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Abstract

This paper explores a new form of the linear bandit problem
in which the algorithm receives the usual stochastic rewards
as well as stochastic feedback about which features are rel-
evant to the rewards, the latter feedback being the novel as-
pect. The focus of this paper is the development of new theory
and algorithms for linear bandits with feature feedback which
can achieve regret over time horizon T that scales like k

√
T ,

without prior knowledge of which features are relevant nor
the number k of relevant features. In comparison, the regret
of traditional linear bandits is d

√
T , where d is the total num-

ber of (relevant and irrelevant) features, so the improvement
can be dramatic if k � d. The computational complexity
of the algorithm is proportional to k rather than d, making it
much more suitable for real-world applications compared to
traditional linear bandits. We demonstrate the performance of
the algorithm with synthetic and real human-labeled data.

1 Introduction

Linear stochastic bandit algorithms are used to sequentially
select actions to maximize rewards. For instance, (Desh-
pande and Montanari 2012) propose to model recommen-
dation systems that help users navigate through a large col-
lection of items (products, videos, documents) using lin-
early parameterized multi-armed bandits. This model strikes
a balance by allowing the user to explore the space of avail-
able items and probing the user’s preferences. The linear
bandit model assumes that the expected reward of each ac-
tion is an (unknown) linear function of a (known) finite-
dimensional feature associated with the action. Mathemat-
ically, if xt ∈ Rd is the feature associated with the action
chosen at time t, then the stochastic reward is

yt = x�
t θ∗ + ηt, (1)

where θ∗ is the unknown linear functional (representing
the user’s preferences) and ηt is a zero mean random vari-
able. The goal is to adaptively select actions to maximize
the rewards (corresponding to user’s assessment of the cho-
sen item’s value). This involves (approximately) learning
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θ∗ and exploiting this knowledge. Linear bandit algorithms
that exploit this special structure have been extensively stud-
ied and applied (Rusmevichientong and Tsitsiklis 2010;
Abbasi-Yadkori, Pal, and Szepesvari 2011).

Unfortunately, standard linear bandit algorithms suffer
from the curse of dimensionality. The regret grows linearly
with the feature dimension d. The dimension d may be quite
large in modern applications (e.g., 1000s of features in NLP
or image/vision applications). In the recommendations set-
ting, the existing bounds easily require T > 100s of rat-
ings to be meaningful, which is not realistic. The high-
dimensionality also makes it challenging to employ state-
of-the-art algorithms since it involves maintaining and up-
dating a d×d matrix at every stage. However, in many cases
the linear function may only involve a sparse subset of the
k < d features, and this can be exploited to partially reduce
dependence on d. In such cases, the regret of sparse linear
bandit algorithms scales like

√
dk (Abbasi-Yadkori, Pal, and

Szepesvari 2012; Lattimore and Szepesvári 2018).
We tackle the problem of linear bandits from a new per-

spective that incorporates feature feedback in addition to
reward feedback, mitigating the curse of dimensionality.
Specifically, we consider situations in which the algorithm
receives a stochastic reward and stochastic feedback indi-
cating which, if any, feature-dimensions were relevant to the
reward value. For example, consider a situation in which
users rate recommended text documents and additionally
highlight keywords or phrases that influenced their ratings.
Figure 1(a) illustrates the idea. Obviously, the additional
“feature feedback” may significantly improve an algorithm’s
ability to home-in on the relevant features. The focus of this
paper is the development of new theory and algorithms for
linear bandits with feature feedback. We show that the regret
of linear bandits with feature feedback scales linearly in k,
the number of relevant features, without prior knowledge of
which features are relevant nor the value of k. This leads to
large improvements in theory and practice.

The simple feedback model, where the user directly se-
lects a subset of the relevant features, can be generalized
by allowing for an indirect form of feedback. For example,
the user can select a region of an image instead of a subset
of the standard deep neural network features. This form of
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Figure 1: (a) (Left) Highlighted words for text-based applications and (Right) Region-of-interest feature feedback for image-
based applications. (b) Comparison of the explore-then-commit strategy for different values of T0 and our new FF-OFUL
algorithm which combines exploration and exploitation steps (details of data generation in Section 5.1).

feedback could be used in different ways. For instance, we
could use methods to map deep image features to image re-
gions. However, in this paper we focus on the processes and
benefits of incorporating direct feature feedback, and defer
the development of indirect feedback models to future work.

Perhaps the most natural and simple way to leverage the
feature feedback is an explore-then-commit strategy. In the
first T0 steps the algorithm selects actions at random and
receives rewards and feature feedback. If T0 is sufficiently
large, then the algorithm will have learned all or most of
the relevant features and it can then switch to a standard lin-
ear bandit algorithm operating in the lower-dimensional sub-
space defined by those features. There are two major prob-
lems with such an approach:

1. The correct choice of T0 depends on the prevalence of rel-
evant features in randomly selected actions, which gener-
ally is unknown. If T0 is too small, then many relevant
features will be missed and the long-run regret will scale
linearly with the time horizon. If T0 is too large, then the
initial exploration period will suffer excess regret. This is
depicted in Figure 1(b).

2. Regardless of the choice of T0, the regret will grow lin-
early for t < T0. The new FF-OFUL algorithm that we
propose combines exploration and exploitation from the
start and can lead to smaller regret initially and asymp-
totically as shown in Figure 1(b).

These observations motivate our proposed approach that
dynamically adjusts the trade-off between exploration and
exploitation. A key aspect of the approach is that it is auto-
matically adaptive to the unknown number of relevant fea-
tures k. Our theoretical analysis shows that its regret scales
like k

√
T . Experimentally, we show the algorithm generally

outperforms traditional linear bandits and the explore-then-
commit strategy. This is due to the fact that the dynamic al-
gorithm exploits knowledge of relevant features as soon as
they are identified, rather than waiting until all or most are
found. A key consequence is that our proposed algorithm
yields significantly better rewards at early stages of the pro-

cess, as shown in Figure 1(b) and in more comprehensive
experiments later in the paper. The intuition for this is that
estimating θ∗ on a fraction of the relevant coordinates can be
exploited to recover a fraction of the optimal reward. Simi-
lar ideas are explored in linear bandits (without feature feed-
back) in (Deshpande and Montanari 2012).

1.1 Definitions

For round, t, let Xt ⊆ R
d be the set of actions/items pro-

vided to the learner. We assume the standard linear model
for rewards with a hidden weight vector θ∗ ∈ R

d. If the
learner selects an action, xt ∈ Xt, it receives reward, yt, de-
fined in (1) where ηt is noise with a sub-Gaussian random
distribution with parameter R. For the set of actions Xt, the
optimal action is given by, x∗

t := argmaxx∈Xt
x�θ∗, which

is unknown. We define regret as,

RT =

T∑
t=1

(
x∗�
t θ∗ − x�

t θ∗
)
. (2)

This is also called cumulative regret but, unless stated oth-
erwise, we will refer to it as regret. We refer to the quantity
x∗�
t θ∗ − x�

t θ∗ as the instantaneous regret which is the dif-
ference between the optimal reward and the reward received
at that instant. We make the standard assumption that the al-
gorithm is provided with an enormous action set which is
only changing slowly over time, for instance, from sampling
the actions without replacement (Xt+1 = Xt\xt).

1.2 Related Work

The area of contextual bandits was introduced by (Ginebra
and Clayton 1995). The first algorithms for linear bandits
appeared in (Abe and Long 1999) followed by those us-
ing the optimism in the face of uncertainty principle, (Auer
and Long 2002), (Dani, Hayes, and Kakade 2008). (Rus-
mevichientong and Tsitsiklis 2010) showed matching up-
per and lower bounds when the action (feature) set is a unit
hypersphere. Finally, (Abbasi-Yadkori, Pal, and Szepesvari
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Algorithm 1 OFUL
1: for t = 1, 2, . . . , T − 1 do

2: (xt, θ̃t) = argmax(x,θ)∈Xt×Ct−1
〈x,θ〉

3: Select action xt and receive reward yt.
4: Update Vt = (XT

t Xt + λI)

and θ̂t = V
−1

t XT
t yt

5: Update ellipsoidal confidence set Ct as
Ct =

{
θ : ‖θ̂t − θ‖Vt

≤ R

√
2 log

(
det(Vt)1/2 det(λI)−1/2

δ

)
+ λ1/2S

}
6: end for

2011) gave a tight regret bound using new martingale tech-
niques. We use their algorithm, OFUL, as a subroutine in
our work. In the area of sparse linear bandits, regret bounds
are known to scale like

√
kdT , (Abbasi-Yadkori, Pal, and

Szepesvari 2012),(Lattimore and Szepesvári 2018), when
operating in a d dimensional feature space with k relevant
features. The strong dependence on the ambient dimension
d is unavoidable without further (often strong and unrealis-
tic) assumptions. For instance, if the distribution of feature
vectors is isotropic or otherwise favorably distributed, then
the regret may scale like k log(d)

√
T , e.g., by using incoher-

ence based techniques from compressed sensing (Carpentier
and Munos 2012). These results also assume knowledge of
sparsity parameter k and without it no algorithm can sat-
isfy these regret bounds for all k simultaneously. In contrast,
we propose a new algorithm that automatically adapts to the
unknown sparsity level k and removes the dependence of re-
gret on d by exploiting additional feature feedback. In terms
of feature feedback in text-based applications, (Croft and
Das 1989) have proposed a method to reorder documents
based on the relative importance of words using feedback
from users. (Poulis and Dasgupta 2017) consider a similar
problem but for learning a linear classifier. We use a similar
feedback model but focus on the bandit setting where such
feedback can be naturally collected along with rewards. The
idea of allowing user’s to provide richer forms of feedback
has been studied in the active learning literature (Ragha-
van, Madani, and Jones 2006), (Druck, Settles, and McCal-
lum 2009) and also been considered in other (interactive)
learning tasks, such as cognitive science (Roads, Mozer, and
Busey 2016), machine teaching (Chen et al. 2018), and NLP
tasks (Yessenalina, Yue, and Cardie 2010).

2 Model for Feature Feedback

The algorithm presents the user with an item (e.g., docu-
ment) and the user provides feedback in terms of whether
they like the item or not (logistic model) or how much they
like it (inner product model). The user also selects a few fea-
tures (e.g., words), if they can find them, to help orient the
search. We make the following assumptions.

Assumption 1 (Sparsity). The hidden weight vector θ∗ ∈
R

d is k-sparse and k is unknown. In other words, θ∗ has at
most k non-zero entries or if supp(θ∗) = {i|θ∗i 	= 0} then

|supp(θ∗)| = k ≤ d.
Assumption 2 (Discoverability). For an action x ∈ X se-
lected uniformly at random, the probability that a relevant
feature is present and is selected is at least p > 0 (unknown).
Assumption 3 (Noise). Users may report irrelevant fea-
tures. The number of reported irrelevant features (denoted
by 0 ≤ k′ ≤ d− k) is unknown in advance.

Assumption 1 ensures that there are at most k relevant
features, however we stress that the value of k is unknown
(it is possible that all d features are relevant). Assumption 2
ensures that while every item may not have relevant features,
we are able to find them with a non-zero probability when
searching through items at random. This assumption can be
viewed as a (possibly pessimistic) lower bound on the rate
at which relevant features are discovered. For example, it is
possible that exploitative actions may yield relevant features
at a higher rate (e.g., relevant features may be correlated with
higher rewards). We do not attempt to model such possibili-
ties since this would involve making additional assumptions
that may not hold in practice. Assumption 3 accounts for
ambiguous features that are irrelevant but users erring on the
side of marking as relevant.

The set up is as follows: we have a set of items, X ⊆ R
d

that we can propose to the users. There is a hidden weight
vector θ∗ ∈ R

d that is k-sparse. We will further assume
that ‖θ∗‖ ≤ S and the action vectors are bounded in
norm: ∀x ∈ X , ‖x‖ ≤ L. Besides the reward yt, (1), at
each time-step the learner gets It ⊆ [d] which is the rel-
evance feedback information. The model further specifies
that ∀j ∈ supp(θ∗),Pr(j ∈ It) ≥ p. That is, the proba-
bility a relevant feature is selected at random is at least p.
We need this assumption to make sure that we can find all
the relevant features.

3 Algorithm

In this section, we introduce an algorithm that uses feature
relevance feedback by starting with a small feature space
and gradually increasing the space over time without knowl-
edge of k. We use the OFUL algorithm (stated as Algo. 1)
based on the principle of optimism in face of uncertainty as a
subroutine. The algorithm constructs ellipsoidal confidence
sets centered around the ridge regression estimate, using ob-
served data such that the sets contain the unknown θ∗ with
high probability, and selects the action/item that maximizes
the inner product with any θ from the confidence set.

All updates are made only in the dimensions that have
been marked as relevant and the space is dynamically in-
creased as new relevant features are revealed. If nothing is
marked as relevant, then by default the actions are selected at
random, potentially suffering the worst possible reward but,
at the same time, increasing our chances of getting relevance
feedback leading to a trade-off. Note that the algorithm is
adaptive to the unknown number of relevant features k. If
k were known, we could stop looking for features when all
relevant ones have been selected. We find that in practice,
this algorithm has an additional benefit of being more ro-
bust to changes in the ridge parameter (λ) due to its intrinsic
regularization of restricting the parameter space.
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Algorithm 2 Feature Feedback OFUL (FF-OFUL)
1: Let the set of relevant indices, R0, I0 = {}.
2: while I0 is empty do
3: Select action at random, I0 = { indices revealed }
4: end while
5: R1 = R0

⋃ I0
6: Initialize C0 using actions sampled.
7: for t = 1, 2, . . . , T do
8: Let Xt be the feature matrix restricted to Rt.
9: Set εt = 1/

√
t. Draw bt from bernoulli(εt)

10: if bt = 1 then
11: Pick an action xt uniformly at random from Xt,
12: else
13: Pick (xt, θ̃t) = argmax(x,θ)∈Xt×Ct−1

〈x,θ〉
14: end if
15: With action xt observe reward yt and indices, It.
16: Update Rt = Rt

⋃ It
17: if It is empty then

18: Rank one update to Vt, θ̂t, Ct (see Algo. 1) using
(yt,xt)

19: else
20: Update Xt with features in Rt.
21: Recompute Vt, θ̂t, Ct with new feature set Xt.
22: end if
23: end for

(Abbasi-Yadkori, Pal, and Szepesvari 2011) provide a
Õ(d

√
t) bound on the regret of OFUL stated as Algorithm 1

by ignoring constants and logarithmic terms. We prove a
similar result but reduce the dependence on the dimension
from d to k. In order to do so, we must discover the sup-
port of θ∗. The idea being that we apportion a set of ac-
tions, with a form of ε-greedy algorithm due to (Sutton and
Barto 1998), to random plays in order to guarantee that we
find all the relevant features, otherwise we run OFUL on
the identified relevant dimensions. Reducing the proportion
of random actions over time guarantees that the regret re-
mains sub-linear in time. We propose Algorithm 2 to ex-
ploit feature feedback. Here, at each time t, with probability
proportional to 1/

√
t, the algorithm selects an action/item

to present at random, otherwise it selects the item recom-
mended by feature-restricted-OFUL.

4 Regret Analysis

In this section, we state regret bounds for the FF-OFUL al-
gorithm along with a sketch of the proof and discuss ap-
proaches to improve the bounds while deferring proof de-
tails to supplementary material.

4.1 Regret Bound for Algorithm 2 (FF-OFUL)

Recall that ∀x ∈ X , ‖x‖ ≤ L and ‖θ∗‖ ≤ S. Therefore,
for any action, the worst-case instantaneous regret can be

derived using Cauchy-Schwarz as follows:

|〈x∗,θ∗〉 − 〈x,θ∗〉| ≤ |〈x∗,θ∗〉|+ |〈x,θ∗〉|
≤ ‖x∗‖ ‖θ∗‖+ ‖x‖ ‖θ∗‖
≤ 2SL

We provide the main result that bounds the regret (2) of Al-
gorithm 2 in the following theorem.
Theorem 1. Assume that ∀t > 0 and x ∈ Xt, 〈x,θ∗〉 ∈
[−1, 1], with the additional assumptions 1, 2 and 3 (k’ = 0).
Then with probability ≥ 1− δ, the cumulative regret after T
steps for Algorithm 2,

RT ≤ 8SL

log 6M/δ

(
log 3k/δ

log 1/(1− p)

)2

+ log2
T

2

(
3SL

√
T log

6M

δ

)

+ 4 log2
T

2

√
T

2
k log(λ+ nL/k)

(
λ1/2S

+ R
√

2 log(3M/δ) + k log(1 + TL/(2λk))
)
.

where M = log2
T
2 , λ > 0 is the ridge regression parameter

and k is the (unknown) number of relevant features.
In other words, with high probability, the regret of Algo-

rithm 2 (FF-OFUL) scales like Õ(k
√
T + 1

p2 ), by ignoring
constants and logarithmic terms and using the taylor series
expansion of − log(1 − p), over time horizon T where k is
the number of relevant features and p is the probability with
which a relevant feature is marked in an action selected uni-
formly at random.

Remark. The values of k and p are unknown and the algo-
rithm implicitly adapts to these problem-dependent parame-
ters. Since the regret of any algorithm is trivially bounded by
O(T ) (for bounded rewards), our new regret bound is non-
trivial for T > max(k2, p−2). In comparison, linear bandits
without feature feedback have an O(d

√
T ) regret, which is

non-trivial only when T > d2. So, our new algorithm en-
joys a better regret bound if p > d−1, which is a reasonable
condition in high-dimensional settings (e.g., d = 104).

The three terms in the total regret come from the follow-
ing events. Regret due to: (1) exploration to guarantee ob-
serving all the relevant features (with high probability), (2)
exploration after observing all relevant features (due to lack
of knowledge of p or k), and (3) exploitation and exploration
running OFUL (after having observed all relevant features).

In practice, feature feedback may be noisy. Sometimes,
features that are irrelevant may be marked as relevant. To
account for this, we can relax our assumption to allow for
subset of k′ irrelevant features that are mistakenly marked
as relevant. Including these features will increase the regret
but the theory goes through without much difficulty as stated
in the following corollary.
Corollary 1. With the same assumptions as Theorem 1, if a
fixed set of k′ irrelevant features were indicated by the user
(Assumption 3), then the regret of Algorithm 2 (FF-OFUL)
scales like Õ((k + k′)

√
T + 1

p2 ).
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The corollary follows since exploration is not affected by
this noise and the regret of exploitation on the vector re-
stricted to k+k′ dimensions scales like (k+k′)

√
T . This ac-

counts for having some features being ambiguous and users
erring on the side of marking them as relevant. This only re-
sults in slightly higher regret so long as k+k′ is still smaller
than d. One could improve this regret by making assump-
tions on the probabilities of feature selection to weed out the
irrelevant features.

Proof Sketch of Main Result We provide a sketch of the
proof here and defer details to supplementary material. Re-
call, the cumulative regret is summed over the instantaneous
regrets for t = 1, . . . , T . We divide the cumulative regret
across epochs s = 0, . . . ,M of doubling size Ts = 2s for
M = log2

T
2 .

This ensures that the last epoch dominates the regret and
it allows for the evolving feature space. For each epoch,
we bound the regret under two events, all relevant features
have been identified (via user feedback) up to that epoch or
not. First, we bound the regret conditioned on the event that
all the relevant features have been identified in Lemma 3.
This is further, in expectation, broken down into the εs por-
tion of random actions for pure exploration (Lemma 1) and
1− εs modified OFUL actions on the k-dimensional feature
space for exploitation-exploration (Lemma 2). For pure ex-
ploration, we use the worst case regret bound but since εs is
decreasing this does not dominate the OFUL term. Second,
we bound the probability that some of the relevant features
are not identified so far (Proposition 3), which is a constant
depending on k and p since it becomes zero after enough
epochs have passed. Pure exploration ensures the probabil-
ity that some features are not identified decreases with each
passing epoch. An issue of bounding regret of the actions
selected by OFUL subroutine in each epoch is that, unlike
OFUL, the confidence sets in our algorithm are constructed
using additional actions from exploration rounds and past
epochs. To accommodate this we prove a regret bound for
this variation in Lemma 2. Putting all this together gives us
the final result.

Lower bound. The arguments from (Dani, Hayes, and
Kakade 2008),(Rusmevichientong and Tsitsiklis 2010) can
be used get a lower bound of O(k

√
T ). Suppose we knew

the support, then any linear bandit algorithm that is run on
that support must incur an order k

√
T regret. We don’t know

the support but we estimate it with high probability and
therefore the lower bound also applies here. Our algorithm
is optimal up to log factors in terms of the dimension.

4.2 Better Early-Regret Bounds

Our analysis bounds the regret of early rounds, before ob-
serving all relevant features, with the worst case regret which
may be too pessimistic in practice. We present results to
support the idea of restricting the feature space in the
short-term horizon and growing the feature space over
time. The results also suggest that an additional assumption
on the behavior of early-regret could lead to better constants
in our bounds. Any linear bandit algorithm restricted to the

support of θ∗ must incur an order k
√
T regret so one can

only hope to improve the constants of the bound.
In Figure 2(a) it can be seen that the average linear regret

of pure exploration has a slope that is worse than OFUL re-
stricted to a subset of the relevant features. The N = 1000
actions were randomly sampled from the unit sphere in
d = 40 dimensions and θ∗ was generated with k = 5 spar-
sity. For a pure exploration algorithm that picks actions uni-
formly at random, independent of the problem instance, the
regret can only be bound by 2SLT or O(T ). Let RK

alg be
the expected regret of algorithm alg run on a subset of rel-
evant features K ⊆ {1, . . . , k}, |K| = j ≤ k. For exam-
ple, alg could be the OFUL algorithm. Then RK

alg represents
the expected regret of OFUL restricted to features in K. To
discover relevant features (K) we can employ an explore-
then-commit strategy which first explores for ∼ √

T time
followed by an exploitation stage such as OFUL restricted
to features in K. The rewards in the latter exploitation stage
can be divided in two parts,

〈x,θ∗〉 =
〈
xK,θK

∗
〉
+
〈
xKc

,θKc

∗
〉
,

where xK is the portion of x restricted to K and K∪Kc =
[d]. Similarly, the regret RK

alg can be divided in two parts.
Roughly the regret on K can be bounded by j

√
T under cer-

tain conditions using the OFUL regret bound. For the regret
on Kc, suppose each relevant component of θ∗ has a mean
square value of S2/k (this can be achieved with a sparse
gaussian model such as those described in (Deshpande and
Montanari 2012)). This yields E‖θKc

∗ ‖2 ≈ k−j
k S2 where

j = |K|. The worst-case instantaneous regret bound on Kc

becomes 2
√
(k − j)/kSL leading to an improvement in the

linear regret slope by a factor of
√
(k − j)/k over pure ex-

ploration (see Figure 2).
Figure 2(b) shows average regret of OFUL restricted to

feature subsets of different sizes with synthetic data (N =
1000 actions, d = 40 and k = 10). For j ∈ {2, 4, . . . , 10},
we randomly picked 100 subsets of size j from the support
of θ∗. We report the average regret of OFUL for a short hori-
zon, T = 28, restricted to the 100 random subsets. We also
plot average regret of OFUL on the full d = 40 dimensional
data. Figure 2(c) depicts the same with real data from (Poulis
and Dasgupta 2017) with d = 498 and sparsity, k = 92,
we choose 100 random subsets of size j ∈ {5, 10, . . . , 25}
from the set of relevant features marked by users (see Sec-
tion 5 for details) and report the average regret of OFUL
restricted to the feature subsets for a relatively short time
horizon, T = 211. The plots show that, in the short hori-
zon, it may be more beneficial to use a subset of the relevant
features than using the total feature set which may include
many irrelevant features. The intuition is that when OFUL
has not seen many samples, it does not have enough infor-
mation to separate the irrelevant dimensions from relevant
ones. As time goes on (i.e., for longer horizons) OFUL’s rel-
ative performance improves since it enjoys sublinear regret
but would ultimately be a factor of d/k worse than that of the
low-dimensional model that includes all k relevant features.
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(a) Synthetic data (b) Synthetic data (c) Data from (Poulis and Dasgupta 2017)

Figure 2: (a) Regret of pure exploration versus explore-then-commit strategy (b,c) Average regret of OFUL restricted to feature
subsets (red dots) with 95% confidence regions (blue). The short time horizon was chosen to make the case for restricting the
feature space in early rounds. In the long horizon, with more information, the relative performance of OFUL improves, but
would ultimately be a factor of d/k worse than that of the low-dimensional model that includes all k relevant features.

5 Experiments

5.1 Results with Synthetic Data

For synthetic data, we simulate a text categorization dataset
as follows. Each action corresponds to an article. Generally
an article contains only a small subset of the words from
the dictionary. Therefore, to simulate documents we gener-
ate 1000 sparse actions in 40 dimensions. A 5-sparse reward
generating vector, θ∗, is chosen at random. This represents
the fact that in reality a document category probably con-
tains only a few relevant words. The features represent word
counts and hence are always positive. Here we have access
to θ∗ therefore for any action x, we use the standard lin-
ear model (1) for the reward yt with ηt ∼ N (0, R2). The
support of θ∗ is taken as the set of oracle relevant words.
For every round, each word from the intersection of the
support of the action and oracle relevant words is marked
as relevant with probability (p′ = 0.1). Figure 3(a) shows
the results averaged over 100 random trials for sparse θ∗
with k = 5, d = 40, and 1000 actions. As expected, the
FF-OFUL algorithm outperforms standard OFUL signifi-
cantly. Figure 6(b) in supplement also shows that the feed-
back does not hurt the performance much for non-sparse θ∗
with k = d = 40. Figure 1(b) compares the performance of
FF-OFUL with an explore-then-commit strategy.

5.2 Results with 20Newsgroup Dataset

We use the 20Newsgroup (20NG) dataset from (Lang 1995).
It has 2 × 105 documents covering 20 topics such as pol-
itics, sports. We choose a subset of 5 topics (misc.forsale,
rec.autos, sci.med, comp.graphics, talk.politics.mideast)
with approximately 4800 documents posted under these top-
ics. For the word counts, we use the TF-IDF features for the
documents which give us approximately d = 47781 fea-
tures. For the sake of comparing our method with OFUL,
we first report 500 and 1000 dimensional experiments and
then on the full 47, 781 dimensional data. To do this, we
use logistic regression to train a high accuracy sparse clas-
sifier to select 153 features. Then select an additional 847

features at random in order to simulate high dimensional
features. We compared OFUL and FF-OFUL algorithms on
this data. This is similar to the way (Poulis and Dasgupta
2017) ran experiments in the classification setting. We ran
only our algorithm on the full 47781 dimension data since
it was infeasible to run OFUL. For the reward model, we
pick one of the articles from the database at random as θ∗
and the linear reward model in (1) or use the labels to gen-
erate binary, one vs many rewards to simulate search for
articles from a certain category. In order to come close to
simulating a noisy setting, we used the logistic model, with
qt = 1/(1− exp(−〈xt,θ∗〉), P (yt = +1) = qt.

Oracle Feedback. The support of one-vs-many sparse
logistic regression is used to get an “oracle set of rele-
vant features” for each class. Each word from the intersec-
tion of the support of an action and oracle relevant words
was marked as relevant with probability p′(= 0.1). In our
theorem statements, p is the probability that the feature
is present in a random action and it is marked relevant.
This depends on the distribution of the words, but typi-
cally p ∈ (0.001, 0.01) and k ∈ (30, 100) relevant fea-
tures for each category. Figure 3, compares OFUL, Explore-
then-commit and FF-OFUL on the 20NG dataset with ora-
cle feedback. In these simulations averaged over 100 random
θ∗, FF-OFUL outperforms OFUL and Explore-then-commit
significantly. OFUL parameter was tuned to λ = 28.

Human Feedback. (Poulis and Dasgupta 2017) took 50
20Newsgroup articles from 5 categories and had users an-
notate relevant words. These are the same categories that
we used above. This is closer to simulating human feed-
back since we are not using sparse logistic regression to es-
timate the sparse vectors. We take the user indicated rele-
vant words instead as the relevance dimensions. There were
k ∈ (30, 100) relevant features for each category. In Fig-
ure 4(a), we can see that FF-OFUL is already outperform-
ing OFUL and Explore-then-commit. This is despite the fact
that it is not a very sparse regime. Surprisingly, we found
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(a) Synthetic data (b) Real data with replacement (c) Real data without replacement

Figure 3: (a) Synthetic data with sparse θ∗ (d = 40, k = 5), FF-OFUL outperforms OFUL significantly. See Figure 1(b) for
comparison with explore-then-commit strategy. Newsgroup dataset with oracle feedback: (b) This plot shows that FF-OFUL
outperforms OFUL and Explore-then-commit when running in d = 1000 dimensions, sampling actions with replacement using
binary rewards model. (c) sampling actions without replacement and using the numerical reward model. Smallest T0 selected
such that all relevant features are marked with high probability. Note shorter time horizon for without replacement sampling
since T must be less than the number of actions.

Figure 4: Newsgroup Dataset with Human Feedback: (Left) FF-OFUL outperforms OFUL and Explore-then-commit strategy
in d = 500 dimensions. Both plots generated by tuning the parameter for OFUL. (Center) Sensitivity to tuning parameter
λ seen by the drastic difference in performance of OFUL. In contrast, our FF-OFUL has a relatively modest difference in
performance showing its robustness to the ridge regression parameter λ. (Right) Our algorithm for d = 47781 and d = 500
with ridge parameter λ = 1, showing its robustness to changes in dimensions and tuning.

that tuning had little effect on the performance of FF-OFUL
whereas it had a significant effect on OFUL (see Figure 4).
This is possibly due to the implicit regularization provided
by gradually growing the number of dimensions as we re-
ceive new feedback. FF-OFUL also yields significantly bet-
ter rewards at early stages by exploiting knowledge of rele-
vant features as soon as they are identified, rather than wait-
ing until all or most are found.

Parameter Tuning. For OFUL the ridge parameter (λ) is
tuned from {2i}10i=−7 to pick the one with best performance.
All the tuned parameters selected for OFUL were strictly
inside this range (for d = 40, k = 5 , λ = 2−5 and for
d = 103 (Newsgroup), λ = 28). Figure 4(b) demonstrates
the sensitivity of OFUL to change in tuning parameter. For
FF-OFUL, the remarkable feature is that it does not require
parameter tuning so λ = 1 for all experiments.

Full dimension experiments. Remarkably the perfor-
mance of FF-OFUL barely drops in full (d = 47781) feature
dimensions in Figure 4(c). Even though the ridge regression
parameter (λ) for all experiments was not tuned and set to

λ = 1. FF-OFUL is robust to changes in the ambient dimen-
sions and the parameter λ. Recall that we do not compare
with OFUL on 47781 dimensional data since it would re-
quire storing and updating a d× d matrix at each stage.

Conclusion

In this paper we provide an algorithm that incorporates
feature feedback in addition to the standard reward feed-
back. The framework is based on the following insight: In
the short-term horizon, when the algorithm does not have
enough feedback, it starts with a small subset of the dimen-
sions and gradually grows the number of dimensions as it
receives new feedback. This has three benefits: (1) it makes
it possible to use the new algorithm in high-dimensional set-
tings where conventional linear bandits are impractical, (2)
it is more robust to choice of parameters because it grows the
feature dimensions over time which provides implicit regu-
larization, and (3) it leads to better early-regret. The choice
of the dimensions is based on feature feedback provided by
the user. This could be generalized in a number of ways,
using ideas from compressed sensing and/or dimensionality
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reduction, alleviating the need for feature feedback from the
user in the future. The goal of this framework is to motivate
this idea of growing the feature space over time.
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