi, and
others 2012). At an abstract level, our problem of PAC-mode
estimation is like a multi-armed bandit “best arm” identifi-
cation problem (Kaufmann, Cappé, and Garivier 2016) but
with a different information structure – queries are not di-
rectly related to any utility structure for rewards as in ban-
dits.

Perhaps the closest work in spirit to ours is the recent
work by Mazumdar and co-authors (Mazumdar and Saha
2017a; 2017b; 2017c; 2016), where the aim is to learn the
entire structure of an unknown clustering by making infor-
mation queries. In this regard, studying the mode estimation
problem helps to shed light on the simpler, and often more
natural, objective of merely identifying the largest cluster in
many machine learning applications, which has not been ad-
dressed by previous work.

2 Problem formulation

In this section we develop the required notation and describe
the query models.
Consider an underlying unknown discrete probability dis-
tribution P with the support set {1, 2, ...k}. For each i ∈
{1, 2, . . . , k} and a random variable X ∼ P , let Pr(X =
i) = pi(P) ≡ pi.

We would like to estimate the mode of the un-
known distribution P , defined as any member of the set1
argmax1≤i≤k pi. Towards this, we assume query access

1argmaxi∈S pi is used to denote the set of all maximisers of
the function i → pi on S.

to an oracle containing a sequence of independently and
identically distributed (i.i.d.) samples from P , denoted
X1, X2, . . . We study the mode estimation problem under
the following query models to access the values of these i.i.d.
samples:

1. Query Model 1 (QM1) : For each query, we specify an
index i ≥ 1 following which the oracle reveals the value
of the sample Xi to us. Since the samples are i.i.d., with-
out loss of generality, we will assume that the tth succes-
sive query reveals Xt, t = 1, 2, . . .

2. Query Model 2 (QM2) : In this model, the oracle an-
swers pairwise similarity queries. For each query, we
specify two indices i, j ∈ {1, 2, . . .}, following which the
oracle reveals if the two samples Xi and Xj are equal or
not. Formally, the response of the oracle to a query (i, j)
is

O(i, j) =

{
+1 if Xi = Xj ,
−1 otherwise.

Note that to know the value of a sample Xi in this query
model, multiple pair-wise queries to the oracle might be
required.

For each of the query models above, our goal is to design a
statistically efficient sequential mode-estimation algorithm
which, at each time t, either makes a query to the oracle
based on past observations or decides to stop and output an
estimate for the distribution’s mode. Mathematically, a se-
quential algorithm with a stopping rule decides an action At

at each time t ≥ 1 depending only on past observations. For
QM1, At can be one of the following:

• (continue,t): Query the index t,

• (stop,m̂), m̂ ∈ {1, . . . , k}: Stop querying and return m̂ as
the mode estimate.

For QM2, At can be one of the following:

• (continue,t): Continue with the next round, with possibly
multiple sequential pairwise queries of the form (t, j) for
some j < t. That is, we compare the sample Xt with
some or all of the previous samples.

• (stop,m̂), m̂ ∈ {1, . . . , k}: Stop querying and return m̂ as
the mode estimate.

The stopping time of the algorithm is defined as

τ := inf{t ≥ 1 : At = (stop, .)}.
The cost of the algorithm is measured by its query com-
plexity – the number of queries made by it before stop-
ping. For δ > 0, a sequential mode-estimation algorithm
is defined to be a δ-true mode estimator if it correctly
identifies the mode for every distribution P on the sup-
port set {1, 2, . . . , k} with probability at least 1 − δ, i.e.,
PP [m̂ ∈ argmax1≤i≤k pi(P)] ≥ 1 − δ. The goal is to
obtain δ-true mode estimators for each query model (QM1
and QM2) that require as few queries as possible. For a δ-
true mode estimator A and a distribution P , let QP

δ (A) de-
note the number of queries made by a δ-true mode estimator
when the underlying unknown distribution is P . We are in-
terested in studying the optimal query complexity of δ-true

5645

mode estimators. Note that QP
δ (A) is itself a random quan-

tity, and our results either hold in expectation or with high
probability.
For the purpose of this paper, we assume that p1 > p2 ≥
.... ≥ pk i.e. the mode of the underlying distribution is 1,
and hence a δ-true mode estimator returns 1 with probabil-
ity at least (1 − δ). In Sections 3 and 4, we discuss δ-true
mode estimators and analyze their query complexity for the
QM1 and QM2 query models respectively. We provide some
experimental results in Section 5 and further explore a few
variations of the problem in Section 6. Several proofs have
been relegated to the full version of our paper (Shah et al.
2019).

3 Mode estimation with QM1

We will begin by presenting an algorithm for mode estima-
tion under QM1 and analyzing its query complexity.

3.1 Algorithm

Recall that under the QM1 query model, querying the in-
dex t to the oracle reveals the value of the corresponding
sample, Xt, generated i.i.d. according to the underlying un-
known distribution P . During the course of the algorithm,
we form bins for each element i in the support {1, 2, . . . , k}
of the underlying distribution. Bin j is created when the first
sample with value j is revealed and any further samples with
that value are ‘placed’ in the same bin. For each query t and
revealed sample value Xt, define Zi

t for i ∈ {1, 2, ...k} as
follows.

Zi
t =

{
1 if Xt = i

0 otherwise.

Note that for each given i, t, Zi
t is a Bernoulli random vari-

able with E[Zi
t] = pi. Also for any given i, {Zi

t} are i.i.d.
over time.
Our mode estimation scheme is presented in Algorithm 1.
At each stage of the algorithm, we maintain an empiri-
cal estimate of the probability of bin i, pi, for each i ∈
{1, 2, . . . , k}. Let p̂ti denote the estimate at time t, given by

p̂ti =

∑t
j=1 Z

i
j

t
, (1)

where recall that Zi
j for j = 1, 2....t are the t i.i.d. samples.

Also, at each time instant, we maintain confidence bounds
for the estimate of pi. The confidence interval for the ith

bin probability at the tth iteration is denoted by βt
i , and

it captures the deviation of the empirical value p̂ti from its
true value pi. In particular, the confidence interval value
βt
i is chosen so that the true value pi lies in the interval

[p̂ti − βt
i , p̂

t
i + βt

i] with a significantly large probability. The
lower and upper boundaries of this interval are referred to
as the lower confidence bound (LCB) and the upper confi-
dence bound (UCB) respectively. The particular choice for
the value of βt

i that we use for our algorithm is presented in
Section 3.2.

Finally, our stopping rule is as follows : At = (stop, i)
when there exists a bin i ∈ {1, 2, . . . , k} whose LCB is
greater than the UCB of all the other bins, upon which the
index i is output as the mode estimate.

Given the way our confidence intervals are defined, this
ensures that the output of the estimator is the mode of the
underlying distribution with large probability.

Algorithm 1 Mode estimation algorithm under QM1
1: t = 1
2: A0 = (continue,1) : Obtain X1.
3: loop
4: if a bin with value Xt already exists then
5: Add query index t to the corresponding bin.
6: else
7: Create a new bin with value Xt.
8: end if
9: Update the empirical estimate p̂ti (1) and confidence

interval βt
i (2) for all bins i ∈ {1, 2, . . . , k}.

10:

At =

⎧⎪⎪⎨
⎪⎪⎩

(stop,i): if ∃i, s.t. ∀j �= i

Exit, Output i p̂ti − βt
i > p̂tj + βj(t),

(continue,t+1): otherwise
Obtain Xt+1

11: t = t+ 1
12: end loop

3.2 Analysis

Theorem 1. For the following choice of βt
i , Algorithm 1 is

a δ-true mode estimator.

βt
i =

√
2Vt(Zi) log(4kt2/δ)

t
+

7 log(4kt2/δ)

3(t− 1)
, (2)

where Vt(Z
i) =

1

t(t− 1)

∑
1≤p<q≤t

(Zi
p − Zi

q)
2 is the empir-

ical variance.

Proof. This proof is based on confidence bound arguments.
To construct the confidence intervals for the probability val-
ues {pi}’s, we use the empirical version of the Bernstein
bound given in (Maurer and Pontil 2009). The result used
is stated as Theorem 9 in (Shah et al. 2019, Appendix A).
Using the result in our context, we get the following for any
given pair (i, t) with probability at least (1− δ1):

|pi − p̂ti| ≤
√

2Vt(Zi) log(2/δ1)

t
+

7 log(2/δ1)

3(t− 1)
, (3)

where Vt(Z
i) is the sample variance, i.e., Vt(Z

i) =
1

t(t− 1)

∑
1≤p<q≤t

(Zi
p − Zi

q)
2.

To establish confidence bounds on the sample variance, we
use the result given in (Maurer and Pontil 2009), which is
stated as Theorem 10 in (Shah et al. 2019, Appendix A).
Using the result in our context, and noting that the expected
value of Vt(Z

i) would be pi(1 − pi), we get the following
for any given pair (i, t) with probability at least (1− δ2):

|
√
pi(1− pi)−

√
Vt(Zi)| ≤

√
2 log(1/δ2)

t− 1
. (4)

5646

Let E1 denote the error event that for some pair (i, t) the con-
fidence bound (3) around p̂ti is violated. Also, let E2 denote
the error event that for some pair (i, t) the confidence bound
(4) around the sample variance Vt(Z

i) is violated. Choos-
ing δ1 = δ2 = δ

2kt2 , and taking the union bound over all
i, t, from (3) and (4), we get P[E1] ≤ δ/2 and P[E2] ≤ δ/2.
Hence we get that

P[Ec
1 ∩ Ec

2] ≥ 1− δ. (5)

This means that with probability at least 1−δ the confidence
bounds corresponding to both equations (3) and (4) hold true
for all pairs (i, t).
We now show that if the event Ec

1 ∩ Ec
2 is true, then Algo-

rithm 1 returns 1 as the mode. To see this, assume the con-
trary that the algorithm returns i �= 1. Under Ec

1 ∩ Ec
2 the

confidence intervals hold true for all pairs (i, t) and hence
the stopping condition defined in Line 10, Algorithm 1 will
imply

pi ≥ p̂ti − βt
i > p̂t1 + βt

1 ≥ p1

which is false. Thus Algorithm 1 returns 1 as the mode if the
event Ec

1 ∩ Ec
2 is true. Hence, the probability of returning 1

as the mode is at least P[Ec
1 ∩ Ec

2], which by (5) implies that
Algorithm 1 is a δ-true mode estimator.

3.3 Query Complexity Upper bound

Theorem 2. For a δ-true mode estimator A1, corresponding
to Algorithm 1, we have the following with probability at
least (1− δ).

QP
δ (A1) ≤ 592

3

p1
(p1 − p2)2

log

(
592

3

√
k

δ

p1
(p1 − p2)2

)
.

Proof. If the event Ec
1 ∩ Ec

2 is true, it implies that all confi-
dence intervals hold true. We find a value T ∗, which ensures
that by t = T ∗, the confidence intervals of the bins have sep-
arated enough such that the algorithm stops. Since at each
time one query is made, this value of T ∗ would also be an
upper bound on the query complexity QP

δ (A). The deriva-
tion of T ∗ has been relegated to (Shah et al. 2019, Appendix
B), which gives the upper bound as stated above.

3.4 Query Complexity Lower bound

Theorem 3. For any δ-true mode estimator A, we have,

E[QP
δ (A)] ≥ p1

(p1 − p2)2
log(1/2.4δ).

Proof. Let x(P) = argmaxi∈[k] pi denote the mode of the
distribution P . By assumption, we have x(P) = 1. Consider
any P ′ such that x(P ′) �= x(P) = 1. Let A be a δ-true mode
estimator and let m̂ be its output. Then, by definition,

P(m̂ = 1) ≥ 1− δ

P ′(m̂ = 1) ≤ δ.
(6)

Let τ be the stopping time associated with estimator A. Us-
ing Wald’s lemma (Wald 1944) we have,

EP

[
τ∑

t=1

log
p(Xt)

p′(Xt)

]
= EP [τ].EP

[
log

p(X1)

p′(X1)

]

= EP [τ].D(P||P ′). (7)

where D(P||P ′) refers to the Kullback-Leibler (KL) diver-
gence between the distributions P and P ′.
Also,

EP

[
τ∑

t=1

log
p(Xt)

p′(Xt)

]

= EP

[
log

p(X1, X2....Xτ)

p′(X1, X2....Xτ)

]
= D(p(X1,Xτ)||p′(X1,Xτ))

≥ D(Ber(P(m̂ = 1))||Ber(P ′(m̂ = 1))),

where Ber(x) denotes the Bernoulli distribution with pa-
rameter x ∈ (0, 1) and the last step is obtained by the data
processing inequality (Cover and Thomas 2012). Further-
more we have,

D(Ber(P(m̂ = 1))||Ber(P ′(m̂ = 1))) ≥ log(1/2.4δ),

where the above follows from (6) and (Kaufmann, Cappé,
and Garivier 2016, Remark 2). Finally, combining with (7)
and noting that the argument above works for any P ′ such
that x(P) �= x(P ′), we have

EP [τ] ≥ log(1/2.4δ)

infP′:x(P′) �=x(P) D(P||P ′)
. (8)

We choose P ′ as follows, for some small ε > 0:

p′i = pi, ∀i > 2

p′1 =
p1 + p2

2
− ε = q − ε, where q =

p1 + p2
2

p′2 =
p1 + p2

2
+ ε = q + ε

We have

D(P||P ′) = p1 log

(
p1

q − ε

)
+ p2 log

(
p2

q + ε

)

= (p1 + p2)

[
p1

p1 + p2
log

(
p1

p1+p2

q−ε
p1+p2

)
+

p2
p1 + p2

log

(
p2

p1+p2

q+ε
p1+p2

)]

= (p1 + p2)D

(
p1

p1 + p2
|| q − ε

p1 + p2

)
(a)

≤ (p1 + p2)

[
(p1 − q + ε)2

(q − ε) · (q + ε)

]

= (p1 + p2)

[
(p1 − p2 + 2ε)2

(p1 + p2 + 2ε) · (p1 + p2 − 2ε)

]
(b)≈ (p1 − p2)

2

(p1 + p2)

≤ (p1 − p2)
2

p1
, (9)

where (a) follows from (Popescu et al. 2016, Theorem 1.4)
which gives an upper bound on the KL divergence and (b)

5647

follows because ε can be arbitrarily small. Note that an up-
per bound on the stopping time τ would also give an upper
bound on QP

δ (A), since we have one query at each time.
Hence, using (8) and (9), we get the following lower bound:

E[QP
δ (A)] ≥ p1

(p1 − p2)2
log(1/2.4δ).

4 Mode estimation with QM2

In this section, we present an algorithm for mode estimation
under QM2 and analyse its query complexity.

4.1 Algorithm

Recall that under the QM2 query model, a query to the ora-
cle with indices i and j reveals whether the samples Xi and
Xj have the same value or not. Our mode estimation scheme
is presented in Algorithm 2. During the course of the algo-
rithm we form bins, and the ith bin formed is referred to as
bin i. Here, each bin is a collection of indices having the
same value as revealed by the oracle. Let σ(i) denote the
element from the support that that ith bin represents. The al-
gorithm proceeds in rounds. In round t, let b(t) denote the
number of bins present. Based on the observations made so
far, we form a subset of bins C(t). We go over the bins in
C(t) one by one, and in each iteration within the round we
query the oracle with index t and a sample index jl from
some bin l, i.e., jl ∈ bin l for l ∈ C(t). The round ends
when the oracle gives a positive answer to one of the queries
or we exhaust all bins in C(t). So, the number of queries in
round t is at most |C(t)| ≤ b(t). If we get a positive answer
from the oracle, we add t to the corresponding bin. A new
bin will be created if the oracle gives a negative answer to
each of these queries.
We will now describe how we construct the subset C(t) of
bins we compare against in round t. To do so, for each bin
i, corresponding to σ(i), and for each round t, we main-
tain an empirical estimate of each pσ(i) during each round,
denoted by p̂tσ(i). We also maintain confidence intervals for
each pσ(i), denoted by βt

σ(i). The choice for βt
σ(i) is the same

as that in QM1, given in (2). C(t) is formed in each round
t by considering only those bins whose UCB is greater than
the LCB of all other bins. Mathematically,

C(t) = {i ∈ {1, 2, . . . , b(t)} such that �l for which

p̂tl − βt
l > p̂tσ(i) + βt

σ(i)} (10)

The rest of the algorithm is similar to Algorithm 1, includ-
ing the stopping rule, i.e. we stop when there is a bin whose
LCB is greater than the UCB of all other bins in C(t). As be-
fore, the choice of confidence intervals and the stopping rule
ensures that when At = (stop, i), the corresponding element
σ(i) = 1 with probability at least (1− δ).

4.2 Analysis

Theorem 4. For the choice of βt
i as given by (2), Algo-

rithm 2 is a δ-true mode estimator.

Algorithm 2 Mode estimation algorithm under QM2
1: t = 1
2: A0 = (continue,1) : Obtain X1.
3: loop
4: Form C(t) according to (10).
5: flag=0.
6: for all bins l ∈ C(t) do
7: Obtain jl ∈ bin i .
8: if O(t, jl) == +1 then
9: Add t to the corresponding bin.

10: flag=1; BREAK
11: end if
12: end for
13: if flag==0 then
14: Create a new bin for index t.
15: end if
16: Update the empirical estimate p̂ti (1) and confidence

interval βt
i (2) for all bins i ∈ {1, 2, . . . , k}.

17:

At =

⎧⎪⎪⎨
⎪⎪⎩

(stop,i): if ∃i, s.t. ∀j ∈ C(t)
Exit, Output i p̂ti − βt

i > p̂tj + βj(t),

(continue,t+1): otherwise
Move to next round

18: t = t+ 1
19: end loop

Proof. The error analysis for Algorithm 2 is similar as that
for Algorithm 1 as given in Section 3.2. We consider the
same two events E1 and E2. Recall that E1 denotes the er-
ror event that for some pair (i, t) the confidence bound (3)
around p̂ti is violated; E2 denotes the error event that for
some pair (i, t) the confidence bound (4) around the sample
variance Vt(Z

i) is violated. Again choosing similar values
for δ1 and δ2, we get P[Ec

1 ∩ Ec
2] ≥ 1 − δ. We now need

to show that if the event Ec
1 ∩ Ec

2 is true, then Algorithm 2
returns 1 as the mode. This then implies that Algorithm 2 is
a δ-true mode estimator.
The analysis remains same as discussed for QM1. The only
additional factor we need to consider here, is the event that
the bin corresponding to the mode 1 of the underlying distri-
bution is discarded in one of the rounds of the algorithm, i.e.,
it is not a part of C(t) for some round t. A bin is discarded
when its UCB becomes less than the LCB of any other bin.
Under event Ec

1 , all confidence intervals are true, and since
p1 > pi, ∀i the UCB of the corresponding bin can never be
less than the LCB of any other bin. This implies that under
Ec
1 , the bin corresponding to the mode 1 is never discarded.

Hence, the probability of returning 1 as the mode is at least
P[Ec

1 ∩Ec
2], which by (5) implies that Algorithm 2 is a δ-true

mode estimator.

4.3 Query Complexity Upper bound

From the analysis of the sample complexity for the QM1
model derived in Section 3.3, we get one upper bound for
the QM2 case. Algorithm 1 continues for at most T ∗ rounds

5648

with probability at least 1 − δ, where T ∗ is given by The-
orem 2. A sample accessed in each of these rounds can be
compared to at most min{k, T ∗} other samples. Thus, a nat-
ural upper bound on the query complexity of Algorithm 2 is
(T ∗ · min{k, T ∗}). The following result provides a tighter
upper bound.

Theorem 5. For a δ-true mode estimator A2, corresponding
to Algorithm 2, we have the following with probability at
least (1− δ).

QP
δ (A2) ≤ 592

3

p1
(p1 − p2)2

log

(
592

3

√
k

δ

p1
(p1 − p2)2

)

+
T∑

i=2

592

3

p1
(p1 − pi)2

log

(
592

3

√
k

δ

p1
(p1 − pi)2

)

for T = min

{
k, 592

3
p1

(p1−p2)2
log

(
592
3

√
k
δ

p1

(p1−p2)2

)}
.

Proof. The detailed calculations are provided in (Shah et al.
2019, Appendix B), here we give a sketch. Under the event
Ec
1 ∩ Ec

2 , where all confidence bounds hold true, for any bin
represented during the run of the algorithm and correspond-
ing to some element i �= 1 from the support, we have that
it will definitely be excluded from C(t) when its confidence
bound βt

i <
p1−pi

4 and βt
1 < p1−pi

4 . We find a t which satis-
fies the stopping condition for each of the bins represented,
and summing over them gives the total query complexity.
Following the calculations in (Shah et al. 2019, Appendix
B), we get the following value of t∗i for the bin correspond-
ing to element i �= 1, such that by t = t∗i the bin will defi-
nitely be excluded from C(t).

t∗i =
592

3

p1
(p1 − pi)2

log

(
592

3

√
2k

δ

p1
(p1 − pi)2

)

Also, for the first bin we get t∗1 as follows.

t∗1 =
592

3

p1
(p1 − p2)2

log

(
592

3

√
2k

δ

p1
(p1 − p2)2

)

Also, the total number of bins created will be at most

T = min

{
k, 592

3
p1

(p1−p2)2
log

(
592
3

√
2k
δ

p1

(p1−p2)2

)}
.

A sample from the bin corresponding to element i
will be involved in at most t∗i queries. Hence the total
number of queries, QP

δ (A), is bounded as follows

QP
δ (A) ≤ 592

3

p1
(p1 − p2)2

log

(
592

3

√
k

δ

p1
(p1 − p2)2

)
+

T∑
i=2

592

3

p1
(p1 − pi)2

log

(
592

3

√
k

δ

p1
(p1 − pi)2

)

4.4 Query Complexity Lower bound

The following theorem gives a lower bound on the expected
query complexity for the QM2 model.
Theorem 6. For any δ-true mode estimator A, we have,

E[QP
δ (A)] ≥ p1

2(p1 − p2)2
log(1/2.4δ).

Proof. Consider any δ-true mode estimator A under query
model QM2 and let τ denote its average (pairwise) query
complexity when the underlying distribution is P . Next,
consider the QM1 query model and let estimator A′

simply
simulate the estimator A under QM2, by querying the val-
ues of any sample indices involved in the pairwise queries.
It is easy to see that since A is a δ-true mode estimator under
QM2, the same will be true for A′

as well under QM1. Fur-
thermore, the expected query complexity of A′

under QM1
will be at most 2τ since each pairwise query involves two
sample indices. Thus, if the query complexity τ of A un-
der QM2 is less than p1

2(p1−p2)2
log(1/2.4δ), then we have a

δ-true mode estimator under query model QM1 with query
complexity less than p1

(p1−p2)2
log(1/2.4δ), which contra-

dicts the lower bound in Theorem 3. The result then fol-
lows.

The lower bound on the query complexity as given by the
above theorem matches the first term of the upper bound
given in Theorem 5. So, the lower bound will be close to
the upper bound when the first term dominates, in particular
when p1

(p1−p2)2
�∑k

i=3
p1

(p1−pi)2
.

While the above lower bound matches the upper bound
in a certain restricted regime, we would like a sharper lower
bound which works more generally. Towards this goal, we
consider a slightly altered (and relaxed) problem setting
which relates to the problem of best arm identification in
a multi-armed bandit (MAB) setting studied in (Kaufmann,
Cappé, and Garivier 2016), (Soare, Lazaric, and Munos
2014). The altered setting and the corresponding result are
discussed in (Shah et al. 2019, Appendix C).

5 Experimental Results

For both the QM1 and QM2 models, we simulate Algo-
rithm 1 and Algorithm 2 for various synthetic distributions.
We take k = 5120 and keep the difference p1 − p2 = 0.208
constant for each distribution. For the other pi’s we follow
two different models:
1. Uniform distribution : The other pi’s for i = 3....k are

chosen such that each pi =
1−p1−p2

k−2 .

2. Geometric distribution : The other pi’s are chosen such
that p2, p3....pk form a decreasing geometric distribution
which sums upto 1− p1.

For each distribution we run the experiment 50 times and
take an average to plot the query complexity. In Fig. 1 we
plot the number of queries taken by Algorithm 1 for QM1,
for both the geometric and uniform distributions. As sug-
gested by our theoretical results, the query complexity in-
creases (almost) linearly with p1 for a fixed (p1 − p2). In

5649

Figure 1: Number of queries for Algorithm 1 under the uni-
form and geometric distributions.

Figure 2: Number of queries when each sample is queried
with all the bins, and number of queries for Algorithm 2 for
the uniform and geometric distributions.

Fig. 2 we plot the number of queries taken by Algorithm 2
for QM2 and compare it to the number of queries taken by
a naive algorithm which queries a sample with all the bins
formed, for both the uniform and geometric distributions.
To further see how Algorithm 2 performs better than the
naive algorithm which queries a sample against all bins
formed, we plot the number of queries in each round for a
particular geometric distribution, in Fig. 3. We observe that
over the rounds, for Algorithm 2 bins start getting discarded
and hence the number of queries per round decreases, while
for the naive algorithm, as more and more bins are formed,
the number of queries per round keeps increasing.

Real world dataset: As mentioned in the introduction,
one of the applications of mode estimation is partial clus-
tering. Via experiments on a real-world purchase data set
(Leskovec and Krevl 2014), we were able to benchmark
the performance of our proposed Algorithm 2 for pairwise
queries, a naive variant of it with no UCB-based bin elimina-

Figure 3: Number of queries per round for Algorithm 2 and
for the algorithm which queries each sample with all of the
bins formed.

tion and the algorithm of (Mazumdar and Saha 2017a) which
performs a full clustering of the nodes. Using (Leskovec and
Krevl 2014), we create a dataset where each entry represents
an item available on Amazon.com along with a label cor-
responding to a category that the item belongs to. We take
entries with a common label to represent a cluster and we
consider the task of using pairwise oracle queries to identify
a cluster of items within the top-10 clusters, from among
the top-100 clusters in the entire dataset. Note that while our
algorithm is tailored towards finding a heavy cluster, the al-
gorithm in (Mazumdar and Saha 2017a) proceeds by first
learning the entire clustering and then identifying a large
cluster. Some statistics of the dataset over which we ran our
algorithm are: number of clusters - 100; number of nodes
- 291925; size of largest cluster - 53551; and size of 11th
largest cluster - 19390.

With a target confidence of 99%, our proposed algorithm
terminates in ∼ 631k pairwise queries while the naive algo-
rithm takes ∼ 1474k queries (2.3x more). The algorithm of
(Mazumdar and Saha 2017a) clusters all nodes first, and is
thus expected to take around n ∗k = 29192.5k queries (46x
more) to terminate; this was larger than our computational
budget and hence could not be run successfully. With a tar-
get confidence of 95%, our algorithm takes ∼ 558k queries
instead of the naive version which takes ∼ 1160k queries
(2x more) to terminate.

6 Discussion

There are a few variations of the standard mode estimation
problem which have important practical applications and we
discuss them in the following subsections.

6.1 Top-m estimation

An extension of the mode estimation problem discussed
could be estimating the top-m values. i.e. for p1 > p2 >
.... > pk, an algorithm should return the set {1, 2, ...m}. A
possible application is in clustering, where we are interested
in finding the largest m clusters. The algorithms 1 and 2 for

5650

QM1 and QM2 would change only in the stopping rule. The
new stopping rule would be such that At = (stop,.) when
there exist m bins such that their LCB is greater than the
UCB of the other remaining bins. In this setting, we define a
δ-true top-m estimator as an algorithm which returns the set
{1, 2,m} with probability at least (1− δ). In the follow-
ing results we give bounds on the query complexity, QP

δ (A)
for a δ-true top-m estimator A, for the QM1 query model.
Theorem 7. For a δ-true top-m estimator Am, correspond-
ing to Algorithm 1 for the top-m case, we have the following
with probability at least (1− δ).

QP
δ (Am) ≤

max
i∈{1,2....m}

j∈{m+1,....k}

592

3

pi
(pi − pj)2

log

(
592

3

√
k

δ

pi
(pi − pj)2

)

Proof. The proof follows along the same lines as Theo-
rem 2. Here, for a bin i ∈ {1, 2, ...m} and a bin j ∈ {m +
1,k}, their confidence bounds would be separated when
βt
i <

pi−pj

4 and βt
j <

pi−pj

4 . The calculations then follow
similarly as before to give the above upper bound.

Theorem 8. For any δ-true top-m estimator A, we have,

E[QP
δ (A)] ≥ max

i∈{1,2....m}
j∈{m+1,....k}

pi
(pi − pj)2

log (1/2.4δ)

Proof. The proof follows along the same lines as Theo-
rem 3. Here, for ε > 0, the alternate distribution P ′ that
we choose would have p′i =

pi+pj

2 − ε and p′j =
pi+pj

2 + ε
for some i ∈ {1, 2....m} and some j ∈ {m + 1,k}. We
take the maximum value over all such i, j to give the lower
bound.

6.2 Noisy oracle

Here, we consider a setting where the oracle answers queries
noisily and we analyze the impact of errors on the query
complexity for mode estimation.
For the noisy QM1 model, we assume that when we query
the oracle with some index j, the value revealed is the true
sample value Xj with probability (1− pe) and any of the k
values in the support with probability pe

k each. The problem
of mode estimation in this noisy setting is equivalent to that
in a noiseless setting where the underlying distribution is
given by

p′i = (1− pe)pi +
pe
k
.

Since the mode of this altered distribution is the same as
the true distribution, we can use Algorithm 1 for mode esti-
mation under the noisy QM1 model, and the corresponding
query complexity bounds in Section 3 hold true.
For the noisy QM2 model, we assume that for any pair of in-
dices i and j sent to the oracle, it returns the correct answer
(+1 if Xi = Xj , −1 otherwise) with probability (1 − pe).
This setting is technically more involved and is in fact sim-
ilar to clustering using pairwise noisy queries (Mazumdar
and Saha 2017a). The mode estimation problem in this set-
ting corresponds to identifying the largest cluster, which
has been studied in (Choudhury, Shah, and Karamchandani
2019). Deriving tight bounds for this case is still open.

References
Bubeck, S.; Cesa-Bianchi, N.; et al. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends R© in Machine Learning 5(1):1–122.
Chernoff, H. 1964. Estimation of the mode. Annals of the
Institute of Statistical Mathematics 16(1):31–41.
Choudhury, T.; Shah, D.; and Karamchandani, N. 2019.
Top-m clustering with a noisy oracle. In 2019 National Con-
ference on Communications (NCC) (NCC 2019).
Cover, T. M., and Thomas, J. A. 2012. Elements of informa-
tion theory. John Wiley & Sons.
Karp, R. M.; Shenker, S.; and Papadimitriou, C. H. 2003.
A simple algorithm for finding frequent elements in streams
and bags. ACM Transactions on Database Systems (TODS)
28(1):51–55.
Kaufmann, E.; Cappé, O.; and Garivier, A. 2016. On the
complexity of best-arm identification in multi-armed ban-
dit models. The Journal of Machine Learning Research
17(1):1–42.
Leskovec, J., and Krevl, A. 2014. SNAP Datasets: Stanford
large network dataset collection. http://snap.stanford.edu/
data/com-Amazon.html.
Manku, G. S., and Motwani, R. 2002. Approximate fre-
quency counts over data streams. In VLDB’02: Proceed-
ings of the 28th International Conference on Very Large
Databases, 346–357. Elsevier.
Maurer, A., and Pontil, M. 2009. Empirical Bernstein
bounds and sample variance penalization. arXiv preprint
arXiv:0907.3740.
Mazumdar, A., and Saha, B. 2016. Clustering via crowd-
sourcing. arXiv preprint arXiv:1604.01839.
Mazumdar, A., and Saha, B. 2017a. Clustering with noisy
queries. In Advances in Neural Information Processing Sys-
tems, 5788–5799.
Mazumdar, A., and Saha, B. 2017b. Query complexity of
clustering with side information. In Advances in Neural In-
formation Processing Systems, 4682–4693.
Mazumdar, A., and Saha, B. 2017c. A theoretical analysis of
first heuristics of crowdsourced entity resolution. In Thirty-
First AAAI Conference on Artificial Intelligence.
Misra, J., and Gries, D. 1982. Finding repeated elements.
Science of computer programming 2(2):143–152.
Parzen, E. 1962. On estimation of a probability density
function and mode. The Annals of Mathematical Statistics
33(3):1065–1076.
Popescu, P. G.; Dragomir, S.; Sluşanschi, E. I.; and
Stănăşilă, O. N. 2016. Bounds for kullback-leibler diver-
gence. Electronic Journal of Differential Equations 2016.
Shah, D.; Choudhury, T.; Karamchandani, N.; and Gopalan,
A. 2019. Sequential mode estimation with oracle queries.
Soare, M.; Lazaric, A.; and Munos, R. 2014. Best-arm iden-
tification in linear bandits. In Advances in Neural Informa-
tion Processing Systems, 828–836.
Wald, A. 1944. On cumulative sums of random variables.
The Annals of Mathematical Statistics 15(3):283–296.

5651

