Weakly Supervised Sequence Tagging from Noisy Rules


  • Esteban Safranchik Brown University
  • Shiying Luo Brown University
  • Stephen Bach Brown University




We propose a framework for training sequence tagging models with weak supervision consisting of multiple heuristic rules of unknown accuracy. In addition to supporting rules that vote on tags in the output sequence, we introduce a new type of weak supervision, called linking rules, that vote on how sequence elements should be grouped into spans with the same tag. These rules are an alternative to candidate span generators that require significantly more human effort. To estimate the accuracies of the rules and combine their conflicting outputs into training data, we introduce a new type of generative model, linked hidden Markov models (linked HMMs), and prove they are generically identifiable (up to a tag permutation) without any observed training labels. We find that linked HMMs provide an average 7 F1 point boost on benchmark named entity recognition tasks versus generative models that assume the tags are i.i.d. Further, neural sequence taggers trained with these structure-aware generative models outperform comparable state-of-the-art approaches to weak supervision by an average of 2.6 F1 points.




How to Cite

Safranchik, E., Luo, S., & Bach, S. (2020). Weakly Supervised Sequence Tagging from Noisy Rules. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 5570-5578. https://doi.org/10.1609/aaai.v34i04.6009



AAAI Technical Track: Machine Learning